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Abstract: The result of infrared and visible image fusion should highlight the significant targets of the infrared im-
age while preserving the visible light texture details. In order to satisfy the above requirements, this paper propos-
es an automated encoder-based infrared and visible image fusion method. The encoder constructs both a base en-
coder and a detail encoder according to the optimization objective. The base encoder extracts low-frequency infor-
mation from the image, while the detail encoder captures high-frequency information. Since this extraction meth-
od may miss some information, we introduce a compensation encoder to supplement the missing information. Ad-
ditionally, we introduce multi-scale decomposition for the encoder to extract image features more comprehensive-
ly. The image features obtained by the encoders are then fed into the decoder. The decoder first adds the low-fre-
quency, high-frequency and compensatory information to obtain multi-scale features. An attention map is derived
from these multi-scale features and multiplied with the fused image at the corresponding scale. The Fusion module
is introduced in the multi-scale fusion process to achieve image reconstruction. The network proposed in this pa-
per demonstrates its effectiveness on the TNO, RoadScene, and LLVIP datasets. Experiments show that our net-
work can better perceive changes in light, effectively extract image detail information, and produce fused images
that are more aligned with human visual perception.
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1 Introduction

Infrared and visible image fusion is a vital task in
image processing . Infrared images, captured through
thermal radiation, are less affected by external factors
but often suffer from a significant loss of texture details
and structural information 2. Tn contrast, visible images
contain rich texture information but are more sensitive to
environmental changes . Therefore, combining infra-
red and visible images in a bimodal manner can generate
high-quality images "*'.

To maximize the retention of useful information in
fused images, various methods have been developed.
Traditional image fusion techniques operate in either the
spatial domain or the transform domain. Spatial domain
methods directly process image pixels, whereas trans-
form domain methods handle the frequency representa-
tion of images using transformations such as the Fourier
transform or wavelet transform . While these tradition-
al methods have produced satisfactory fusion results,
they largely depend on heuristic fusion rules. Conse-
quently, traditional image fusion techniques often fall
short of meeting the increasingly stringent fusion require-
ments.

In recent years, the feature extraction capabilities of
deep learning have garnered significant attention from re-
searchers. Studies have demonstrated that deep learning
methods can substantially enhance the quality of fused
image ”'. Currently, deep learning-based image fusion
methods can be broadly categorized into three types: au-
toencoder (AE) -based methods, convolutional neural
network (CNN)-based methods, and generative adversar-
ial network (GAN) -based methods. AE-based methods
focus on encoding data to create a low-dimensional repre-
sentation, which is then decoded to reconstruct the origi-
nal data . CNN-based methods extract image features
through local connections and shared weights . GAN-
based methods employ adversarial training between a
generator and a discriminator to produce high-quality im-
ages .

Although methods for infrared and visible image fu-
sion are relatively mature, there are still unresolved is-
sues. Increasing the number of network layers enhances
the network’s expressive ability, but it also exacerbates
the loss of image detail. This, to some extent, limits the
further improvement of fusion image quality. Our pro-
posed network effectively addresses this problem, with
its main contributions being as follows:

(1) The encoder network constructs base and detail en-
coders to extract low and high frequency information
based on the optimisation objective, and constructs com-
pensation encoders to supplement the information.

(2) The decoder network first fuses the different scales of
low-frequency, high-frequency, and compensatory infor-
mation to obtain multi-scale features. These multi-scale
features are then multiplied by the acquired attention
map, and the Fusion module is introduced to perform
multi-scale fusion for image reconstruction.

(3) Our proposed fusion method demonstrates superior
fusion results in terms of both visual assessment and ob-

jective evaluation compared to nine other fusion algo-
rithms on three public datasets.

