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Abstract: The correct use of the product is possible only when the land surface temperature (LST) data is calcu-
lated by an accurate and reliable inversion algorithm. In this paper, we compare the inversion results of five com-
monly used LST inversion algorithms based on Landsat-8, Landsat-9 data, and weather station data. The inver-
sion results and parameter sensitivity analysis of different algorithms are tested. The results show that the inver-
sion results of the Radiative Transfer Equation (RTE) and Single Channel (SC) algorithms calculated based on
land surface emissivity (LSE) are in good agreement with the ground measured. The inversion results of the SC
algorithm based on the atmospheric water vapor inversion and the Split Window (SW) algorithm based on the at-
mospheric water vapor inversion are higher than the measured temperature. The inversion accuracy of the Mono
Window (MW ) algorithm based on average temperature parameters is not ideal. In addition, the consistency of
the inversion temperature of the two data on different ground objects is compared. Our study can provide a refer-
ence for land surface temperature inversion based on Landsat-9 data.
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, crop growth monitor-
The development of high preci-

Land surface temperature (LST) is an important
variable in climate and environmental research, which
has been widely used in global climate change'? ,
drought monitoring and warning”®', urban heat island **’,

urban livable assessment'”, satellite precipitation™®, hy-
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sion temperature data sets with the appropriate resolution
is of great significance to any kind of ecological environ-
ment research worldwide.

Many researchers have developed algorithms based
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on surface temperature inversion. Major LST inversion
algorithms include RTE"" , which is a direct method
for LST retrieval using a single TIRS band, the parame-
ters required for inversion mainly include the atmospher-
ic transmittance, surface reflectivity, atmospheric up-
welling radiation and atmospheric downwelling radiation.
The process calculation of RTE is complicated, but the
accuracy of the obtained result is relatively high. The SC
algorithm ™" includes two calculation methods. The
first one is based on the calculation of atmospheric water
vapor parameters, the calculation process is simple, but
the calculation accuracy is poor. The second method is
based on the calculation of atmospheric transmittance,
atmospheric upward radiation, atmospheric downward ra-
diation and other parameters. The calculation process of
this method is relatively simple and the calculation result
has a relatively high precision, so it is also a common
method for USGS to produce surface temperature data.
The MW algorithm"'® is an algorithm developed specifi-
cally for Landsat data, which needs to use parameters in-
cluding surface emissivity, atmospheric transmittance,
and average atmospheric temperature. Due to the huge
variation of the estimated mean atmospheric tempera-
ture, the inversion accuracy of the MW algorithm is rela-
tively poor. The SW algorithm'"” """ uses two thermal in-
frared bands for calculation. Because the eleventh band
calibration of Landsat is not stable, the inversion accura-
cy of this algorithm is the worst compared with the above.

In these LST inversion algorithms, multiple basic
parameters need to be input™. Multiple parameters are
estimated variables, not standard variables. Each algo-
rithm is tested on the satellite data for which it is applica-
ble, and sometimes not always applicable faced with new
satellite data. For example, the split window algorithm is
not suitable for Landsat 8 data, because the calibration
of the 11th band is not accurate. It is therefore necessary
to evaluate land surface temperature inversion for each
new type of satellite data"’.

1 Research data

The study area was chosen to be covered by both
Landsat 8 and Landsat 9 data, shown in Fig. 1. The da-
ta track number was 123, 032. It mainly covered Bei-
jing. We selected Landsat 8 data with imaging date of
November 26, 2021, and Landsat 9 data with imaging
date of November 22, 2021 (test data), which were the
two images closest to the USGS release date, four days
apart. For four days we don’t think anything has changed
on the surface. The main variation is the influence of at-
mospheric aerosols and other parameters on temperature
inversion, and the data needs to be normalized in the
comparative study.

Accurate measurements from 20 meteorological sta-
tions (marked in green in Fig. 1) were selected as the
true values. The temperature measuring device at the
weather station was located 1. 5 meters above the ground
and recorded data every hour. It is necessary to convert
the measured data from the meteorological station to
ground data when using the measured data from the mete-

orological station.

