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Gradient-aware channel attention network for infrared small target image
denoising before detection
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Abstract: Infrared small target denoising is widely used in military and civilian fields. Existing deep learning-
based methods are specially designed for optical images and tend to over-smooth the informative image details,
thus losing the response of small targets. To both denoise and maintain informative image details, this paper pro-
poses a gradient-aware channel attention network (GCAN) for infrared small target image denoising before detec-
tion. Specifically, we use an encoder-decoder network to remove the additive noise of the infrared images. Then,
a gradient-aware channel attention module is designed to adaptively enhance the informative high-gradient image
channel. The informative target region with high-gradient can be maintained in this way. After that, we develop a
large dataset with 3981 noisy infrared images. Experimental results show that our proposed GCAN can both effec-
tively remove the additive noise and maintain the informative target region. Additional experiments of infrared

small target detection further verify the effectiveness of our method.
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Introduction

With the rapid development of infrared imaging
technology, the infrared imaging system has been widely
used in marine resource utilization, high-precision navi-
gation, and ecological environment monitoring ™. Since
IR imaging device is generally applied to long-range im-
aging, the imaging quality of infrared imaging system is
easily disturbed by terrible environment, which includes
internal imaging-device environment (e. g., thermal
noise of amplifiers and detectors) and external natural en-
vironment (e. g. , clouds, low-light conditions and atmo-
spheric perturbations) . Therefore, noises with differ-
ent characteristics generally interact with each other and
perform complex distribution in IR images. To simplify
the mixed noise, one common assumption is that the
noise in IR images is additive white Gaussian noise (AW-
GN) with standard deviation *' . As shown in Fig. 1(al-
a3), IR images in the same scene would be corrupted un-
der different levels of noise caused by the varied condi-
tions of the imaging device and the external environ-
ment. The detection results generated by DNANet"” un-
der different levels of noise are shown in Fig. 1(b1-bh3).
It demonstrates that the additive noise not only introduc-
es the decrease of image quality but also brings obvious
performance decrease for the subsequent detection task.
To our surprise, as shown in Fig. 1(c-d), our denoising
method helps to make the noisy image recover to a clean
one and thus alleviate the performance decrease of target
detection task.

To alleviate the negative effect caused by the addi-
tive noise, numerous traditional methods have been pro-
posed, including the filtering-based method"” , sparse-
representation-based methods""™' | and Low-rankness-
based method'. Although the above works have
achieved promising image denoising results, they are es-
sentially manually-designed methods, which heavily rely
on prior knowledge and hand-crafted features. When the
characteristics of images (e. g., signal-to-cluster ratio
(SCR) ) dramatically change, traditional methods can
hardly handle such changeable scenarios with fixed hy-
per-parameters. More robust solutions should be intro-
duced to tackle such challenges.

Different from the previous model-driven traditional
methods, the convolutional neural network (CNN) can
achieve high-performance image denoising in a data-driv-
en manner and has yielded promising results in optical
image denoising. Jain et al. "' proposed the first CNN-
based denoising method. A four-layer, fully-connected
CNN structure was designed to achieve significant im-
provements over traditional denoising methods. Due to
the simple and shallow CNN structure, the denoising per-
formance is limited. Then, Zhang et al. proposed a de-
noising convolutional neural network (DnCNN) "'
DnCNN can remove the latent clean image from noisy ob-
servation through a residual learning strategy. Thanks to
the powerful representation ability introduced by much
deeper CNN layers, DnCNN achieves better noise reduc-
tion than the optimal traditional method "' and previous

CNN-based methods"“'"*. After that, Liang et al. de-

signed a strong baseline model SwinIR"" for image resto-
ration based on the Swin Transformer. Higher perfor-
mance under real noisy scene is achieved. However, the
performance improvement is based on the huge number
of optical images. The capacity of IR datasets is limited
and hard to drive the transformer-based network. More-
over, the IR imaging system is generally used for long-
distance imaging to capture small and dim targets which
are not easily perceived by optical devices. Therefore,
direct transfer of the existing optical denoising method
may over-smooth the small targets and thus lose the re-
sponse of the small target, which is unacceptable for sub-
sequent high-level target detection and recognition tasks.