2 Related work

2.1 Methods Based on Autoencoder

An autoencoder is an unsupervised learning model
commonly used for tasks such as data compression and
feature extraction. The encoder maps input data into a
low-dimensional feature space, while the decoder recon-
structs the original data from this reduced space.
Through this process, the autoencoder retains essential
information and effectively captures significant feature
representations ', As a result, autoencoder have been
widely applied in areas such as target detection “'*, tar-
get segmentation e , and early warning systems e

In image processing, the feature extraction capabili-
ties of self-encoders are extensively utilized in image fu-
sion tasks. Image fusion aims to combine information
from multiple image sources to generate richer and more
informative results. Autoencoder is usually divided into
three parts in this field: the encoder, the decoder, and
the fusion layer. The encoder automatically learns the
feature information of the source images without the need
for manually designed features. The decoder maps the
low-dimensional features extracted by the encoder back
to the original space, adaptively reconstructing the im-
age. Typically, image fusion methods based on autoen-
coders train the encoder and decoder during the training
phase. In the testing phase, a fusion layer, such as an
addition or maximum strategy, is introduced to merge the
image features of infrared and visible.

Li et al. " proposed a deep learning architecture
that integrates convolutional layers, fusion layers, and
dense blocks, where the output of each layer is connect-
ed to the outputs of other layers. Recognizing that the fea-
tures extracted by a single branch might lack comprehen-
siveness, Li et al. "' introduced a method incorporating
a multi-level residual encoder module and a decoder mod-
ule with hybrid transmission. This design features a
multi-level residual encoder module with two indepen-
dent branches for extracting image features. Zhao et al.
7 proposed a dual-branch structure for multimodal fea-
ture decomposition and image fusion. Tang et al. ""* pro-
posed a darkness-free infrared and visible image fusion
method, which fully considers the intrinsic relationship
between low-light image enhancement and image fusion,
achieving effective coupling and information complemen-
tarity. Additionally, Tang et al. "' were the first to con-
sider the gap between high-level vision tasks and image
fusion, proposing a semantic-aware image fusion frame-
work.

2.2 Multi-scale transform

Multiscale transform is a technique for processing
and analyzing information by decomposing an image or
signal into different scales or frequency components™
It can effectively capture local details and global features
in images and is widely used in tasks such as image fu-
sion, texture analysis and feature extraction. The com-
monly used multiscale transforms mainly contain meth-
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ods such as pyramid transformations *'', wavelet transfor-

mations "', and non-subsampled multi-scale multi-direc-
tional geometric transformations "',

With the advancement of deep learning, researchers
and scholars have integrated multiscale transforms into
deep learning-based networks. Lin et al “* proposed
cross-scale fusion module for interactive fusion of fea-
tures between encoder and decoder. Jian et al. " intro-
duced a multiscale encoder to extract featured image fea-
tures and constructed a symmetric encoder-decoder with
residual blocks (SEDRFuse) network for fusing infrared
and visible images in night vision applications. Wang et
al. ' introduced a novel and efficient fusion network
based on dense Res2net and dual nonlocal attention mod-
els. They integrated Res2net and dense connectivity into
an encoder network, enabling the utilization of multiple
available receptive fields to extract multiscale features.
This approach aims to retain as much effective informa-
tion as possible for the fusion task.

3 proposed fusion method

This section provides a detailed description of the
proposed architecture for infrared and visible image fu-
sion, encompassing the encoder, decoder, and training
specifics.

3.1 Network architecture

Our proposed Infrared and Visible Image Fusion Ar-
chitecture (BDMFuse) is an end-to-end network architec-
ture. The encoder employs three branches: the base en-
coder, detail encoder, and compensation encoder. The
base encoder extracts low-frequency information from the
image, the detail encoder captures high-frequency infor-
mation, and the compensation encoder gathers informa-
tion not captured by the other encoders. Each encoder
operates at three different scales, and their outputs are
fed into the decoder. Multi-scale features are first gener-
ated by summing the low-frequency, high-frequency,
and compensatory information from different scales.
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(a) Overall structure of the training phase.
Fig.1 The overall network of BDMFuse.
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These multi-scale features are then fused to achieve im-
age reconstruction.
3.2 Encoder

Inspired by the literature "7, we construct the base
encoder, detail encoder, and compensation encoder with
the idea of solving for the optimal solution. The base en-
coder extracts low-frequency features by minimizing Eq.
(1) to obtain the optimal solution.

