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Urban tree species classification based on multispectral airborne LiDAR
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Abstract: Urban tree species provide various essential ecosystem services in cities, such as regulating urban tem-
peratures, reducing noise, capturing carbon, and mitigating the urban heat island effect. The quality of these ser-
vices is influenced by species diversity, tree health, and the distribution and the composition of trees. Traditional-
ly, data on urban trees has been collected through field surveys and manual interpretation of remote sensing imag-
es. In this study, we evaluated the effectiveness of multispectral airborne laser scanning (ALS) data in classifying
24 common urban roadside tree species in Espoo, Finland. Tree crown structure information, intensity features,
and spectral data were used for classification. Eight different machine learning algorithms were tested, with the
extra trees (ET) algorithm performing the best, achieving an overall accuracy of 71. 7% using multispectral Li-
DAR data. This result highlights that integrating structural and spectral information within a single framework can
improve the classification accuracy. Future research will focus on identifying the most important features for spe-
cies classification and developing algorithms with greater efficiency and accuracy.
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Introduction

Today, approximately 56% of the world’s population
—4. 4 billion people—live in cities. Urban trees play a
significant role in mitigating global climate change'" and
are uniquely susceptible to climate change impacts. Ur-
ban Forest Effects model >’ is widely used in urban areas
globally to estimate urban forest structure, species diver-
sity, and ecosystem functions. However, conducting ur-
ban forest inventories is labor-intensive, especially on
private properties, and the results are often not spatially
detailed. While remotely sensed data is commonly used
in forest applications, traditional optical remote sensing
methods struggle to capture three-dimensional forest
structures, especially in unevenly aged, mixed-species
forests with multiple canopy layers™.

Airborne laser scanning (ALS) is effective for ex-
tracting biophysical variables and revising forest invento-
ry maps. The successful use of ALS data has been dem-
onstrated for various applications. For example, ALS has
been used to estimate tree height ™, identify tree spe-
cies™ , and estimate tree volume biomass'®'’ , and
growth">"'. Tree species information at an individual
tree level is particularly useful in growth and yield esti-
mates and has been primarily studied for forest applica-
tions, such as updating forest inventories. Tree species
classification using ALS has not been intensively studied
compared with studies on the successful use of ALS for
other forest attribute mapping because of the lack of spec-
tral information.

Previous studies have also revealed that combining
multispectral information with 3D ALS data can improve
the accuracy of tree extraction and tree species classifica-
tion, as we can take advantage of both datasets. Howev-
er, challenging factors limit the effective operational use
of the fused datasets'™". For example, geometric and
radiometric registration between two datasets is demand-
ing because data are normally acquired at different times
using different sensors. The recently developed multi-
spectral laser scanning technique is becoming an attrac-
tive option for forest mapping because it can provide not
only a dense point cloud but also spectral information,
which can simplify data processing and facilitate the in-
terpretation of data.

Given the limitations of traditional optical remote
sensing in capturing three-dimensional forest structures,
it is essential to explore the potential of multispectral la-
ser scanning for urban tree inventories, particularly for
species classification. This study aims to assess the feasi-
bility of using multispectral ALS data for urban tree spe-
cies classification and to analyze the information content
of features derived from point clouds and intensity data.

1 Materials and methods
1.1 Study area and establishment of sample plots

The MLS datasets used in this study were acquired
in a suburban area in Espoolahti, southern Finland
(60°9"18"N, 24°38'24"E) in the southern Boreal For-
est Zone. We choose around 822 trees in this area as our
field dataset. The land area is approximately 5 km®. In
our research, we concentrated solely on the vegetated ar-

eas, excluding the sea using a water mask created from
topographic map data. The area included a diverse range
of boreal tree species.

The points were updated through visual interpreta-
tion of Titan data and open datasets from the City of Es-
poo, the National Land Survey of Finland, Google
Maps, and Google Street View. Field checks validated
the analysis and resolved uncertainties. The reference
points’ attributes included species, geographic location,
living conditions, tree height, and planting date for each
tree.

1.2 Multispectral ALS data

Multispectral Optech Titan data (Teledyne Optech,
Toronto, ON, Canada) for the study area were collected
in May and June 2016 in collaboration with TerraTec Oy
(Helsinki, Finland) from a 650 m flight height. The da-
ta acquisition was carried out using a fixed-wing aircraft
flying at a constant altitude. The sensor comprises three
Titan channels: green (532 nm), near-infrared (1 064 nm),
and shortwave infrared (1 550 nm). Each channel
provided separate point clouds. In our preprocessed
dataset, the point densities over land areas were approxi-
mately 9 points/m? for Channel 1, 9 points/m? for Chan-
nel 2, and 8 points/m? for Channel 3.