In the inversion of surface temperature in this
study, LSE, atmospheric transmittance, upward radia-
tion, downward radiation, atmospheric water vapor con-
tent, atmospheric average temperature,, and other param-
eters required by various inversion algorithms are ob-
tained by USGS using interpolation measurements from
various stations around the world. A description of the
parameter dataset can be found in the USGS official docu-
mentation.
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Fig. 1  Study areas, (a) the remote sensing data of
‘LCO8_LITP 123032 20211126 20211201 02 T1’ ;(b) the re-
mote sensing data of ‘LC09 LITP_123032 20211122
20220120 02 T1’, with green dots representing the location of
the meteorological station

Bl 1 W5 X, (a) Landsat-8 #& 848 : LCO8_L1TP_123032_
20211126 20211201 02 T1; (b) Landsat-9 i# & % 4 -
LCO09 LI1TP 123032 20211122 20220120 02 T1, [& H 2% {6, 5%
JeRURAR I R

2 Methods

In the data pre-processing stage, the atmospheric
correction was mainly carried out on the selected Landsat-
8 and Landsat-9 level-1 product data. Then, we com-
bined five commonly used LST inversion algorithms using
land surface emissivity, upward radiation, downward ra-
diation, atmospheric water vapor, and average tempera-
ture. LST inversion was performed for the corrected atmo-
spheric data. Secondly, we fitted the five temperature in-
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version results with the in-situ measurement results of
weather stations to compare the accuracy of the five algo-
rithms. The sensitivity of each dependent parameter of
the inversion algorithm was tested by controlling the pa-
rameters with an equal step size. Finally, we classified
the study area, and several pixels were randomly select-
ed for data statistics in each category in the study area
and we measured the stability of each inversion algorithm
on Landsat-8 and Landsat-9 data according to the mean
and standard deviation. The overall process is shown in
Fig. 2.
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Fig. 2 Overall research process, & represents land surface emis-
sivity, w represents water vapor content, (g-em™), L | repre-
sents downwelling radiance, (W/m?/sr/um), L T represents up-
welling radiance, (W/m?/sr/um),  represents atmospheric trans-
mittance
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2.1 LST inversion algorithm
Five LST inversion schemes are discussed in this
study, which are shown in Table 1.

Table 1 Different LST inversion methods
®1 AEMREBERERE

Model Model + parameter Model ID
RTE RTE (LSE, z, L 1 , L 1) LST1
SC (w) LST2
SC
SC(LSE,z,L 1 ,L |) LST3
SW SW (by Jiménez—Muiioz et al. ) (LSE, w) LST4
MW MW (LSE, z, L T , L |, Ta) LSTS

LST1— Radiative transfer equation (RTE) is a
method of surface temperature inversion using a single
thermal infrared band. This can be given by Eq. (1):

L,=[eB(T)+(1-e)L | Je+L T . (1)
where L, (w-mZst™'*pum™") is the brightness value of the
band A. B(T,) is the blackbody radiance energy. For
more detailed parameter description, please read the
original literature'""" >,

LST2— The Single channel (SC) algorithm can be
expressed by Eq. (2) and Eq. (3):

T=y[e'(wL+y)+y]+s L Q)
y=1/(b,L).8 ~T - T%b, . ()

where b, is equal to 1 320 K for Band 10. ¢, ¢,,¢; are
functions of water vapor content (w). For more detailed
parameter description, please read the original litera-
ture'*,

LST3— When w in the SC algorithm is greater than
3 g-cm™, Jiménez-Mufioz suggests using Eq. (4) to cal-
culate ¥, ¥, and ;. This algorithm is the USGS official
method for producing LST datasets.

b= Ve =-L L-L Ve, yo=L L . (@)

LST4— Some researchers refer to the split window
(SW) algorithm of MODIS satellite and transfer it to
Landsat data, which can be calculated by Eq. (5):

T.‘» = T]o + CI(T]O - Tn) + CZ(TIO - Tl])z +cy t
(c3+c4w)(1 —&'m)+(cS +cﬁw)A8 , (5)

where T, and T, are the brightness temperatures. Ag is
the LSE difference of Band 10 and Band 11. For more
detailed parameter description, please read the original
literature ™.
LST5— The Mono Window (MW ) algorithm can be
expressed by Eq. (6):
T,={a-(1-C-D)+[b-(1-C=-D)+C+D]-T-D-T7,/c(6)

where a =—67.35 and b = 0.45 of Band 10, T, is the
mean temperature. C =& -7 and D =(1 - T)[l +(1 -
g)- T]. For more detailed parameter description, please

read the original literature ™.