ms (1)

B, =B, ~vyu*B

Where B, is the image acquired after applying a blur fil-
ter to the input image and vy, is the tuning hyperparame-
ter. B,(ne{l,2,3!) is the decomposed base image. B,
(me{1,2,3}) is the low-frequency features of different
scales obtained after convolution operations of different
depths, which are represented as shown below :

2)

B,=L,-vu*E,,

where L, (ne {1, 2, 3! ) denotes features of different
scales obtained after convolution operations of different
depths, E,(ne{1,2,3}) denotes high-frequency features
of different scales extracted from the E, feature map, and
¥, is the tuning hyperparameter.

The detail encoder minimizes Eq. (3) to obtain the
optimal solution.

D,=D,-vyy,*D,, (3)

Where D, is the image obtained after applying Laplace fil-
ter to the input image and D, (me{1,2,3!) denotes the
high frequency features at different scales obtained from
the convolution operation that has been performed at dif-
ferent depths. 7y, is the tuning hyperparameter. D, (ne
{1,2,31) is the decomposed detail image

The compensation encoder also adopts the method of
finding the optimal value to obtain the feature informa-
tion, which is similar to the detail encoder and will not
be repeated. We obtain the compensating filter by

Eq. (4).
C,=1-B,-D, (4)
The base encoder network is depicted in Fig. 2. We
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Overall structure of the testing phase.
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Fig. 2 Base encoder schematic.
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adopt two processing methods to extract the low-frequen-
cy information of the input image. One is to take low pass
filter and the other is to take convolution operation. First-
ly, feature coarse extraction is performed, followed by
the addition of the CBAM attention mechanism “**' to em-
phasize effective information. To capture more compre-
hensive information, we introduce multi-scale feature ex-
traction. Maximum pooling and up-sampling operations
are applied to features of different scales to extract high-
frequency information, thereby removing high-frequency
components from the features. The pooling operation re-
duces the feature size by half, and to maintain the image
size, bilinear interpolation-based up-sampling is adopt-
ed.

The detail encoder network is illustrated in Fig. 3,
and its architecture bears resemblance to the base encod-
er. However, the detail encoder employs two methods to
obtain the high-frequency information of the image. One
approach is to utilize a high-pass filter, while the other
involves convolutional operations. Maximum pooling op-
eration is taken directly on image features of different
scales in convolution operation to obtain the high frequen-

cy information of the image. In this process, the CGP
convolution blocks in the network all employ 3X3 convo-
lution kernels with a stride of 1. Transitioning through
the CGP convolution block alters only the number of
channels and does not affect the image size.

The compensation encoder is shown in Fig. 4. This
encoder is constructed to complement the image feature
information, so only the basic convolutional processing of
the rest of the encoder is retained without any other addi-
tional operations.

3.3 Decoder
3.3.1 Decoder Network

Initially, the corresponding low-frequency informa-
tion and high-frequency information of different scales
are fused. As shown in Fig. 5(a), Fr(nei{l,2,3}) re-
fers to the multi-scale low-frequency features, F (neil,
2,31 ) denotes the multi-scale high-frequency features,
and F"(nei{l,2,3}) represents the multi-scale compen-
sation features. Since the compensating features may in-
crease image artifacts, we add hyperparameters 8 to mod-
ulate the multi-scale compensating features. The size of
F; differs from the rest of the image sizes, so up-sam-

1 16 16 16 32
XI} » CGP »| CBAM » CGP » CGP
A 4
frel-glugglcy I Maxpool I I Maxpool I
| )\16 )\32 64
\rlG 532 64
Lo | [ | [ D
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pling is achieved through an inverse convolution opera-
tion for Fj. Finally, F}, F;, and F! are summed to ob-
tain the multi-scale feature F,(ne{1,2,3}).

