文章编号:1001-9014(2024)06-0762-06

MOPA 半导体激光器的偏振控制研究

王浩淼^{1,2}, 贺钰雯^{1,2}, 李 弋^{1,2}, 胡 耀^{1,2}, 张 亮^{1,2}, 杜维川^{1,2*}, 高松信^{1,2},

唐 淳1,2, 马骁宇3, 刘素平3

(1. 中国工程物理研究院高能激光重点实验室,四川 绵阳 621900;2. 中国工程物理研究院应用电子学研究所,四川 绵阳 621900;

3. 中国科学院领因半导体研究所,北京 100083)

摘要:主控振荡功率放大(MOPA)激光器因可实现高功率、高光束质量输出而受到越来越多的关注。为了提高 MOPA激光器的偏振度以减小偏振合束时的效率损失,有源区采用InGaAs/AlGaAs压应变单量子阱,脊型波导1.35μm 的深刻蚀设计提高了TE模式的光限制因子,锥形放大器采用金属应力调控增加量子阱中的压应变。结合这 两种方案,不仅提高了两个区域的偏振度,同时减小了偏振角度差。采用标准工艺制备的MOPA器件,实现了 11 W@15 A连续输出和90%以上的偏振度。

关键 词:半导体激光器;近红外;应变;高偏振度
中图分类号:043
文献标识码: A

Research on polarization control of MOPA semiconductor laser

WANG Hao-Miao^{1,2}, HE Yu-Wen^{1,2}, LI Yi^{1,2}, HU Yao^{1,2}, ZHANG Liang^{1,2}, DU Wei-Chuan^{1,2*}, GAO Song-Xin^{1,2}, TANG Chun^{1,2}, MA Xiao-Yu³, LIU Su-Ping³

(1. The Key Laboratory of Science and Technology on High Energy Laser, China Academy of Engineering Physics, Mianyang 621900, China;

2. Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China;3. Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China)

Abstract: The master oscillator power amplifier (MOPA) laser is receiving increasing attention due to its ability to achieve high power and beam quality output. In order to improve the polarization degree of MOPA laser and reduce the efficiency loss during polarization combining, InGaAs/AlGaAs compressive single quantum well was used in the active region. The optical confinement factor of TE-mode in ridge waveguide was improved by 1.35 μ m deep etching, whereas the TE optical gain in tapered amplifier was increased through on-chip metal stress regulation. Combining the two schemes not only improves the degrees of polarization (DOP) of two sections, but also reduces the polarization angle difference. Finally, 11 W@15 A continuous output and over 90% DOP of the MOPA have been achieved by standard process fabrication.

Key words: semiconductor laser, near-infrared, strain, high polarization

引言

高亮度、大功率的半导体激光器是近年来固态激光领域的研究热点,不仅可以成为新一代高能固态激光器的理想泵浦源,也可以直接应用在材料加工、医疗、光学检测、光通讯和激光雷达等

工业领域,在军用和民用产品中均具有迫切的发展需求和广阔的应用市场^[1]。主控振荡功率放大(MOPA)激光器由折射率引导的窄脊型单模激光振荡器(MO)和增益引导的锥形放大器(PA)组成,因其独有的近衍射极限输出,有潜力成为高亮度大功率光源而受到更多关注。2005年,德国夫

Received date: 2023-08-29, Revised date: 2023-09-21

^{*}通讯作者(Corresponding author): E-mail:weichuandu@126.com

收稿日期:2023-08-29,修回日期:2023-09-21

作者简介(Biography):王浩淼(1995-),男,四川成都人,助理研究员,博士学位,主要研究方向为Ⅲ-V族半导体激光器。 E-mail: hao_miao_wang@163.com