We fitted the five kinds of inversion LST with the
temperature measured in situ by the weather station
(from near-surface temperature to LST). The T-based
technique was used to evaluate the fitting data™**. Root
mean square error (RMSE) and average BIAS™ were
used as evaluation criteria in this study. The formulas of
these metrics are given by :

[ T Landsat - TVl(LliHll ]2
RMSEz/2 fond : . (D

n

[T indsat T{mriun]
BIAS = 2l s = 1 . (8)
n

where T, are the Landsat-8 and Landsat-9
derived LST and in-situ LST, respectively, and n repre-
sents the number of in-situ measurements. In this study,
in-situ measurement data of 20 meteorological stations
were used, so n=20.
2.2 Parameter sensitivity test

Sensitivity analysis of model parameters is an appli-
cation of a model output error (fuzzy approximation,
large number, statistical or other) that is inversely parti-
tioned and inversely assigned to different sources of un-
certainty in the model input™. We consider the inver-
sion parameters of surface temperature in different places
as independent variables and separately control the
changes of each parameter to observe the influence of the
changes of various parameters on the results. First, as-
sume that with the image after the atmospheric correction
by one pixel, the DN value is a fixed value. Then, ac-
cording to experience, the parameters are selected as
control variables, and finally the sensitivity of each pa-

2

and T

Station
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rameter is analyzed. The selected length and step size of
each parameter are shown in Table 2.

Table 2 The selection length and step size of each pa-

rameter
x2 EESHNIEEETSK
Parameter Length Step size

LSE (0.9, 1.0) 0.01
T (0.5,1.0) 0.01
L1 (0,5) 0.1
L] (0,5) 0.1
w (0,2.5) 0.1

To make the results comparable under the same
measurement, we normalized the surface temperature.
The following equation is utilized :

S, =T(x)-T(x+ Ax) , (9

where S, is the LST difference calculated for each in-
crease in step size; T,(x + Ax) and T (x) refer to the LST
calculated for “x + Ax” and “x”, respectively.
2.3 Error tests on different ground features

The stability of five inversion algorithms was dis-
cussed, and the inversion results on different land use
types were selected for statistical analysis. The random
forest method was used to classify land use in the study
area. Since the accuracy of classification directly affect-
ed the test results, the overall classification accuracy was
required to be higher than 90%. Considering the spatial
resolution of Landsat data and the separability and high
precision requirements of land cover, as well as the sub-
sequent research on the thermal environment using sur-
face temperature, we divided land use in the study area
into seven categories: water, vegetation, dark build-
ings, bright soil, dark soil, and high reflectivity build-
ings. Spectral statistics and analysis were performed for
each category, and the specific classification sample se-
lection and classification process, please refer to our pre-
vious literature ™",

3 Results and analysis

3.1 Inversion results of different algorithms

Five temperature retrieval algorithms were used to
retrieve LST from the Landsat-8 and Landsat-9 data, the
results are shown in Fig. 3. It can be seen that the re-
sults of each LST inversion algorithm and the graphical
trend of the measured data are consistent. This is consis-
tent with our common knowledge that the temperature
drops by an average of 6 ‘C for every 1000 meters of ele-
vation. In Fig. 3, the measured data of the high-altitude
site is displayed in a concave shape with the adjacent da-
ta.