In order to be able to make the image learn more
multi-scale information, we obtain the attention map of
the corresponding scale from F, and multiply it with the
fused image. Then multi-scale fusion is performed, as
shown in Fig. 5(b). F, is spliced with F, after the CGS
module is aligned with the number of F, channels, and
then sent to Fusion to achieve fusion. After F; and F, are
fused, they are passed through CGS to maintain the same
number of channels as F. Then, they are concatenated
with F, and sent into the Fusion module. The Fusion
module ' is shown in Fig. 6. We introduce hyperparam-
eters to the Fusion module to enhance its applicability to
our proposed network. Finally, image reconstruction is
achieved by two CGS modules. The CGS convolutional
blocks in the network adopt 3X3 convolutional kernels
with a step size of 1. The CGS convolutional blocks only
change the number of channels and do not change the im-
age size.

3.3.2 Attention strategy

Our computation of F, weights draws inspiration
from ASFF (Adaptively Spatial Feature Fusion) ™. F,
has the same size but different numbers of channels. We
adjust different number of channels for F, to obtain three
attention maps to extract the weight values of the corre-
sponding scales. The formula is shown below:

a)’;,w;,wg = Soﬁmax(Fl~>n’F24>n7F3~>n)’(n7i € {1’273} )’
(5)

Where, o), o), ) denote the individual weights of
F from the nth layer, and ', . , F, ., F, ., denote the
number of channels of all the layers adjusted to the num-
ber of channels of the nth layer by the CGP convolution
block. The softmax function is shown below :

softmax(Fl%n,ann»F.%ﬂn) =

Fio,
e

J(n,i e {1,2,3}). (6)

eF\A'n + eFEA'u + eFJAn

The weights corresponding to F, are multiplied with
F, to optimise the F, features as follows:

F =F *o" (7)

n’

where w! is the corresponding weight of F, in the nth lay-
er of the attention graph.

Taking Attention-3 as an example, Fig. 7 illustrates
how to obtain the weights of F,. We input F, into the
CGP convolution block, adjust the number of channels of
F,and F,to maich that of F;, and obtain the feature
maps. Subsequently, the three feature maps are concate-
nated, and the weight value of each feature map is calcu-
lated using softmax. Finally, the corresponding weight of
F,is extracted and multiplied with F; to optimize the F,
features. In this process, the CGP convolution blocks all
employ 1X1 convolution kernels with a stride of 1.

3.4 Training Strategy

Our training strategy is similar to DenseFuse. In the
training phase, the fusion network is discarded. Through
training, we expect the encoder to extract multi-scale
depth features and the decoder to reconstruct the image
based on these features. This training strategy can leave
more choice space for the fusion layer.

In the training phase, the loss function L, is de-
fined as follows:

Lyu=L,+ AL+ A2(L, + L), (8)

Where L, and L, denote the pixel loss and structural simi-
larity loss between the input image and the output image
respectively. \ is a measure between L , L, L, and L.
L, is calculated by Eq. (9):
L,=10 - 1P, 9)

where O and I denote the output and input images, re-
spectively. L, calculates the square of the difference be-
tween the output image and the input image, aiming to
ensure that the reconstructed image is similar to the
source image at the pixel level.
L, is obtained from Eq. (10):
L,=1-SSIM(O.,), (10)

Where SSIM (-) represents the structural similarity mea-
sure. When the value of SSIM(-) is larger, it indicates a
higher structural similarity between the output image O
and the input image 1.

The Fusion module is introduced in the decoder net-
work to retain more feature information. However, it
tends to ignore the structural information of the image to
some extent. To address this, L, and L, losses are intro-
duced.

L., is obtained from Eq. (11):

L,=1=SSIM(f;.,.F(f3,/2)), (11)
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Where f;,, is the result of summing the multiscale fea-
tures F, and F,, while F( f3,#2) is the fusion result ob-
tained after the Fusion module.
L, is obtained from Eq. (12):
L,=1 —SS]M(fZH,F(fZ,]q)), (12)

Where f, , , is the result of fusion of multiscale features F,
and F, and then summed with F,, and F( 2, f1) is the fu-
sion result obtained after the Fusion module.