Detected Result Detected Result

(Better Performance)

(Poor Performance)
! (el) | '
!

(;) 2 '

Fig. 1 (al)-(a3) Visual results of noisy input images; (b1)-
(b3) detected results without denoising; (c1)-(c3) denoised im-
ages by our method; (d1)-(d3) detected results with denoising
El1 (al)-(a3) &M NS (b1)-(3) R 2 M i H Ao ]
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To both denoise IR images and maintain the re-
sponse of small targets, we propose a novel infrared im-
age denoising method named gradient-aware channel at-
tention network (GCAN). We design an encoder decod-
er-based network with residual connections to remove the
additive noise of infrared images. Then, a gradient-
based channel attention module (GCAM) is designed
and embedded into the residual connection to adaptively
enhance the informative high-gradient image channel and
thus preserve the informative details. In this way, infor-
mative target regions with a high gradient can be pre-
served and additive noise of IR images is also removed.

The contributions of this paper can be summarized
as follows:

1) An encoder-decoder denoising framework and a
gradient-based channel attention module are proposed to
remove the additive noise and adaptively

enhance the informative image channels, respective-
ly.

2) We develop an NUDT-IRSTDn dataset with vari-
ous SCR ratios based on our previous NUDT-SIRST data-
set. Both TR image denoising performance and corre-
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Fig. 2 An illustration of the proposed gradient-aware channel attention network (GCAN) for infrared small target image denoising be-

fore detection
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sponding influence on subsequent target detection tasks
can be evaluated.

3) The experimental results of both denoising and
high-level object detection demonstrate that our GCAN
can not only achieve high-performance of denoising com-
pared to other state-of-the-art methods, but also effective-
ly keep the performance of subsequent detection tasks
stable under terrible imaging conditions.

1 Methodology

1.1 Denoise model

Assuming that X € R"*" is a noise disturbance im-
age and Y € R""" is a corresponding clean image, the re-
lationship between them can be formulated as:

X =6(Y) . (1)
where 8: R™“"denotes the complex degradation process
involving internal and external IR imaging conditions.

The noise reduction process aims to recover the
clean images from the degraded images. This process
can be transformed to seek a function f to minimize the
mse error between f(x) and Y , which can be described
as:

arg mfinllf(X) -YIl, , (2)

where f is regarded as the optimal approximation of 7',
and f (X ) denotes the recovered clean image.
1.2 Infrared image denoising network

1) Overall architecture: In this section, we intro-
duce our infrared image denoising network (GCAN) in
detail. First, we follow the encoder decoder-based archi-
tecture and combine with residual connections to remove
the varied additive noise and initially pass image details
to the top layers. It is worth noting that pooling layers
and the ReLU layers are removed before the summation
with residuals to avoid losing details. Then, we propose
a gradient-based channel attention module to maintain
the potential target regions (e. g. , high-gradient region)

while denoising images. The overall architecture of the
GCAN is shown in Fig. 2.

2) Encoder-decoder structure: The encoder-decod-
er structure consists of several stacked Conv-Blocks and
Deconv-Blocks. The encoder part is designed to suppress
image noise from low-level to high-level step by step
while preserving informative information in the input im-
ages. As shown in Fig. 2(b), the preprocessed IR im-
age X is first fed into sequential convolutional blocks
(Conv-Block C" (th =1, 2,..., N)). After the stacked
Conv-Blocks, the image X is transformed into a feature
space, and the output of each Conv-Block is a feature
mapF! € R“*"V(th {1, 2, 3,---N}). Then, the da-
ta flow through the Deconv-Blocks (D" (th=1, 2, ...,
N) ) follows the rule of FILO (First In Last Out). The
feature from the last Conv-Block F} e R"*"*" is fed to
the first Deconv-Block to generate F) e R®*"*". Final-
ly, Fie ROV and F) ' e R“ "V are fed into the
D" to generate the recovered image F(X). The output of
C" can be formulated as:

F¢=w*[ReLU(w*X, _, +b,)+b] . (3)

Each Deconv-Block is symmetric with the corre-
sponding Conv-Block, and the output of D" can be formu-
lated as:

Fp=w @[ReLU(w; @ X, , +b)+b ., (4)
where th (thel,..., N) is the number of Blocks. w, and
b, denote the weights and biases in the 1 Giel, ...,
convolutional layer, respectively. * and & represent con-
volution and deconvolution operator, respectively.

