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Abstract： In response to the scarcity of infrared aircraft samples and the tendency of traditional deep learning to 
overfit， a few-shot infrared aircraft classification method based on cross-correlation networks is proposed.  This 
method combines two core modules： a simple parameter-free self-attention and cross-attention.  By analyzing the 
self-correlation and cross-correlation between support images and query images， it achieves effective classifica⁃
tion of infrared aircraft under few-shot conditions.  The proposed cross-correlation network integrates these two 
modules and is trained in an end-to-end manner.  The simple parameter-free self-attention is responsible for extract⁃
ing the internal structure of the image while the cross-attention can calculate the cross-correlation between images 
further extracting and fusing the features between images.  Compared with existing few-shot infrared target classi⁃
fication models， this model focuses on the geometric structure and thermal texture information of infrared images 
by modeling the semantic relevance between the features of the support set and query set， thus better attending to 
the target objects.  Experimental results show that this method outperforms existing infrared aircraft classification 
methods in various classification tasks， with the highest classification accuracy improvement exceeding 3%.  In 
addition， ablation experiments and comparative experiments also prove the effectiveness of the method.
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基于交叉相关网络的少样本红外空中目标分类方法
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摘要：针对红外空中目标样本匮乏、传统深度学习易产生过拟合等问题，提出一种基于交叉相关网络的少样

本红外目标分类方法。该方法结合简单无参数自注意力和交叉注意力两个核心模块，通过分析支持图像和

查询图像之间的自相关性和互相关性，实现少样本条件下红外目标的有效分类。所提出的交叉相关网络结

合了这两个模块，以端到端的方式进行训练。其中，简单无参数自注意力负责提取图像内部结构，交叉注意

力可以计算图像之间的互相关，进一步提取并融合图像之间的特征。与现有的小样本红外目标分类模型相

比，该模型通过建模支持集和查询集之间特征的语义相关性，聚焦红外图像的几何结构和纹理信息，从而更

好地关注目标对象。实验结果表明，该方法在各项分类任务中性能均优于现有的红外空中目标分类方法，且

分类准确率最高提升超过3%。此外，消融实验和对比实验也证明了该方法的有效性。
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Introduction
In recent years， the rapid advancement of infrared detection and imaging technology has led to an expanding application scope for infrared images［1］.  Infrared detec⁃tion technology， characterized as a passive detection technique， offers advantages such as long-range detec⁃tion， high concealment and robust all-weather capabili⁃ties［2］.  Recognition of infrared targets， as a crucial com⁃ponent of infrared detection imaging systems， is para⁃mount for enhancing system performance and expanding application domains.  Presently， deep learning models demonstrate remarkable performance in visual recogni⁃tion tasks such as image classification； however， this sig⁃nificant performance heavily relies on the utilization of large quantities of labeled image data for training［3］.  Nev⁃ertheless， due to factors such as the high cost and mili⁃tary sensitivity of infrared equipment， acquiring samples of airborne infrared targets poses significant challenges.  For certain rare aircraft models， sample data may be lim⁃ited to only tens or even units［4］， implying that even with the adoption of methods such as data augmentation or transfer learning， serious overfitting issues can easily arise.In contrast， the human visual system has the re⁃markable ability to rapidly form cognitive frameworks for new entities based on a few examples［5］.  This capability enables humans to leverage prior knowledge and experi⁃ence to quickly learn new tasks without the need for ex⁃tensive data and time.  Inspired by this， methods for few-shot learning to have emerged.  The goal of few-shot learning is to design and train models capable of identify⁃ing new classes with only a few of annotated examples， akin to the human visual system.  Currently， few-shot learning mainly encompasses meta-learning， transfer learning， and metric learning［6］.  Meta-learning involves training a meta-learner across various classification tasks to extract generalizable knowledge.  Transfer learning as⁃sumes shared knowledge between a source domain and a target domain， pre-training the model on a large amount of source data， and then fine-tuning it on the target do⁃main to adapt to its data distribution.  Metric learning aims to learn a discriminate distance metric， ensuring that samples from different classes have a large distance in the embedding space， while the distance between sam⁃ples from the same class is minimized as much as possi⁃ble. Infrared images possess unique characteristics， such as low contrast and low signal-to-noise ratio.  More⁃over， apart from the target objects， infrared images may also contain various background interference， such as buildings and clouds.  Therefore， designing a network model that can focus more on the target objects in infra⁃red images under the constraint of extremely limited sam⁃ples is crucial for our research.  Recent advancements in few-shot learning have seen widespread application of meta-learning and transfer learning.  Chen et al. ［2］ and Jin et al. ［4］ have employed meta-learning and improved relation networks techniques for infrared aircraft classifi⁃cation.  They leverage the metric learning capability of re⁃