The goal of the training phase is to train an autoen-
coder network capable of effectively extracting image fea-
tures and reconstructing images. We employ 1600 imag-
es from FLIR as input images for network training. The
training samples are randomly cropped to 224 X 224. we
set the parameter \ to 10 to train the network.

4 Experimental results and analysis

In this section, we will validate our proposed fusion
method through a series of experiments. The network is
executed on an NVIDIA GeForce RTX 2080Ti and imple-
mented using the PyTorch framework.

4.1 Experimental setting

In this experiment, images are selected from the
TNO, RoadScene™, and LLVIP"**datasets, and our pro-
posed fusion network is compared with nine typical fu-
sion networks (DenseFuse, RFN-Nest, FusionGAN |
U2Fusion ', CSF ', SEDR , SwinFusion **', SeAFu-
sion, CDDFuse) to evaluate its performance. We select
seven commonly used image quality evaluation metrics
for objective quality evaluation of fused images, which

Attn
[ B S Attm | =
N> 7 x| 8| =
>
V=St v — . |35
~— S~ — 2 CGP 2| 8] &
PROTE LN sl al*
o &
AN~ =+ vns

are entropy (EN) ®'; mutual information (MI) *'; stan-
dard deviation (SD) "; average gradient (VG) “*, vi-
sual information fidelity (VIF) “"'; the sum of the corre-
lations of differences (SCD) “*; multiscale structural
similarity measure (MS_SSIM) . Among them, EN is
an objective evaluation metric that measures how much
information the image contains; MI is used to measure
the amount of information transferred from the source im-
age to the fused image; SD reflects the distribution and
contrast of the fused image; AG is a metric used to evalu-
ate the sharpness and detail of an image; VIF measures
the information fidelity of the fused image ; SCD is a mea-
sure of the differences between the fused image and the
original image; and MS_SSIM is a similarity-based evalu-
ation metric.

4.2 Ablation experiment

The proposed network incorporates compensated en-
coders into the encoder network and introduces an atten-
tion strategy along with a Fusion module for multi-scale
fusion in the decoder network. To validate the efficacy of
these strategies, the article includes ablation experi-
ments. Additionally, to further assess the benefits of the
attention strategies, the article compares two attention
mechanisms SE and ECA with the strategies we have ad-
opted. As illustrated in Fig. 8, our proposed network
demonstrates superior visual fusion effects in the fused
image. Specifically, it effectively highlights the presence
of the villain in the infrared image while preserving the
dendritic texture features in the visible image.

To further demonstrate the superiority of our meth-
od, we conducted a quantitative analysis using test re-
sults from 40 pairs of infrared and visible images selected
from the TNO dataset. The optimal values are highlight-
ed in bold black. As shown in Table 1, our proposed net-
work achieves optimal values for the EN, MI, SD, and
VIF metrics. These results provide additional evidence
of the effectiveness of our adopted approach.

4.3 Analysis of experimental results
4.3.1 Subjective analysis

Subjective qualitative comparisons of the nine exist-

ing fusion methods with our fusion method are presented

Fig. 7 Attention computation strategy
K7 EES AR
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Fig. 8 Fusion image of ablation experiments
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in Figures 9~11. As depicted in the figures, all fusion sionGAN retains more information from the infrared im-
methods effectively fuse infrared and visible images, but age during fusion, which can result in blurred image de-
notable differences in visual quality are observed. Fu- tails. The remaining fusion methods retain more detailed
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Table 1 Average quality evaluation metrics for ablation experiments
F1 HEASWHEHREITFHEIER
EN MI SD AG VIF SCD MS_SSIM
SE-Attention 6. 8501 13.7001 34.7315 3.7415 0.9612 1.8192 0.9416
ECA-Attention 6. 9504 13. 9008 40. 6716 3.5503 0.9548 1.6514 0.9148
No-Attention 7.1774 14. 3547 40. 2576 4. 2096 1. 3605 1. 8801 0. 9306
No—comp Encoder 6. 8728 13.7456 38. 0053 2.9682 0.9219 1. 8060 0. 9403
No-Fusion Module 7.2129 14. 4259 40. 8263 3.7076 1.2727 1. 8870 0.9277
No-Strategy 7.0291 14. 0581 37. 9805 3. 3666 1. 0851 1. 8935 0.9511
No-Stratege&multiscale 6.5910 13. 1819 35.0411 3.2785 0. 8063 1.6111 0.9216
ours 7.2525 14. 5050 43.6183 4.1627 1.4128 1.8715 0.9207