X, is the input image, and X, (k>0) is the extracted
feature from the previous layers. ReLU (X) = Max (0,
X) is the activation function.

3) Residual connections: The residual connection
is used to avoid gradients vanishing as the network goes
deep, and also serves as a simple detail recovery struc-
ture that can connect matched Conv-Blocks and Deconv-
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Fig. 3 Examples of the developed dataset, including (a0)-(i0) clean images; (al)-(il) level-1 noisy images; (a2)-(i2) level-2 noisy

images; (a3)-(i3) level-3 noisy images
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Blocks to propagate the informative details from low-level
to high-level features. As shown in Fig. 2(c), after the
element-wise sum between the feature F) € R *"*" and
FY-'e RC "7 the obtained map is fed into next De-
conv-Block D* to generate the same scale feature map
F; e REXHXV.

4) Gradient-based channel attention module
(GCAM) : To avoid over—smooth the informative small
target region, we design a GCAM as shown in Fig. 2(d)
to adaptively enhance the informative image channel and
enhance the target regions with high gradient. GCAM en-
hances details by the feature rescaling strategy. Inspired
by no-reference image quality metrics, we use average
gray to represent the amount of information in the feature
map, and average gradient to describe the amount of
high- intensity information. GCAM takes the output of
first Conv-Block F! e R“*"*" as input and computes
Gray, € R“*"*" and Gray, € R“*"*" for the I, channel
of F/. The Gray operation and the Grad operation are cal-
culated as follows:

Grayﬁzf,:lz\;l/(lk(i+1,j>—lk(i,j)>2+(1(i,j+1>—1(i,j)>2

2
. (%)
where M and N represent the length and width of the im-
age, respectively. Then Grayy is fed to a mean
operation to generate AGrayg, respectively. After
element-wise multiplication, AA; = AGray; ® AGray,,
GCAM can adaptively enhance the input feature map
along the channel dimension.

2 The NUDT-IRSTDn dataset

2.1 Motivation

The high-quality dataset is essential for data-driven
CNN-based methods. However, existing denoising meth-
ods are essentially data-driven and evaluated on their in-
house dataset'”. Inspired by the single frame infrared
small target detection dataset (NUDT-SIRST"") , we de-
signed a large-scale infrared image dataset (namely,

NUDT-IRSTDn) with different levels of noise to further

explore the influence of different levels of noise on high-
level tasks (e. g. , target detection).

These noisy images are manually synthesized by
adding Gaussian white noise on those clean long-wave
band IR images, whose wavelength locates between 8
pm and 14 pm. As shown in Table 1, three kinds of
noise level are chosen (i. e., o = 0.05, 0.09, and
0. 25 for Noise-vl, Noise-v2, and Noise-v3). The origi-
nal clean images can be regarded as the ground truth.
Noise-v3 subset has the highest noise intensity among the
three groups.

2.2 Implementation details

To simulate IR images subject to complex noise in-
terference scenarios and better comparison of the influ-
ence of different noise intensities on subsequent tasks.
We did not directly add the same levels of noise to the ini-
tial image. The synthesis process of our dataset is shown
in Fig. 4. We first used LSCR as a quantitative metric of
detection complexity and set three sets of detection
thresholds T, (i. e. , 5, 3.5, and 2). Then, we adopted
an adaptive noise level function to adjust noise levels &
and make sure that the LSCR of adding noise IR image is
less than T,,. LSCR is defined as follows::

LSCR = ¥ =l . (6)

a,

where u,, u,, o, are the local background gray mean,
target gray level mean, and local background gray stan-
dard deviation. We set the local background of the target
as a rectangle centered at the target position with fixed
width and height of 20 pixels. To eliminate the influence
of the target region, we exclude the target region inside
the rectangle. Some examples of the developed dataset
are shown in Fig. 3.