lation networks and the rapid adaptation ability of meta-learning to enhance the accuracy of infrared airborne tar⁃get classification.  However， these methods often inde⁃pendently extract features from the support set and query samples， which can lead to less discriminative feature representations.  Specifically， the meta-learning meth⁃ods， while capable of rapidly adapting from the support set to the query set， lacks modeling of the semantic corre⁃lation between the support and query samples， failing to fully utilize the discriminative information shared across the two sets.  Moreover， relation network method empha⁃sizes modeling the relationship between support and que⁃ry samples， but still extracts features from the two sets in⁃dependently， unable to fully leverage their inherent se⁃mantic association， thereby limiting the robustness and accuracy of recognition.  Consequently， these approaches might overlook critical inter-sample relationships， partic⁃ularly in the context of infrared images where distinguish⁃ing between the target and background is more challeng⁃ing due to lower contrast and resolution.  It is noteworthy that infrared images are single-channel images lacking color information and have strong spatial correlation； thus， geometric structures and texture details become crucial features for infrared image recognition.  However， existing few-shot learning methods for infrared images have not explicitly focused on these aspects.In the task of few shot classification， test images in the query set come from novel classes， making it chal⁃lenging for the extracted features to focus on the target ob⁃jects［7］.  For instance， in a test image containing multiple objects， the extracted features may only focus on objects from seen classes with a large number of labels in the training set， while ignoring target objects from unseen classes［8］.  Kang，et al. ［9］ proposed relation embeddings based on self-correlation representation and cross-correla⁃tion attention to model features within images and be⁃tween images， effectively alleviating the aforementioned issue.  However， their proposed self-correlation represen⁃tation module primarily focuses on channel-wise correla⁃tions within images， overlooking spatial correlations.  However， for infrared images， emphasizing spatial corre⁃lations of the image might be more valuable than channel autocorrelation because it can reflect local structures and texture information within the image.We propose a few-shot infrared aircraft classifica⁃tion method based on cross-correlation networks， which integrates two crucial attention modules and is trained in an end-to-end manner.  Firstly， by utilizing the parame⁃ter-free self-attention module（SAM）， we extract the in⁃tra-correlation within each image to acquire feature repre⁃sentations in both spatial and channel dimensions.  Sub⁃sequently， the cross-attention module（CA） is employed to generate cross-attention between support and query im⁃ages， thereby enhancing the model's generalization capa⁃bility.  By efficiently fusing features within and between images with minimal parameters， the model reduces com⁃putational complexity.  In contrast to current models for few-shot infrared aircraft classification， our approach en⁃hances the focus on the infrared imagery’s geometric and 
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textural details.  It achieves this by establishing a seman⁃tic connection between the feature sets of the support and query samples， thereby improving the model’s ability to accurately identify target objects.  The proposed model re⁃ceives robust support and validation from classification experiments and ablation studies， all achieved without the introduction of excessive parameters.
1 Method 

In this section， we provide a detailed introduction to the Cross-Correlation Network （CCNet） proposed in this paper for few-shot infrared aircraft classification.  The overall architecture of CCNet is illustrated in Fig.  1， comprising the simple parameter-free attention module and cross attention modules.  For each pair of support classes and query samples， appropriate feature represen⁃tations are obtained through the backbone network.  Re⁃cent works［10-14］ have utilized self-similarity as an interme⁃diate feature transformation for deep neural networks， demonstrating its crucial role in learning effective repre⁃sentations of semantic correspondences in network learn⁃ing.  In this study， we introduce the SAM module， which learns the structural layout of images by computing the similarity of internal regions within infrared images.  On the other hand， to fully exploit the semantic correlations between support and query features， we design the CA module to compute the cross-correlation between two im⁃age representations and learn to generate co-attention from it.