琅和费研究所报道了 976 nm 的 MOPA 激光器,实现了 7.7 W 衍射极限高亮度输出^[2]。2017年,德国费迪南布劳恩研究所(FBH)采用大光腔和三量子阱的外延结构,通过离子注入增加脊型两侧高阶模损耗,研制出了连续输出功率高达 16 W、最大电光转换效率为 57% 的锥形激光器^[3]。国内对MOPA的研究进展也取得了重大突破。中物院应用电子学研究所报道了 10 W 连续激射高亮度MOPA 激光器^[4],并深入研究了脊型和锥形放大器的增益谱失配现象,通过在脊型两侧进行离子注入,提高两个区域的增益匹配度,从而实现高亮度激光输出^[5]。

在偏振合束方案中,为提高耦合效率和光束 质量,除了对半导体激光器的亮度有较高需求 外,还对子束的偏振度(DOP)和子束间的偏振角 度一致性提出了较高要求^[6]。在 MOPA 激光器 中,脊型波导和锥形放大器之间的偏振态一致性 是决定其输出性能好坏的另一个关键因素。当 MO 区和 PA 区出现偏振态失配时,PA 区只能对 电场矢量方向相同的种子光进行选择性放大,降 低了放大效率、自发辐射增强引起光束质量的 恶化。

本文研究了 980 nm MOPA 激光器中两个区域的偏振匹配问题和控制方法,对脊型波导采用 深刻蚀设计以增强 TE 模式的光限制因子,同时 利用片上金属应力调控方案以提高锥形放大器 中 TE 模式的材料增益系数。提高了两个波导的 偏振度,减小了两者之间的偏振角度差,最终制

备的 MOPA 器件实现了 90% 以上的高偏振输出。

1 结构设计

1.1 外延设计

采用金属有机物化学气相外延在偏向<111>面 15°的N型GaAs(001)衬底上生长MOPA激光器的 外延层。首先生长1.25 μ m Si掺杂Al_{0.4}GaAs下限 制层,随后生长1.6 μ m Al_{0.15}GaAs下波导层,放置于 100 nm的Al_{0.08}GaAs光限制层中的9 nm的压应变 In_{0.18}GaAs单量子阱有源区,0.8 μ mAl_{0.15}GaAs上波 导层厚度为,最后生长1 μ m Zn掺杂Al_{0.4}GaAsP型 限制层和200 nm C掺杂GaAs欧姆接触层。

图 1(a) 为外延结构的折射率分布和光场分布 图。外延波导采用非对称超大光腔结构, InGaAs量 子阱位置靠近 P侧, 目的是让光场分布偏向 N层, 减 少空穴吸收损耗, 提高灾变光学镜面损伤(COMD) 的功率阈值。同时, 上波导较薄可以减少串联电 阻, 提高电光效率。波导层采用 2.4 μm超大光腔结 构, 优化量子阱的位置使基模 TE₀₀与一阶模 TE₀₁、二 阶模 TE₀₂的光限制因子比分别为 2.88、39.3。与基 模相比, 较小的高阶模光限制因子可以保障快轴方 向上基模稳定激射。此时 P型波导与 N型波导的厚 度比约为 1:2。

1.2 器件设计

MOPA结构的示意图如图1(b)所示,器件总长 15 mm,它由分布布拉格反射光栅(DBR区)、提供 单模种子源的窄脊型波导(MO区)和实现行波放 大的锥形波导(PA区)三个区域组成,三段独立电

图1 (a) 980 nm半导体激光器的折射率、光场分布图;(b) MOPA器件结构示意图

Fig. 1 (a) Refractive index and calculated optical field distribution diagram of 980 nm semiconductor laser; (b) schematic diagram of MOPA structure 极可以分别加电驱动。6阶DBR 区通过电子束曝 光和干法刻蚀工艺制作而成,刻蚀深度约1.1μm, 总长1mm,反射率设计为30%,光栅两侧设计有微 电极加热器(Heater)用于光谱热调谐。MO 区的 脊宽和腔长分别为3μm和7mm,刻蚀深度为 1.1~1.5μm。PA 区长度为7mm,采用离子注入形 成张角全角为3°的锥形增益波导,出光口宽度约为 400μm。通过电子束蒸镀SiO₂绝缘膜,制备电注入窗 口,P 面电极为Ti/Pt/Au,N 面电极为Ni/AuGe/Pt/Au。 前后腔反射率设计为<0.1%,以抑制脊型和锥形波 导之间的反馈光耦合。