TerraScan (TerraSolid Oy, Helsinki, Finland) was
used to preprocess the ALS data and differentiate be-
tween ground and nonground points using a standardized
procedure. This procedure involved removing noise,
such as points detected below the ground level or above
the canopy. Subsequently, the point clouds were height-
normalized. Ground elevation was subtracted from the
point cloud height measurements using a digital terrain
model created from the classified ground points of the
three channels to eliminate potential discrepancies.

Radiometric calibration of ALS intensity is crucial
to ensure successful classification. Therefore, in this
study, we implemented relative radiometric calibration.
We observed that the intensity values were higher in the
middle of the flight path compared to other areas and de-
creased with scanning height. A range correction was ap-
plied to mitigate such effects.

I=1x%

D?
e . (D)

ref

where [, is the modified intensity, [ is the original intensi-
ty, D,is the distance from the LiDAR to the point cloud
and D, is the flying altitude (650 m).
1.3 Creating canopy height model and single tree
detection

Individual trees were detected using a minimum cur-
vature-based algorithm, which started with creating a
canopy height model (CHM). According to our field da-
taset of each tree coordination, we set the potential crown
area within 5 m’>. A local maximum filtering algorithm
was used to find the treetops in this area. Subsequently,
the watershed segmentation method was used to delineate
tree crown boundaries without setting a flow threshold in
the CHM. Eventually, the point cloud of each tree from
the multispectral ALS dataset was created. In the seg-
mentation process, the shape and position of individual
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Fig. 1 Map of the study area and tree samples in the research area.
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Fig. 2 Titan intensity image of Study area in Espoolahti (Red:
Channel 1; Green: Channel 2; Blue: Channel 3).
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tree crowns were identified using the segment boundaries
and the location of the highest point within each seg-
ment. In this study, first return points from all three
channels were utilized to generate CHM.
1.4 Multispectral ALS data feature extraction

In this experiment, the features were primarily di-
vided into two types: intensity features and geometric fea-
tures. The maximum height (H,, ) of each tree was calcu-

max

lated from the highest point of all point cloud in each tree
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segment.

Simultaneously, we got 137 features in each chan-
nel from the multispectral ALS data.
1.5 Tree species classification and accuracy evalua-
tion

In this study, we use 8 machine learning algorithms
to compare the classification of tree species. : extra trees
(ET) , random forest (RF) , K-nearest neighbour
(KNN) , logistic regression (LR) , linear discriminant
analysis (LDA) , classification and regression tree
(CART) , naive bayes (NB) , support vector machine
(SVM). Tree species were estimated based on prediction
models by 8 machine learning algorithms using tree fea-
tures as predictors and tree species as a response for cor-
rectly detected trees.

2 Results

2.1 Accuracy of classification

As presented in Fig. 2, using all the intensity and
geometric features, the overall tree species classification
performed best in the extra tree algorithm and reached
71.7%. When we only use channel 1 features for classifi-
cation, overall values can only reach 65. 7%. Only using
features from channel 2 yielded overall values that can
only reach 68.3%. Only using features from channel 3
yielded overall values that can only reach 64.8%. The
accuracy of all the classifications for each species is
shown in Fig. 3.

The confusion matrix analysis reveals a model that
performs well for most classes but struggles with a few,
particularly Quercus and Sorbus according to Table 2 and
Fig. 4. Certain classes, such as Acer, Larix, and Thu-
ja, exhibit high accuracy (293%), indicating the model’
s ability to correctly classify instances for these classes.
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Table 1 List of all features from Multispectral ALS da-
ta (i refers to channel numbers, and subscript
F represents the single—channel intensity fea-
ture used)

F 1 NHAEBERFHAAEHEIR ( RREERS,

THx F 3548 F ) 51818 58 B A1)

Feature

Definition

Single—channel Intensity (SCI) features

Maximum intensity

max

Minimum intensity

min

Mean intensity

mean

The standard deviation of intensity

std

Coefficient of variation (i. e. , relative stan-

cov

dard deviation) of intensity

I, Skewness of intensity
e Range of intensity
1., Kurtosis of intensity
Percentiles of intensity values of points above
I to Iy, the ground threshold from 5% to 95% in 5% in-

crements

Multi—channel Intensity (MCI) features
RE=1F1(17 + 1T + 1))
gNDVI = (I} -
LN+ 15)
eSRF = (1]/1)

Ratios of intensity features in each channel
Green normalized differential vegetation index
(gNDVI)

Green simple ratio vegetation index (gSR)

Geometric features

Maximum of the heights of all points

max

Arithmetic mean of the height of all points

mean

above 1 m threshold

Standard deviation of height of all points above

Hml
1 m threshold
P Range of normalized height of all points above
e 1 m threshold
P Penetration as a ratio between the number of re-
turns below 1 m and total returns
CA Crown area as the area of the convex hull in 2D
(% Crown volume as the convex hull in 3D
oD Crown diameter calculated from crown area
considering crown as a circle
Percentiles of the points above 1 m height from
HP  to HP
10% to 90% at 10% incremental.
D,=N/N, > wherei=11010, N,is the num-
ber of points within the ith layer when tree
Dto D,

height was divided into 10 intervals starting

from 1 m, N

ot 18 the number of all points.