1. 1　Parameter-free self-attention　Attention mechanisms allocate different weights to the importance of key information contained within chan⁃nels， thereby enhancing the network's focus on important information.  Common attention mechanisms are typically composed of convolutional layers， pooling layers， activa⁃tion functions， etc. ， introducing additional parameters to the network.  To improve network performance without increasing computational complexity， we introduce a sim⁃ple， parameter-free attention mechanism module called SAM［15］ into CCNet.  The general structure and computa⁃tion of SAM is shown in Fig.  2.  SAM adopts an idea based on human visual processing， combining feature and spatial attention mechanisms， and designs a "plug-and-play" three-dimensional weight self-attention mecha⁃nism［16］.  SAM calculates weights through an energy func⁃tion， assigning unique weights to each neuron.  Without 

adding any parameters to the original network， the three-dimensional attention weights can be used to quickly in⁃fer feature maps in each layer［17］.  Specifically， informa⁃tion-rich neurons typically exhibit significant activation differences from surrounding neurons， and activated neu⁃rons may inhibit the activity of surrounding neurons， known as spatial suppression［18］.

Building upon this， SAM defines an energy function to measure the difference between each feature and other features， thereby evaluating the importance of each fea⁃ture.  The definition of the energy function is as Equa⁃tion （1）：
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sent the mean and variance of all neurons in the channel， 
λ is a hyperparameter used for balancing.  Equation （2） implies that as the energy decreases， the difference be⁃tween neuron t and neighboring neurons becomes great⁃er， making it more critical in image processing.  Finally， the input features undergo enhancement processing to im⁃plement the attention mechanism through Equation（3）：

X͂ = sigmoid ( 1
E )⊙X ， (3)

where E represents the grouping of all e*
t  in both channel and spatial dimensions， and ☉ denotes the calculation of the Hadamard product.  Adding a sigmoid function aims to constrain excessively large values in E， thereby ensuring the relative importance of each neuron.  There⁃fore， employing the parameter-free self-attention as a three-dimensional weighting module allows for the assign⁃

Fig.  1　The overall architecture of CCNet model
图1　CCNet模型整体架构

Fig.  2　Parameter-free self-attention model
图2　无参数自注意力模块
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ment of unique weights to each neuron， enhancing the at⁃tentional importance of each neuron in the feature maps.  This three-dimensional weighting mechanism effectively exploits and highlights the structural features and back⁃ground information within infrared images， facilitating ef⁃ficient and reliable identification tasks for infrared targets.
1. 2　Cross attentionIn contrast to previous methods that independently extract features from support sets and query samples， we introduce a cross attention module to compute the cross-correlation between support and query images.  The CA module enhances the model's focus on the target object by modeling the semantic relevance between class fea⁃tures and query features， thereby improving the efficien⁃cy and accuracy of the subsequent matching process.  The cross attention module first takes the self-correlation representations of the support set and query samples （Sq and Ss） as inputs， then produces the corresponding cross-correlation representations （Cq and Cs）.  The architecture of the cross attention module， as shown in Fig.  3， pri⁃marily comprises three operations： cosine similarity com⁃putation， convolutional fusion and joint attention calcula⁃tion.  These operations will be introduced separately below.