As shown in Table 1, compared with the original
noise-free NUDT-SIRST dataset, our developed NUDT-
IRSTDn dataset provides much more number of images
(i. e., 3981 vs 1327) under varied LSCR value. The
LSCR value of NUDT-IRSTDn locates in 0.402-5,
0.402-3.5, and 0.402-2 for Noise vl, Noise v2, and
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Table 1 Main characteristics of NUDT-SIRST and
NUDT-IRSTDn

%1 NUDT-SIRST #I NUDT-IRSTDn #[3E & F E= 4514

NUDT NUDT-IRSTDn
Metrics
SIRST Noise. vl Noise. v2 Noise. v3
0. 402~
LSCR 0. 402~5 0.402~3.5 0.402~2
19. 05
LSCR’ 5.68 4.364 3.205 1. 687
o - 0~0. 06 0~0. 1 0~0.5
o’ - 0.013 0. 04 0. 154
PSNR - 21.5~40.2 20.9~34. 1 9.9~24.4
PSNR’ - 31.88 25.89 17.31
Number 1327 1327 1327 1327

Table 2 PSNR and SSIM values achieved by different
denoising methods under varied noise—level da-
taset

F2 AEHEETHWSHERFGEMEEE LK (PSNRM

SSIM)

Noise. vl Noise. v2 Noise. v3
Denosing
PS PS PS
Method SSIM SSIM SSIM
NR NR NR

BM3D 36.7 0.75 31.0 0.52 19. 4 0.23
WNNM 34.6 0.38 33.1 0.36 30.3 0.28
K-SVD 35.2 0. 62 34.0 0.43 31.2 0.27

REDCNN 36.8 0.87 35.6 0.82 29.5 0.74
DnCNN 44.3 0.93 40.3 0.91 33.6 0.87
SWINIR 44.9 0.92 41.7 0.97 34.3 0.87

5 7

GCAN 45. 0. 96 42. 1 0.96 33. 0.88

Noise v3, which are much smaller than that of NUDT-
SIRST. Moreover, the average LSCR values (i. e.,
LSCR’ ) of NUDT-IRSTDn are 4.36, 3.20, and 1. 68
for NUDT-IRSTDn with Noise v1, Noise v2, and Noise

v3, respectively. More visually non-salient targets intro-

duce huge difficulty for precise detection.
3 Experiments

3.1 Experiment setting

1) Implementation Details: We conducted extensive
experiments on the NUDT-IRSTDn dataset. To consist
with the NUDT-SIRST dataset, we divided each group
dataset into a training set and a test set with the ratio of
1:1. We resized all input IR images to 256X256 pixels.
The batch size and learning rate in the process of network
training were set as 8 and 1Xe-5 respectively. We used
the mean square error (MSE) as the loss function of our
network. All models were implemented in PyTorch on a
computer with an Intel Xeon Gold 5117 CPU and an
Nvidia Tesla V100 GPU.

2) Evaluation Metrics: Following the previous
works'" "*' | we used PSNR and SSIM to evaluate the re-
covery image quality. We also adopted detection metrics
(intersection over union (IoU) , probability of detection
(Pd) and false-alarm (Fa) ) to evaluate the practical per-
formance of denoising methods.

Table 3 Ablation study on our proposed GCAM module
R3 GCAMEIRE)HBKIB AR

#Params FLOPs PSNR/SSIM
Method
(dB) (G) (dB)
GCAN
1. 848 83.89 44.6
w/o GCAM
GCAN 2.345 157. 30 45.5