The inversion result values of five temperature inver-
sion algorithms were used to linearly fit the measured
temperature values. The fitting results are shown in Fig.
4. It can also be seen from the statistical fitting results
that the fitting results of LST1 and LST3 are relatively
ideal, and the fitting slope is around 0.7 and R® is
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Fig. 3 Inversion results of 5 LST inversion algorithms
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around 0. 6. The best fitting between the model inversion
results and the measured results is the mono-window algo-
rithm, which is ideal both in the fitting slope and R?,
and which is the main reason why USGS adopts the MW
algorithm. It is worth noting that the fitting slope of LST4
is above 0.9, but R* is around 0.45. This phenomenon
may be caused by the lack of sample point data on the
one hand. Two groups of pixel points are close to the
measured points, but the inversion results of some pixel
points differ greatly from the measured results of the sta-
tion. This shows that the stability of the model is poor
and the estimation result is not ideal. In addition, the
LST2 method based on atmospheric water vapor content
parameters and the mono-window algorithm for surface
temperature inversion has a lower fitting slope and R?,
which further illustrates the instability of the inversion al-
gorithm based on atmospheric water vapor content param-
eters.

From the accuracy of the algorithm inversion results
and the sensitivity analysis of the parameters in the algo-
rithm, the RTE and SC algorithms calculated using the
LSE parameters are better than other algorithms. The
MW algorithm yields slightly higher retrieval results than
the measured data, and the SW algorithm yields a large
difference from the measured data. This may be related
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to the unstable radiometric calibration in Band 11 of the
Landsat-8 TIRS. In addition, the calibration parameters
of the 11th band of Landsat-9 are still being tested. It is
hoped that USGS will provide more accurate calibration
parameters in the future, and calculate atmospheric influ-
ence through two thermal infrared bands to obtain a more
accurate surface temperature.

3.2 Sensitivity analysis of model parameters

The inversion temperature of each algorithm was
normalized, and the sensitivity of the parameters in the
algorithm was analyzed by controlling variables, and the
analysis results of each parameter are shown in Fig. 5.

It can be seen from Fig. 5(a) that the atmospheric
transmittance variable has a logarithmic function relation-
ship with the inversion result values of the RTE, SC and
MW algorithms. As the atmospheric transmittance vari-
able increases, the retrieved surface temperature values
gradually decrease. From the curvature shown in the im-
age, the values of the retrieved results of the RTE algo-
rithm change rapidly with the atmospheric transmittance ,

while the values of the retrieved results of the SC and
MW algorithms change slowly with the atmospheric trans-
mittance. In Fig. 5(b), the inversion temperature val-
ues of various LST inversion algorithms gradually de-
crease with the increase of upward radiation parameters.
However, the effect of ascending radiation parameters on
the LST1 algorithm presents a logarithmic curve, and the
effect on the LST3 algorithm presents a linear relation-
ship. In Fig. 5(c¢), the inversion temperature value of
various LST inversion algorithms gradually decreases
with the increase of the descending radiation parameter
value. However, the influence of down-radiation parame-
ters on LST1 and LST3 shows a linear relationship. The
LST inversion results decrease by 0.3 units with each
unit increase of downward radiation. As can be seen from
Fig. 5(d), the inversion temperature values of various
LST inversion algorithms gradually decrease with the in-
crease of ground object-specific emissivity. The effects of
specific emissivity parameters on all inversion algorithms
show a linear relationship. For every 0.1 units increase
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in specific emissivity, the retrieved LST decreases by 1
unit. In Fig. 5 (e) , the inversion values of LST2 and
LST4 gradually increase with the increase of the atmo-
spheric water vapor content. However, the parameters of
atmospheric water vapor content show a logarithmic trend
to LST2 and a linear relationship to LST4. As can be
seen from Fig. 5 (f), the inversion value of the LST5 al-
gorithm gradually decreases with the increase of average
surface temperature parameters. The influence of aver-
age temperature parameters on LSTS5 shows a linear rela-
tionship, and the inversion MW value of average surface
temperature decreases by 0. 01 units when the average
surface temperature increases by 1 unit.
3.3 Stability analysis of different methods

The random forest algorithm was used to classify the
land cover in the study area, and then five inversion
LSTs were superimposed. The maximum value, mini-
mum value, mean value, and standard deviation of differ-
ent temperature inversion methods in different types of

Table 3 LST1 statistical results
£R3 LSTIFHER

two images were calculated to indicate the stability of
temperature inversion with different temperature inver-
sion methods in different ground covers. We selected
100 pure pixel points in each category and carried out the
ground object verification with the data taken by an un-
manned aerial vehicle on the imaging day. The statistical
results are shown in Table 3-7 and Fig. 6.