In order to reduce computational complexity and ob⁃tain a more effective feature representation， we first em⁃ploy a 1 × 1 convolutional layer to decrease the channel dimensions of Sq and Ss ∈ RC × H × W from C to C'， resulting in the outputs Sq and Ss ∈ RC' × H × W.  Subsequently， the cross-correlation representation of Sq and Ss is computed using Equation （4）：
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where x denotes a spatial location in the feature map， T 

signifies matrix transposition， and R ( xq，xs ) ∈ RH × W × H × W represents the four-dimensional cross-correlation tensor.  This computation method not only yields a reliable cross-correlation representation but also reduces the computa⁃tional load.In the process of fine-grained classification of infra⁃red aircraft， due to the similarity of some target shapes， the cross-correlation tensor may contain unreliable corre⁃lations.  Therefore， we adopt a convolution matching pro⁃cess to obtain a more reliable cross-correlation represen⁃tation.  Specifically， we use four-dimensional convolu⁃tion， which enhances the expression ability of target fea⁃tures and improves the accuracy of classification by ana⁃lyzing the consistency of adjacent matches in the four-di⁃mensional space and achieving geometric matching on the tensor［9］.  As shown in the blue box in the middle of Fig.  2， the convolution matching block consists of three 4D convolution layers.  Firstly， the first convolution layer is responsible for increasing the number of channels to provide a richer feature representation in subsequent pro⁃cessing.  Next， the second convolution layer generates multiple correlation tensors and aggregates them into a four-dimensional correlation tensor， achieving geometric matching of the tensor.  Finally， the third convolution lay⁃er is responsible for restoring the number of channels.  Between these three convolution layers， batch normaliza⁃tion layers and ReLU layers are inserted to enhance the stability of the network and improve the non-linearity of the activation function.  This design allows the convolu⁃tion matching block to effectively handle high-dimension⁃al data， extract complex features， and provide more reli⁃able input for subsequent generation of cross-attention.After obtaining the reliable cross-correlation tensor， it is necessary to generate the common attention maps Cs and Cq for the support set and query set.  Taking the cal⁃culation of the query attention map Cq as an example， the calculation method is shown in Equation （5）：
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where x represents the position in the feature map， σ is the temperature factor， lower temperature will lead to lower entropy， making the distribution concentrate on a few positions with higher confidence［8］， H and W repre⁃sent the height and width of the feature map， and 
R ( xq，xs ) is the matching score between positions xq and 
xs.  Therefore， the attention map Cq ( xq ) in Equation （5） can be understood as converting the matching score of po⁃sition xq on the query image into the average probability of matching with position xs on the support image.  The calculation method of attention map Cs is similar to Cq.  These co-attention maps improve the accuracy of infrared target classification by adjusting the attention position ac⁃cording to the images provided in the testing phase through the meta-learning cross-correlation pattern.
1. 3　Loss function　Unlike many recent few-shot learning methods that adopt a 'pre-training + fine-tuning ' two-stage training 

Fig. 3　The architecture of cross attention
图3　交叉注意力架构
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scheme， we propose an end-to-end training strategy for CCNet.  This strategy jointly trains the designed modules and the backbone network by combining the metric loss 
Lmetric and the global classification loss L label.  In this pro⁃cess， the calculation of Lmetric is based on the cosine simi⁃larity between the query prototype feature vector and the support prototype feature vector.  The calculation method of the metric loss is shown in Equation （6）.  This design of the metric loss helps guide the model to map the query embedding to the neighboring position of the prototype embedding of the same category：

Lmetric = -log exp(sim( s̄(n ) ,q̄(n ) )/τ )∑N' = 1
N exp(sim( s̄(n') ,q̄(n') )/τ ) ， (6)

where sim () denotes the calculation of cosine similarity， 
s
- (n ) and q- (n ) represent the prototype vectors of the nth cat⁃
egory， N indicates the total number of categories， and τ is the temperature factor.The global classification loss Llabel is computed using a fully connected layer followed by a softmax function， in order to classify each query sample among all available training categories.  The specific calculation method is shown in Equation （7）：

L label = -log exp(wT
c zq + bc )