By addressing these shortcomings through feature refine-
ment, data augmentation, and model optimization, the
overall classification accuracy can be significantly im-
proved. Future work should focus on integrating domain-
specific knowledge to enhance feature representation and

reduce class overlap.
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Fig. 3 The comparison of classification accuracy of 24 tree spe-
cies: ET, RF, KNN, LR, LDA, CART, NB, SVM
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Table 2 List of tree sample
xR 2 RARERE

Tree species

The index number Number of Trees

Pinta—ala 1 2
Abies 2 13
Acer 3 249
Alnus 4 5
Betula 5 26
Fallopia 6 1
Fraxinus 7 2
Juglans 8 5
Larix 9 11
Malus 10 8
Picea 11 15
Pinus 12 84
Populus 13 16
Prunus 14 10
Quercus 15 23
Ribes 16 5
Salix 17 4
Sambucus 18 1
Sorbus 19 84
Syringa 20 1
Taxus 21 4
Thuja 22 2
Tilia 23 88
Ulmus 24 163

2.2 Feature importance analysis

We also investigated which input features and chan-
nels are most relevant for tree species classification
based on the measure provided by the RF algorithm for
assessing feature importance. If a feature influences the
prediction, permuting its values should affect the model
error. If a feature is not influential, then permuting its
values should have little or no effect on the model error.
Table 3 lists the top three features in the classifications
based on different combinations of the features. The most
important features in the classification based on point
cloud features were penetration and higher-level percen-
tiles. Two density-related features at higher and middle
layers were also scored as important as higher percen-
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Fig. 4 The confusion matrix of classification with geometric and intensity features for each species.
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tiles. In the case of classification using single-channel uneven, which may have affected the model’s accuracy.

features, the 1 064nm wavelength (Channel 2) appears Consequently, a larger and more representative sample

to provide the most valuable information for distinguish- will be used in future research. The imbalance in mea-

ing between pine, spruce, and birch species. This is fol- surement samples reduced classification accuracy to

lowed by the 1 550nm wavelength (Channel 1) and then some extent. Addressing this limitation will be a key fo-
the 532nm wavelength (Channel 3). cus in subsequent studies.

In this study, eight machine learning algorithms

Table 3 The features have the most predictive power in were evaluated for their classification performance, each

different classification scenarios demonstrating distinct strengths and limitations. The se-

& 3 EAEKSD KRG SHRNEE S RIS lection of an appropriate classification algorithm depends

Cases Top 3 features on the specific characteristics of the dataset, including

All features P..P T, size, dimensionality, and the underlying relationship be-

tween features and class labels. Extra trees (ET) and
random forests (RF) proved effective in our study due to

3 Conclusions their ability to handle large, high-dimensional datasets

Multispectral LiDAR data improved the classifica- and their robustness against overfitting, which suited the
tion accuracy by approximately 5% to 10% for all chan- conditions of our dataset. Naive Bayes (NB) was effi-
nels compared to each channel. This proves our hypothe- cient and scalable, especially for high-dimensional data,
sis about the ability of mALS features in classification. but its assumption of feature independence limited its ap-
For example, the overall accuracy of 71.7% was ob- plicability in cases with high feature correlation.
tained in multispectral LiDAR all-channel data, while It is also important to note that overall accuracy
accuracies of 65.7%, 68.3%, and 64.8% were (OA) is influenced by factors such as species composi-
achieved when using only Channel 1, Channel 2, and tion, stand structure, age, and the methods used to se-
Channel 3, respectively. Our findings demonstrated the lect the best features, which vary among studies. In this
advantage of combining multichannel features over single- research, however, the intensity of laser returns was not
channel data in classifying urban trees. However, the calibrated. This limitation can be addressed in future

sample size of each tree species in this experiment was studies. First, we can investigate whether calibrated in-
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tensity affects classification results. Second, the use of
MCI features in this study mitigated potential variations
in intensity.

In conclusion, the ability of mALS compared to sin-
gle-channel ALS (SCI-Ch) data to characterize tree spe-
cies in urban areas was assessed in this study. Our classi-
fication results indicate that mALS data provided more
accurate results than single-channel ALS data for urban
tree species classification.
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