As can be seen from Table 3-7 and Fig. 6, the in-
version temperature of the five LST inversion algorithms
on the water body and vegetation is the most stable, and
the percentage error is relatively low among all land cover
types. This may be because, on the one hand, the water
body and vegetation area are relatively stable, and the
temperature change will not be disturbed by too many hu-
man factors; on the other hand, the water body and vege-
tation have relatively high separability. All inversion al-
gorithms for high reflectivity building inversion results
are the most unstable, its percentage error is the largest,
the possible reason is that high reflectivity buildings are

Landsat-8 (° C)

Landsat-9 (° C)

Land Cover
Max Min Mean Std Max Min Mean Std
Water 6.234 0.784 2.783 0.576 1.872 -4.324 -2.762 0.425
Vegetation 6.982 4.824 5.234 0.823 2.731 -2.973 0. 832 0.756
Dark buildings 24.832 ~7.983 5.759 3.320 21. 870 -9.832 4.862 3.013
Bright soil 12. 0735 -8. 089 6.231 4.432 11. 872 -6.273 3.281 4.171
Dark soil 10. 380 =7.783 0. 194 1.471 9.384 -5.923 -0. 827 1.362
High reflectivity buildings 22.447 ~7.368 4.280 5.39 18.319 -9.873 3.976 4.792

* Please note that the outdoor air temperature was 4 ° C on the day the Landsat—8 data was imaged, and -3 ° C on the day the Landsat-9 da-

ta was imaged. This data can be used as auxiliary reference data to better understand our category statistics.

Table 4 LST2 statistical results
K4 LSM2GFHIHER

Landsat-8 (° C)

Landsat-9 (° C)

Land Cover
Max Min Mean Std Max Min Mean Std
Water 13.345 3.563 7.453 2.544 7.456 -5.649 2.479 2.325
Vegetation 14. 682 5.574 8.016 2.690 11.932 -3.973 2.832 2.456
Dark buildings 25.341 -5.398 9.759 4.320 18. 840 -8.452 6. 862 4.013
Bright soil 23.735 -4. 809 8.256 4.472 15. 872 -4.743 5.813 4.311
Dark soil 22.120 -6.453 3.944 3.716 18. 854 -4.931 1. 673 3.326
High reflectivity buildings 26.423 -4.318 7.208 5.321 21.394 -11.354 1.976 4.942

Table 5 LST3 statistical results
R5 LSTIFITER

Landsat-8 (° C)

Landsat-9 (° C)