∑c' = 1
||C train exp(wT

c' zq + bc' )
， (7)

where wTc represents the weights of the fully connected layer， bc represents the corresponding bias， and || c train  
represents the number of training categories.  The overall classification loss is defined as：

L = L label + λLmetric ， (8)where λ is the weight that balances the effects of different losses.  By optimizing the overall loss L， the network can be trained end-to-end using the gradient descent algo⁃rithm.
2 Experiments 
2. 1　Experimental environment and data source　All experiments were conducted in a hardware envi⁃ronment based on the Intel i7 13700 processor， NVIDIA GTX4080 graphics card， and DDR4 64G memory， as well as a software environment with the Win10 system and Pytorch deep learning framework.  During the train⁃ing phase， we adopted a training strategy based on N-way 
K-shot meta-tasks.  Specifically， in each training cycle， 
N categories are randomly selected from the training da⁃ta， and then K labeled samples are selected from each category to construct the support set.  Subsequently， a certain number of samples are randomly selected from the other samples of these N categories， and these sam⁃ples constitute the query set.  Finally， the model predicts the category labels of the query samples.  In the valida⁃tion and testing phases， we still use the aforementioned meta-task form for evaluation.  It should be noted that the data in the validation set， test set， and training set all come from different categories， which means that 
C train ⋂ Cval ⋂ C test = ∅.In order to validate the effectiveness of the model proposed in this study， we conducted experiments using 

two datasets： the miniImageNet［19］ dataset and the self-constructed infrared target dataset miniInfra［2，4，20］.  The miniImageNet dataset is a subset of the ImageNet dataset widely used for few-shot learning and has become the benchmark dataset for few-shot learning.  The miniInfra dataset is a self-constructed infrared target dataset sourced from publicly available datasets and self-cap⁃tured infrared images.  Partial examples from both datas⁃ets are illustrated in Fig.  4.  To ensure consistency in our experiments， we resized all images across the datasets to 84×84.  Moreover， we employed data augmentation strat⁃egies such as random cropping and random flipping for both datasets.

In this study， we employ ResNet12［21］ as the back⁃bone network， which accepts images of spatial dimen⁃sions 84×84 as input and generates the basic representa⁃tion Z.  All training and testing are conducted in the form of tasks.  For each N-way K-shot classification task， we test 15 query samples per category within each task.  For the miniImageNet dataset， 2 000 meta-tasks were ran⁃domly selected from the test set， and for the miniInfra da⁃