information from the visible image, especially SwinFu-
sion, SeAFusion and CDDFuse. This method produces
fusion results that align more closely with subjective hu-
man visual perception but experience some loss of salien-
cy information. For example, in Fig. 9, the cloud infor-
mation present in the infrared image is missing. Our pro-
posed network retains more light and shadow informa-
tion, as illustrated in Figure 10, indicating its enhanced
ability to perceive light. To further validate this, we con-
ducted experiments on the LLVIP dataset. LLVIP is a da-
taset for low-light vision paired with visible and infrared
images. As demonstrated in Figure 11, our fused images
reveal the basic outline of the manhole cover even under
low-light conditions.
4.3.2 Quantitative analysis

In addition to subjective qualitative analysis, we
employ objective quantitative analysis to measure the per-
formance of the proposed method. The quantitative evalu-
ation results for the test sets of 40 pairs from TNO, 100
pairs from RoadScene, and 100 pairs from LLVIP are
shown in Tables 2-4. The best value is indicated in bold
black text, and the second-best value is underlined. Us-
ing the experimental results of the LLVIP dataset as an
example, we achieve the highest values on five indica-
tors: EN, MI, SD, VIF and SCD. This demonstrates our
network’s capability to effectively extract image details.
The results from the other two datasets show that while
our proposed fusion method may fall slightly short of the
optimal values in some evaluation metrics, the outcomes
are relatively balanced across all metrics and generally
superior to other fusion methods. Additionally, the ex-
perimental results from all three datasets indicate that
our method has good feasibility and generalizability.

5 Conclusion

This paper designs a multi-scale transformation fu-
sion method based on fundamental and information ex-
traction. We construct the base encoder and detail encod-
er based on optimization problems to extract low-frequen-
cy and high-frequency information from images. Addi-
tionally, a compensation encoder is proposed to supple-
ment the information. To obtain more image feature infor-
mation, we introduce multi-scale extraction of image in-
formation. The decoder first adds the low-frequency,
high-frequency, and compensatory information to obtain

fused images at different scales. Attention maps are then
derived from these fused images, and the corresponding
weights are multiplied with the fused images at different
scales. Finally, the Fusion module is introduced for
multi-scale fusion to achieve image reconstruction. Dur-
ing the training phase, the three encoders and one decod-
er are trained according to the loss function to ensure im-
age reconstruction capability. In the testing phase, the
low-frequency, high-frequency, and compensatory infor-
mation at different scales decomposed by the encoder are
fed into the fusion layer to integrate the corresponding in-
frared and visible images. Finally, these are sent into
the decoder for image reconstruction, resulting in the fi-
nal fused image.

Our network undergoes comparative experiments on
the TNO, RoadScene, and LLVIP datasets. The results
demonstrate that both the subjective fusion effect and the
overall objective evaluation of our proposed network out-
perform those of the comparison methods, with good gen-
eralization across datasets.
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(d) RFN-Nest (e) FusionGAN

(h) SEDR (i) SwinFusion

(h) SeAFusion (i) CDDFuse (j) Proposed

Fig. 9 Fusion image of TNO
K19 TNO FERIELE 2R



10 48 5 2 0K B 2 XX &

(d) RFN-Nest (e) FusionGAN (f) U2Fusion

(h) SeAFusion

(j) Proposed

Fig. 10 Fusion image of RoadScene
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(b) VIS (c) DenseFuse