2 器件测试与讨论

在应变量子阱半导体激光器中,偏振特性由两 个因素决定:波导结构的偏振选择性和有源区材料 增益的偏振选择性,即 $G = \Gamma \cdot g$ 。波导的脊宽和刻 蚀深度影响二维波导中TE、TM模式数量和光限制 因子大小;InGaAs量子阱中的量子尺寸效应与压应 变相结合会使电子-重空穴复合的动量矩阵元平方 值更大,相应产生的TE模式增益占据主导^[7]。由于 MO区和PA区中波导结构不同,因此两个区域的偏 振影响因素需要分开讨论。

2.1 脊型波导

在窄脊型波导中,不同刻蚀深度形成的折射率 台阶约为1~2×10⁻³,通过有限差分法进行二维波导 光场分布模拟计算,如图2(a)所示。点线图为脊型 波导的刻蚀深度从1.0 μm变化到1.6 μm时,TE₀₀ 和TM₀₀的光限制因子的变化趋势。TE基模和TM基 模的光限制因子随着刻蚀深度的增加而增大,刻蚀 深度超过1.05 μm后,TE模式的光限制因子将大于 TM模式,两者的光限制因子差异随刻蚀深度的增 加而逐渐增大。这意味着增加刻蚀深度,TE_w模式 增益由于其光限制因子增大而占据主导,模式竞争 使TM_m模式受到抑制,输出激光的偏振度得到提 高。而在大于1.4 μm后,慢轴方向上出现TE_u高阶 模式可能会降低脊型的光束质量。因此脊型波导 的刻蚀深度选择在1.05~1.35 µm之间。随后单独 制备了4种刻蚀深度的窄脊型激光器,刻蚀深度分 别为1.05 μm、1.15 μm、1.25 μm、1.35 μm,其他设 计参数均相同。验证实验的偏振度统计结果如 图 2(b) 所示, 所有脊型的测试电流均为 1.2 A。随 着刻蚀深度的增加,窄脊型激光器的偏振度逐渐提 高,平均偏振度从70%增加至95%,一致性也得到 了明显提升,标准差从20%降低至2%。图2(c)对 比了脊型输出激光功率随刻蚀深度的变化情况,随 着刻蚀深度的增加,脊型侧壁与光场的交叠增大, 内损耗增加导致整体输出功率下降;随着刻蚀深度 从1.05 μm增加至1.25 μm,而TE基模的输出功率 也出现下降趋势,但在1.35μm处增大。考虑到光 束质量和偏振度的需求,我们认为1.35 μm的刻蚀 深度最佳。上述实验结果说明增加脊型波导中的 TE_m模式光限制因子可以得到稳定的高偏振度激光 输出。

2.2 锥形放大器

在锥形器件中,由于慢轴方向上没有折射率限制,TE₀₀模式和TM₀₀模式的光限制因子为常数,均由外延结构决定。在半导体激光器中,向激光器施加的应力对输出激光的偏振特性、阈值电流、功率和光谱等影响很大。可以通过向锥形放大器

图2 (a)脊型波导中TE₀₀和TM₀₀模的光限制因子随刻蚀深度的变化;(b)不同刻蚀深度下脊型的偏振度变化趋势;(c)不同刻 蚀深度下脊型的总功率和TE模式功率变化情况

Fig. 2 (a) The variation of the optical confinement factor of TE_{00} -mode and TM_{00} -mode in ridge waveguide with etched depth; (b) the trend of degree of polarization variation of ridge section under different etching depths; (c) the total power and TE-mode power varing from etching depths