3.2 Experimental results and analysis

1) Denoising results: To verify the superiority of our
method, we compared our GCAN with state-of-the-art
methods, including conventional model-based methods
(BM3D"", WNNM "', and K-SVD""") and CNN-based
methods (REDCNN"* and DnCNN'*") on the NUDT-
IRSTDn dataset. The proposed method and comparative
methods are evaluated on the test set of the three subsets
(i. e., Noise-vl, Noise-v2 and Noise-v3) of NUDT-
IRSTDn. The results of PSNR and SSIM are presented in
Table II. We can observe that our GCAN generates high-
er performance than the comparative three model-based
methods and two learning-based methods in term of
PSNR. Compared with DnCNN, GCAN has a much bet-
ter denoising ability as shown in Table 2, our GCAN
achieves much higher PSNR (i. e. , 45.5vs 44.3, 42. 1
vs 40. 3, and 33.7 vs 33.6 dB) than the DnCNN. It s
worth noting that, 1 dB improvement of PSNR is high
enough for the denoising task. It demonstrates that the
superiority of our method to recover clean images. Mean-
while, the higher SSIM index also proves that our method
has a stronger ability to recover accurate details and dis-
tinguish fine structure information from complex noise.
The qualitative results are shown in Fig. 5. The zoomed
images clearly show the regions of interest. It can be ob-
served that GCAN suppresses different levels of noise
and preserves the details of the target better. Compared

to GCAN w/o GCAM, as shown in Table 3, our GCAN
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achieves 0.9 dB performance increase (45.5 vs 44.6)
in term of PSNR under NUDT-IRSTDn-v1 subset. That
is because, our GCAM can adaptively enhance the input
feature map along the channel dimension. More informa-
tive channel-dimension feature maps are enhanced, intro-
ducing better denoising results.

2) Effectiveness of Denoising for Detection: In this
subsection, we evaluated the effectiveness of the denois-
ing methods by comparing whether these methods can
help the subsequent detection task maintain performance
under a varied noisy environment.

Firstly, we evaluated the influence of additive
noise on subsequent target detection. We selected five
typical infrared small target detection methods (Top-
hat''"", RIPT"*', ACM'"”", UNet™', and DNANet"*")
to detect targets from the original image dataset and the
corresponding three noise-level image datasets. The
quantitative detection results on the four datasets are list-
ed in Table 5. It can be observed that with the increase
of noise intensity of the datasets (i. e., Oriset, Noise-
vl, Noise-v2 and Noise-v3) , the IoU value of the above
five detection methods all gradually decreases. For ex-
ample, after image denoising, the detection method (i.
e. , DNANet) achieves much better results (i. e.,
1.6%, 1.6%, and 8.1x10° higher performance than
DnCNN in term of IoU, Pd and FA on Noise-vl sub-

set). It is important for the infrared small target detec-

Input Image BM3|

Noise-v2 Noise-v1

Noise-v3

Fig. 5

tion task under varied conditions of the imaging device
and external environment.

Then, we compared the detection results on de-
noised images to evaluate the performance of denoising
methods. We adopted Top-Hat'"" and DNA-Net"® as the
representatives of traditional and deep learning SIRST de-
tection methods, respectively. As shown in Table 3, the
improvements achieved by our GCAN over other denois-
ing methods are obvious. It demonstrates that our GCAN
achieves better performance on removing noise and re-
taining important details at different noise levels. Note
that, the detection results on the denoised images with
the WNNM method are even worse after denoising be-
cause of the over-smoothing of the target regions. There-
fore, the denoising method for IR small target images
needs to remove the noise while effectively retaining the
details of the target region in the IR image, thus alleviat-
ing the degradation of detection performance under com-
plex noise conditions.

3) Computational Efficiency: As shown in Table 6,
GFLOPs, inference time (s) , parameters, and PSNR
performance of our GCAN are 157.30 GFLOPs, 0. 206
s, 2.345 M, and 45.5 dB, respectively. Compared to
three benchmark deep learning-based methods, our
method achieves much better denoising performance in
term of PSNR but introduces larger model size, longer in-
ference time, and extra computation cost (i. e.,