(d) RFN-Nest (e) FusionGAN (f) U2Fusion

(g) CSF (h) SEDR

(h) SeAFusion (i) CDDFuse (j) Proposed

Fig. 11  Fusion image of LLVIP
11 LLVIP BRI RS 45
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Table 2 Average quality evaluation metrics for 40 pairs
of TNO fused images
&2 403 TNO B & B &8 FH R ET ISR

EN MI SD AG VIF  SCD

MS_SSI
M

DenseFuse 6.7933 13.5867 33 0055 3. 8958 1. 1141 1. 8951 0.9379
RFN-Nest 6. 9889 13.9777 35.2026 2. 8619 1. 1218 1.8710 0.9138
FusionGAN 6. 5073 13. 0147 26, 4478 2. 4276 0.7408 1.1339 0. 7511
U2fusion 6. 4745 12. 9489 24. 9858 3. 8414 0.7371 1.6542 0. 9433

CSF 6.9295 13.8591 34.2342 3.8565 1.2221 1.8503 0.9190
SEDR  6.8795 13.7590 39. 0527 4. 1491 1. 5546 1. 8554 0.8946
0
0
0

swinfusion 6. 6156 13.2311 31.0339 3.4971 0.7228 1. 7147 0. 8992
seAFusion 7. 1474 14.2949 39.9100 5. 6162 1.7369 1.7323 0. 8553
CDDFuse 7.0582 14. 1164 39. 1751 52135 1.3976 1.7966 0.8795

ours  7.3544 14.7088 44.5808 5 9907 1.8274 1.8784 0.8935

Table 3 Average quality evaluation metrics for 100
pairs of RoadScene fused images

#3100 %% RoadScene §i & E &K T R E T fhiStR
EN MI SD AG VIF SCD MS“_/ISSI
7.2684 14.5368 43.1679 4.5979 (. 6504 1. 6552 0.9220
7.3492 14. 6984 46. 1085 3. 1668 (. 6091 1. 6837 0. 8671
7.0540 14. 1079 39. 0645 3.2246 (. 4805 1. 0496 0.7547
u2fusion 7.0815 14. 1629 37.8472 5.2514 (. 6338 1.3866 0.9148
CSF 7.4257 14.8514 47.9828 5.0241 0.7952 1.7282 0.9261
SEDR  7.4499 14. 8999 49. 3581 4.9322 0. 8286 1.6978 0. 9005
6
7
7
7

DenseFuse
RFN-Nest

FusionGan

. 9712 13. 9424 45.1634 4.3312 0.7275 1.5772 0. 8470
L5117 15.0234 56. 1119 6. 8737 1.0949 1.6732 0. 8786
.5003 15.0007 56.4331 6.5083 1.1120 1.7105 0. 8740
. 5623 15. 1246 53.1000 6. 5506 1-0359 1.7766 0.9353

swinfusion

seAFusion

CDDFuse

ours

Table 4 Average quality evaluation metrics for 100
pairs of LLVIP fused images
&4 1003 LLVIP @& E R H FH R E T AR

EN MI SD AG  VIF  SCD MS“*/ISSI

DenseFuse 6. 9740 13.9480 36. 7708 2. 8641 (4617 1. 3835 0.9224
RFN-Nest 7.0028 14.0055 37. 8919 2.2445 . 4216 1. 4154 0. 8981
FusionGAN 6. 4153 12. 8306 26. 1540 2. 0102 0. 2746 0. 7521 0. 7865
U2fusion 6. 6531 13.3062 34.9659 3.3391 0. 5283 1.2755 0.9098
CSF  6.8283 13.6566 35.3773 2.7960 0.4564 1.3621 0.9109
SEDR  6.8877 13.7795 36.5430 2. 6319 0. 4495 1.2546 0. 8834
swinfusion 7.3844 14.7688 50. 8104 4.2064 0.9087 1.5887 0.9451
seAFusion 7.4193 14. 8386 50. 4468 4. 1898 0.9062 1. 6259 0. 9435
CDDFuse 7.3134 14. 6267 48.3450 3.8052 0. 8171 1.5889 0.9337
ours  7.5398 15.0795 52.9415 3. 8464 0-9889 1.7071 0.9250
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