施加压力来改变材料增益的偏振选择性,进而改 善输出光束的偏振特性[8]。将锥形芯片两侧用铜 片垫高,从中间利用弹簧针施加压力,测试时P面 向上。图3(a)给出了测试脉冲电流 I_{nv}(脊型电 流)=0A, I_m(锥形型电流)=5A时, PA在不同压力 下输出功率、偏振度及偏振角度的变化规律。压力 较小时,偏振角度与水平线夹角为-110°,可以判断 此时输出光中TM模和TE模并存,而TM模占据主 导,因此偏振度较低,仅为55%,此时透明载流子浓 度最高,因此总功率最低,仅为2.53W。随着施加 压力的增加,量子阱中重空穴带上移逐渐超过轻空 穴带,TM模式的增益降低而TE模式的增益提高,偏 振角度逐渐向水平偏转,功率和偏振度也逐渐增 加。在较大的压力下,量子阱中重空穴能级远高于 轻空穴能级,电子-重空穴复合占据主导。锥型区 域处于TE模式输出状态,偏振角度与水平方向的夹 角旋转为-15°,偏振度提升至95%,透明电流密度也 降低至最小,功率提高至3.05W并保持稳定。图3 (b)为锥型器件的输出光谱随施加压力的变化情 况,当压力较小时,峰值波长在1012 nm附近,压力 略微增大后,光谱发生了模式跳变,峰值波长红移 至1018 nm。结合该器件的偏振变化规律,我们认 为锥形波导中TM模式转变成了TE模式。随着压 力继续增大,光谱发生蓝移,这是因为量子阱的带 隙随压应变的增加而变宽所致。

2.3 MOPA器件

上述压力实验表明:在器件制备过程中引入了 张应变,部分抵消了量子阱材料的压应变,锥形器 件的偏振度较低。为了调控片上应力大小,我们利

用金属材料较大的热膨胀系数,设计不对称的P、N 金属厚度,对器件施加压应变以提高TE模式增益。 图4(a)为MOPA器件的偏振度、偏振角度与P、N金 属厚度差的变化曲线,测试电流均为 I_{RW} = 1.2 A, $I_{\text{TP}} = 5 \text{ A}$ 。P面金属较薄时,MOPA的偏振度较低,约 为60%,且不稳定,偏振角度与水平线几乎垂直,TM 模式增益较高。随着P面金属厚度的增加,可以观 察到 MOPA 的偏振角度逐渐旋转至水平, TE 模式 增益得到明显加强。当P、N金属厚度差为3 µm 时,MOPA器件偏振度提升到90%以上且偏振角度 几乎水平,输出激光主要为TE模式。图4(b)为P、N 金属厚度差为3 µm时,脊型、锥形和 MOPA 器件的 偏振度、偏振角度对比图。从图4(b)中可以发现, MOPA 器件的偏振特性主要取决于锥形放大器, 它 们与脊型波导之间存在10°~20°的偏振角度差,我 们认为这与衬底具有15°的倾角相关。该结果说明 我们设计的片上应力调控方案在MOPA器件的偏振 特性控制方面取得了优异的效果,减小了脊型波导 和锥形放大器之间偏振角度差,提高了MOPA器件 的偏振度。

在15℃水冷条件下,对比了两种 MOPA 激光器 的连续输出功率、偏振度和功率转换效率随 PA 电 流的变化趋势,如图 5(a)、(b)所示。两种器件的脊 型波导电流均为 *I*_{aw} = 1.2A,为放大器提供了足够 强的种子源功率。图中虚线空心圆、实线实心圆折 线分别为改善前、后的 MOPA 器件测试曲线。可以 明显看出,对比改善前的 MOPA 器件在15 A 下输出 功率为 9.21 W,偏振度仅为 78.9%,最高电光转换 效率为 52.1%@5 A;改善后的 MOPA 器件将输出功

图 3 (a) 锥形波导的输出功率、偏振角度、偏振度随压力的变化曲线;(b) 锥形波导激射光谱随压力变化情况 Fig. 3 (a) The trend curve of the power, polarization angle and degree of polarization of tapered waveguide with stress; (b) emission spectrum of taper section with different stress

图 4 (a) PN 金属厚度差对 MOPA 偏振度、偏振角度的影响;(b) 脊型、锥形、MOPA 器件的偏振度与偏振角度 Fig. 4 (a) The influence of PN metal thickness difference on DOP and polarization angle of MOPA;(b) DOP and polarization angle of ridge, toper and MOPA