DnCNN GCAN (Ours)  Ground Truth

Input image and corresponding denoising results of different methods on Noise-vl, Noise-v2 and Noise-v3 datasets respective-

ly, for better visualization, the two regions of interest are enlarged and highlighted in red and blue, respectively, it can be observed that

our GCAN can preserve target regions better
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Table 4 ToU(x107%), Pd(x107%) and Fa(x10™*) values achieved by detection methods after pre—processing with noise reduc-

tion methods under varied noise—level dataset

x4 ARAERFEERE, RATEGMNAEE=NHEE LTI, ONENEERNERILK

Noise. v1 Noise. v2 Noise. v3
Denoising Method Top-Hat!""! DNANet™! Top—Hat!"! DNANet!! Top—Hat!""! DNANet™!
BM3D'"! 23.6/37.5/1.9 61.1/72.1/17.7 13.2/27. 4/3. 04 39. 4/49.3/32.9 5.42/21.3/128 5.25/30. 8/18. 0
WNNM' 1.89/6.55/14. 5 1.75/1.58/1.13  2.11/7.07/21.55  2.07/1.90/0.95 1.13/3.91/7. 82 0. 75/0. 63/0. 70
K-svD"" 21.1/26.3/12. 3 58.9/67.3/28. 1 13.3/26.2/45. 1 42.1/51.2/52.0 5.14/18.5/86.7 2.12/32.5/29. 1
RED-CNN''® 13.2/26.9/39. 4 44.5/58.1/1.91 5.33/14. 8/3.25 28.1/28.8/3.92 1. 67/6. 61/3.76 3.57/10. 2/10. 0
DnCNN''S) 23.9/39. 4/2. 05 72.9/95.1/1. 21 21.1/35. 4/1.96 60. 4/86. 2/1. 30 6.29/18.3/2.75 15.2/26.2/5. 43

GCAN(ours)

24.1/41.7/1. 48

74. 5/96. 7/0. 40

22.0/38.4/1.70

61.6/87.9/1. 00

8. 38/20. 2/2. 61

17.5/29.2/1. 07
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Table 5 IoU(x107) values achieved by different detec-

tion methods under varied noise—level dataset
RS AERNAZFELRM=MIEEERMIBE LT HEE
THBE

Detection Method *QOriset Noise. vl Noise. v2  Noise. v3
Top—Hat ! 25.8 23.6 13.0 5.21
RIPT!'®] 35.2 26.3 14.9 7.75
AcMi™! 44.1 39.1 20.7 1.19
UNet?! 79.5 64.7 38. 4 19.0
DNANet!! 88.6 64.6 38.3 5.5

*Oriset indicates noise—free images in the image pairs.

Table 6 GFLOPs, Inference Time (s), Parameters, and
PSNR performance of different denoising meth-
ods

*x6 ARREFRIFRIZREEE JEEME.ERSHEM

ERMERELLE

Denosing GFLOPs Inference Params PSNR
Method (G) Time (s) (M) (dB)
RED-CNN ['o! 83. 89 0.156 1. 848 44.6
DnCNN [*! 43.79 0.307 0. 668 44.3
SWINIR 2! 49. 64 0.271 11. 80 44.9
GCAN 157.30 0. 206 2.345 45.5

FLOPs). It may introduce inference delay under compu-
tational resources limited scenes, but is still affordable

for the GPU-available scene.
4 Conclusion

In this paper, we propose a simple yet effective gra-
dient-aware channel attention network (GCAN) for infra-
red small target image denoising before detection. To
achieve this data-driven learning manner, we develop an
infrared image denoising dataset, which contains 3 noise-
level subsets. Then, we propose a novel infrared image
denoising method (namely, GCAN) to achieve high-per-
formance image denoising. Specifically, an encoder de-
coder-based denoising network is used to initially remove
the additive noise. Then, a residual connection structure
and a gradient-based channel attention module (GCAM)
are designed to preserve informative image details in IR
images. Some conclusions can be summarized as follows :

(1) Compared to four benchmark denoising meth-
ods, GCAN achieves better denoising performance in
terms of PSNR and SSIM. Better visually denoising per-
formance is also achieved.

(2) The gradient-based channel attention module
(GCAM) can avoid the over-smooth of IR images and ef-
fectively maintain the response of small target regions.
Extensive experiments on five benchmark detection meth-
ods can verify the effectiveness of our method in terms of
IoU .Pd and Fa.

(3) Although achieving better performance, larger
model size and extra computation cost (i. e., FLOPs)
are introduced, more light-weight computation operator

and simple network will be explored to increase the prac-
ticality under computational resources limited device in
the future work.
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