（a）

（b）

Fig. 4　 (a) Samples of miniImageNet dataset；(b) samples of 
miniInfra dataset
图4　（a）miniImageNet数据集示例；（b）miniInfra数据集示例
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taset， 500 meta-tasks were randomly selected from the test set.  Subsequently， we calculate the average classifi⁃cation accuracy and set the confidence intervals to 95%.
2. 2　Few-shot classification based on the miniIma⁃
geNet dataset　The miniImageNet dataset is composed of 100 cate⁃gories， each containing 600 images， totaling 60 000 visi⁃ble light images.  Following the partitioning standards of previous literature［22］， we designate 64， 16 and 20 cate⁃gories as the training， validation and test sets， respec⁃tively.  We conduct 5-way 1-shot and 5-way 5-shot classi⁃fication tasks.During the experiments on the miniImageNet datas⁃et， we use the Stochastic Gradient Descent （SGD） opti⁃mizer for 80 epochs of training， each epoch consisting of 300 meta-tasks.  The initial learning rate is set to 0. 1， and a learning rate decay strategy is adopted.  At the 60th and 70th epochs， the learning rate is multiplied by a de⁃cay factor of 0. 05.  In the experiments， the temperature factor τ of the metric loss function is set to 0. 2， and the hyperparameter λ for balancing the loss weight is set to 0. 25.Table 1 presents the classification results of CCNet on the miniImageNet dataset.  We have selected several mainstream methods in the field of few-shot learning in recent years for comparison， including meta-learning， re⁃lation networks， adversarial networks， and self-super⁃vised learning.  Our method belongs to metric learning methods which can achieve efficient learning for few-shot image classification without any pre-training process and post-processing operations.  Although the backbone net⁃work of our model is smaller than that of some other meth⁃ods［25-26， 30］， the experimental results on the miniImageNet dataset show that the performance of our model still sur⁃passes these methods.  Unlike existing metric-based methods， which independently extract features from the support set and query set， leading to features scattered on non-target objects， CCNet can highlight the target ob⁃ject area and obtain more distinctive features.  Specifical⁃ly， CCNet first focuses on the target object through SAM， which is then combined with the cross-attention module CA， so that it can learn similar features between images and find the differences between fine-grained im⁃ages more easily.  In terms of inference speed， we evalu⁃ated 2 000 5-way 5-shot tasks on an NVIDIA RTX 4080 GPU， which took approximately 1. 5 minutes.
2. 3　 Aircraft classification based on the miniInfra 
dataset　The miniInfra dataset comprises 33 classes of terres⁃trial targets and 8 classes of aircraft targets.  Terrestrial targets encompass various categories such as buildings， bicycles， pedestrians， cars， animals， and boats， with each class containing 100 to 200 infrared images.  The 8 classes of aircraft targets include trainer aircraft， civil aviation aircraft， three types of helicopters （Z-8， Z-9， Z-15）， and three types of jet aircraft （J-7， J-8， J-11）， with each class containing 40 to 80 images.  The granular⁃ity of aircraft target classification is finer than that of ter⁃restrial targets.

Given the severe shortage of infrared aircraft data and to validate the model's ability to recognize fine-grained targets， we selected 25 types of ground targets as the training set， 8 types of ground targets as the valida⁃tion set， and finally select 8 types of aircraft targets as the test set.  The experiments include two standard few shot classification tasks： 5-way 1-shot and 5-way 5-shot.  Considering that there are 8 types of aircraft， we added two specific classification tasks： 8-way 1-shot and 8-way 5-shot to test the model's generalization ability for few shot infrared aircraft in a real environment.  Consistent with the experimental setup in the miniImageNet dataset， the experiment still uses the SGD optimizer and adopts a learning rate decay strategy.  Since the size of the miniIn⁃fra dataset is much smaller than the miniImageNet datas⁃et， to prevent overfitting， in the infrared aircraft classifi⁃cation task， we adjusted the number of training epochs to 20 and set the initial learning rate to 0. 01.We compared the experimental results with the existing infrared aircraft classification methods［2，4］， and the specific results are shown in Table 2.  It is worth not⁃ing that our training method is end-to-end and does not require any additional data for pre-training.  From the re⁃sults in the table， it can be seen that under the same con⁃ditions without using additional data for pre-training， the accuracy of our model in the four classification tasks is significantly better than the existing two classification methods.  Especially in the 8-way 1-shot classification task， the model achieved a performance improvement of more than 3% compared to the previous best method， and also achieved a performance improvement of more than 2% in the 8-way 5-shot classification task.  It can al⁃so be seen from Table 2 that even when compared with the results of the two methods using miniImageNet for pre-training， the accuracy of our method without pre-training is still higher than that of the methods proposed in Ref.［2］ and Ref.［4］.
2. 4　Ablation experiments　To delve deeper into the impact of the core modules in CCNet， we conducted a series of ablation experiments 

Table 1　Classification results on the miniImageNet datas⁃
et (average accuracy with 95% confidence inter⁃
val)

表 1　miniImageNet数据集上的分类结果（95%置信区间的平
均准确率）

Method
MAML［23］

RelationNet［19］

CAN［24］

AFHN［25］

PSST［26］

NCA［27］

Mata-baseline［28］

MIAN［29］

TFH［30］

CCNet（ours）

Backbone
ConvNet
ConvNet

ResNet12
ResNet18

WRN-28-10
ResNet12
ResNet12
ResNet12
ResNet18
ResNet12

5-way 1-shot
48. 70±0. 84
50. 44±0. 82
63. 85±0. 48
62. 38±0. 72
64. 05±0. 49
62. 55±0. 12
63. 17±0. 23
64. 27±0. 35
64. 49±0. 84
66. 20±0. 43