图 5 改善前、后 MOPA 器件的(a)功率、偏振度和(b)电压、转换效率随偏置电流的变化曲线 Fig. 5 (a)The power and DOP (b)voltage and efficiency of MOPA lasers as a function of PA current before and after enhancement

率、偏振度和电光转换效率分别提升至11.57 W、 90.9%和59.8%@5A。上述实验说明,通过增加脊 型波导的刻蚀深度、调控锥形放大器的金属应力, 提高了MO和PA两部分的偏振度,实现了放大器对 种子源输出光场的电矢量的高效放大,提升了MO-PA半导体激光器的输出功率、偏振度和电光转换 效率。

改变热沉温度,在5~25℃下测试了器件的连续 输出功率和偏振特性。如图6所示,随着温度的升 高,该MOPA器件在15A下的输出功率从11.71W 下降至9.41W,我们认为温度升高导致的载流子泄 露和非辐射复合增强是功率下降的主要原因。在 5~15℃温度范围内,输出功率可以保持在11W以 上,更高的温度下器件的P-I曲线出现热饱和现象。 另外,随热沉温度的增加,器件的偏振度则从 91.1%下降至84.8%,仍能维持较高的偏振度。这 说明在5~15℃的温度范围内,器件性能可以拥有很 高的稳定性。

图 6 MOPA 器件的功率和偏振度随热沉温度的变化 Fig. 6 The impact of heat sink temperature on the power and DOP of MOPA device

3 结论

研究了片上集成MOPA激光器的偏振特性以及

脊型波导和锥形放大器的偏振调控方法。脊型波 导中,通过深刻蚀设计提高了TE模式的光限制因 子;而在锥形放大器中,通过调整金属电极的厚度 差以增强量子阱的压应变,从而增强TE模式的材料 增益。结合这两种技术方案,在15℃水温下,MOPA 器件的输出功率大于11.57 W@15 A,偏振度大于 90%的MOPA器件,可以作为偏振相关的合束方案 中理想的高亮度半导体激光器光源。

References

- [1] König H, Grönninger G, Lauer C, et al. Scaling brilliance of high power laser diodes [J]. High-Power Diode Laser Technology and Applications VIII, 2010, 7583:1-8.
- [2] Paschke K, Sumpf B, Dittmar F, et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(5):1223-1227.
- [3] Belyanin A A, Smowton P M, Müller A, et al. 1030 nm DBR tapered diode laser with up to 16 W of optical output power [J]. Novel In-Plane Semiconductor Lasers XVI, 2017, 10123:1-7.

- [4] Du Wei-Chuan, He Lin-An, Li Ge, et al. Monolithic master oscillator high efficiency diode laser with nearly diffraction-limited narrowband emission and 10 W of optical output power [J]. Journal of Infrared and Millimeter Waves(杜维川,何林安,李弋,等.10 W近衍射极限输出的高效率窄线宽主控振荡放大半导体激光器[J]. 红外与毫米波学报), 2023, 42(1): 21-25.
- [5] He L A, Du W, Li Y, et al. Investigation of the gain match in high brightness 980 nm tapered diode laser [J]. Journal of Luminescence, 2023, 257:1–7.
- [6] Zediker M S, Rosenkrantz E, Yanson D, et al. High-power laser diodes with high polarization purity [J]. High-Power Diode Laser Technology XV, 2017, 10086:1-9, .
- [7] Bar S-J, Lee Y-T. Tensile-strained 1.3 μm InGaAs/In-GaAlAs quantum well structure of high temperature characteristics [J]. Optical and Quantum Electronics, 2009, 40 (10): 749–56.
- [8] Shen Li, Pi Hao-Yang, Xin Guo-Feng, et al. Experimental study on the polarization characteristics and their relation with stress in high power laser diode array [J]. Chinese Journal of Lasers(沈力,皮浩洋,辛国锋,等.半导体激 光器阵列偏振特性及其与应力关系的实验研究[J].中 国激光),2009, 36(5): 1051-1056.