5-way 5-shot
63. 11±0. 92
65. 32±0. 70
79. 44±0. 34
78. 16±0. 56
80. 24±0. 45
78. 27±0. 09
79. 26±0. 17
81. 24±0. 26
79. 94±0. 60
81. 82±0. 31
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on the miniImageNet and miniInfra datasets.  These ex⁃periments included scenarios where two core modules were missing simultaneously， as well as cases where only one of the modules was used independently.  We con⁃structed a baseline model that only contains the back⁃bone network and does not include any additional mod⁃ules， to evaluate the effectiveness of the core modules in CCNet.  We carried out 5-way 1-shot ablation experi⁃ments on the miniImageNet and miniInfra datasets.  As can be seen from Fig.  5， although the training accuracy of CCNet （blue line） is slightly lower than that of the baseline model （red line）， the validation accuracy of CCNet （green line） has significantly improved compared to the validation accuracy of the baseline model （purple line）.  This result indicates that compared to the baseline model， CCNet has stronger generalization ability when applying the trained model to unseen new categories.In this study， further ablation experiments are con⁃ducted on the 5-way 1-shot tasks of two datasets to indi⁃vidually validate the effectiveness of the SAM module and the CA module.  When only the CA module is used， the basic representation Zq is taken as input； when only the SAM module is used， its output is directly utilized for classification.  The results of the ablation experiments are presented in Fig.  6.  The experimental results demon⁃strate that both the SAM and CA modules can significant⁃ly improve the accuracy of classification compared to the baseline model.  The SAM module can generate reliable representation and provide robust support for the classifi⁃cation tasks， while the CA module can further enhance the representations generated by SAM and improve the cross-correlation between images， thus further improving the classification accuracy.We also present the results of class activation map⁃ping （CAM） feature visualization using our CCNet， en⁃compassing both visible and infrared images， as illustrat⁃ed in Fig.  7.  In the CAM visualizations， the regions with warmer colors （e. g. ， red， yellow） represent areas in the input image that contribute more significantly to the net⁃work's classification decision.  In other words， cooler col⁃ors （e. g. ， blue） indicate areas that the model does not focus on or that have lower importance.  Figure 7（a） de⁃picts an image containing both a cat and a dog； however， since our objective is to identify the cat， the CAM visual⁃ization in Fig.  7（b） clearly highlights the network's fo⁃cus on the cat's region.  In the infrared image shown in Fig.  7（c）， despite the presence of a complex back⁃ground with pedestrians and a dog， the network accurate⁃ly concentrates on the dog， which is the target for classifi⁃

cation.  Furthermore， for the infrared image of a commer⁃
cial aircraft against a cloudy background in Fig.  7（e）， 
the CAM result in Fig.  7（f） demonstrates that the net⁃
work effectively attends to and emphasizes the aircraft tar⁃
get region.
2. 5　Performance and parameter comparison of dif⁃
ferent attention modules　

In this study， we replaced different attention mod⁃

Table 2　Classification results on the miniInfra dataset (average accuracy with 95% confidence interval)
表2　miniInfra数据集上的分类结果（95%置信区间的平均准确率）

Method
Improved

Relation Network［4］

MLFC［2］

CCNet（ours）

Pre-train
No
Yes
No
Yes
No

5-way 1-shot
84. 37±1. 31
82. 79±0. 75

—

—

85. 58±0. 97

5-way 5-shot
93. 66±0. 76
94. 51±0. 82

—

—

95. 09±0. 46

8-way 1-shot
77. 56±1. 46
78. 47±0. 94
78. 58±0. 97
81. 27±0. 91
81. 95±0. 62

8-way 5-shot
90. 58±0. 64
89. 82±1. 02
91. 12±0. 37
92. 74±0. 35
93. 26±0. 38

（a）

（b）

Fig. 5　 (a) Training and validation accuracy curves of the base‐
line model and CCNet model on miniImageNet dataset；(b) train‐
ing and validation accuracy curves of the baseline model and 
CCNet model on miniInfra dataset
图 5　（a）基线模型和 CCNet模型在 miniImageNet数据集训练
和验证准确率曲线；（b）基线模型和 CCNet模型在 miniInfra数
据集训练和验证准确率曲线
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ules in the proposed CCNet network model to compare the accuracy and parameter scale of the proposed mod⁃ules with existing attention modules.  Firstly， we evaluat⁃ed the self-attention and cross-attention methods based 

on feature similarity， which focus on the correlation of the image spatial structure features.

As shown in Table 3， the results of the SAM module and the CA module on the two datasets are superior to other attention methods.  Specifically， on the miniIma⁃geNet dataset， the performance of SAM in the self-atten⁃tion module is second only to the SE attention module， while on the miniInfra dataset， SAM achieved the best re⁃sult among the self-attention methods.  It is worth noting that compared with the baseline model， SAM does not in⁃troduce additional parameters.  Among the cross-atten⁃tion methods， the performance of the CA module and the CCA module is similar， but the CA module introduces fewer parameters.
3 Conclusion 

In this study， we have proposed a few-shot infrared aircraft classification method based on the cross-correla⁃tion network， which can effectively solve the classifica⁃tion problem of infrared aircraft when the number of sam⁃ples is severely insufficient.  In the research process， in order to reduce model parameters and specifically target the structural features of infrared aircraft target images， we introduce a parameter-free self-attention mechanism to analyze the self-correlation within images.  Mean⁃while， we design a cross-attention mechanism to investi⁃gate the self-correlation between images， which effective⁃ly enhances the model's capability to extract features from infrared images.  The experimental results show that our method significantly outperforms existing methods in aerial target classification accuracy on the infrared datas⁃et， with an improvement of up to 3% in classification ac⁃curacy for specific tasks.  Furthermore， the tests on the public miniImageNet dataset and the ablation experi⁃ments further verify the effectiveness and contributions of the proposed modules.  The method proposed in this pa⁃per not only has broad application potential in aircraft de⁃tection， but also has great application value in civilian fields where data is scarce， such as medical.  But at the same time in the research tasks of this paper it only in⁃volves the single task of aircraft classification.  However， 

Fig.  6　Ablation experiment results on miniImageNet and mini‐
Infra dataset
图6　在miniImageNet和miniInfra数据集上的消融实验结果

（a）cat

（c）dog

（e）airplane

（b）

（d）

（f）

Fig. 7　 The class activation mapping (CAM) feature visualiza‐
tion of CCNet
图7　CCNet 的类激活映射 (CAM) 特征可视化

Table. 3　Comparison of accuracy and parameter quanti⁃
ties of different attention modules

表3　不同注意力模块的精度和参数量比较
Module
Baseline

SE［31］

SCE［32］

LSA［33］

NLSA［34］

CBAM［35］

SCR［9］

CCA［9］

SAM
CA

Self
√
√
√
√
√
√
√
×
√
×

Cross
×
×
×
×
×
×
×
√
×
√

miniImageNet
64. 86
66. 37
62. 96
64. 77
65. 67
64. 77
64. 43
66. 00
65. 84
65. 69

miniInfra
81. 27
81. 99
79. 80
80. 62
82. 34
82. 79
78. 80
84. 26
83. 31
84. 30

Add params
0 k

102. 4 k
89. 2 k

1 644. 16 k
822. 1 k
102. 5 k
157. 3 k
45. 8 k

0 k
9. 41 k
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in actual application scenarios of the infrared detection system it involves a series of complex tasks such as target detection target recognition and target tracking.  There⁃fore， how to deploy the few-shot model to these actual ap⁃plication scenarios and maintain good performance under multiple tasks will be the focus of the next stage of work.
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