Land Cover

Max Min Mean Std Max Min Mean Std
Water 5.933 0. 882 2. 881 0.474 1.832 -4.324 -2.453 0.318
Vegetation 6. 745 4.456 5.675 0. 857 2.456 -2.675 0. 848 0. 796
Dark buildings 23.124 ~7.875 5.234 3.352 21.345 -9.373 4.367 3.274
Bright soil 21.923 -8.355 6.333 4.245 19.123 -6.171 3. 161 4.081
Dark soil 21.485 =7.245 1.245 1.571 17. 345 -5.235 -0. 145 1.461
High reflectivity buildings 23.232 =7.567 5.846 5.478 22.487 -10. 484 3.353 4.863
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Table 6 LST4 statistical results
x6 LSTAZIHER
Landsat-8 (° C) Landsai-9 (° C)
Land Cover
Max Min Mean Std Max Min Mean Std
Water 14.234 3.123 6. 653 0.977 7.852 -5.321 -1.122 0. 855
Vegetation 15. 948 7. 824 9.234 0. 999 8.731 -1.973 2.832 0. 966
Dark buildings 28. 852 -6.763 6.239 4.328 20. 874 -8. 835 6. 862 4.513
Bright soil 27.075 -8.219 8.222 4.932 15. 842 -9.213 5.281 4. 672
Dark soil 27.122 -6.213 5.234 3.346 18.314 -8.123 -4.237 3. 862
High reflectivity buildings 27.227 -8.234 8. 123 5.721 20. 391 -13.343 2.342 5.212
Table 7 LSTS statistical results
R7 LSTSHITER
Landsat-8 (° C) Landsai-9 (° C)
Land Cover
Max Min Mean Std Max Min Mean Std
Water 14. 474 3.284 25.734 1.526 3.872 -6.343 -3.722 1.352
Vegetation 13.922 7.821 8.934 1.982 6.721 -5.923 3.823 1. 846
Dark buildings 27.456 -9.345 8.234 3.887 20.238 -8.794 2.564 3.713
Bright soil 26.035 =7.349 5.357 4. 631 20. 412 -7.456 7.567 4. 671
Dark soil 27.546 -8.345 4. 634 3.575 16. 435 -6.456 -3.624 3.387
High reflectivity buildings 28.673 -5.345 6.234 5.593 20. 334 -9. 834 4.974 4. 891
0 =55975% 3 =25%75% 0 =05 75%
251 1.5 Rangerwithin IQR 3011 175 Range within IQR 25r1 1.5 Range within IQR
20 }-— median 25— median 20 | — median
- mean 20|+ mean © mean
< O 15} o 131
i 10 5 10% [5 10+
5k S5k
5l % 33»* 5 g %
-5+ -5t =5
-10+ -10F -10t
~ -15
i"@ R x%&\ \&0\\ S Qw\é & ¥ \%6\\ \a%o\\ N lj&‘ & S \5‘50\\ S
S5 \(.\0\3\\ Q,o";‘\ ¥ o %\e'c' R & \0\3\\ {\";Q 0‘5‘ @Q@Q \\z,"ae \00\ ¢;<\ o> Qeo
o¥ & o & o Qy}‘
P =% 35 =25%75%
3051713 Rangeywithin IQR 3011715 Rang within IQR
25— median 25— median
20 mean 20 | mean
@) O
& 15¢ 515
F10 %i 710 - Landsat-9
%5 o5
— — 7
0F 0 %///% Landsat-8
-5t =l
-101 -10t
-15 -15
DD oSN SN BN PO
& ,b\@ 6\‘\% FERMVE St % @\\ PRI IV
A\ o & ‘0\,\\ %‘%‘\ oﬁ& o Q‘q °a & ‘b{@}\ o @Q@e
o & o &

Fig. 6 Stability statistics of five inversion algorithms on different land covers
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generally factories or large warehouses, its production op-
eration will generate large heat, stop operation will rapid-
ly lose heat, resulting in large fluctuations in statistical
data.

4 Discussion

All LST inversion algorithms for Landsat data have
Such errors can only be minimized, not
eliminated. Since the required parameters in the LST in-

certain errors.

version algorithm are not exact values, and some parame-
ters need to be estimated initialized, it is very necessary
to explore the disturbance of each parameter on the re-
sults. All the algorithms that worked for Landsat-8 also
worked for Landsat-9 data. However, unlike Landsat-8
data, the radiometric calibration file of Band 11 of Land-
sat-9 has not been updated yet. We expect USGS to pro-
vide more accurate calibration parameters so that we can
use the data of the two channels to constrain each other to
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obtain higher precision temperature inversion results.

Considering the accuracy and parameter sensitivity
of the inversion algorithm, the RTE and SC algorithms
using LSE parameters have high accuracy and good algo-
rithm stability. The inversion results of the SC algorithm
and SW algorithm based on the calculation of atmospher-
ic water vapor content parameters fit poorly with the mea-
sured data. The MW algorithm based on LSE and aver-
age atmospheric temperature parameters fit poorly with
the measured results. Therefore, we believe that the re-
sults obtained by the LSE parameter inversion algorithm
are better than those obtained by the atmospheric water
vapor content parameter inversion algorithm. By compar-
ing LST1 and LSTS, it can be seen that the LSTS5 algo-
rithm has one more atmospheric average temperature esti-
mation parameter than the LST1 algorithm, leading to a
poor fitting effect on inversion results, which may be due
to the negative impact of excessive uncertain parameters
on results. We strongly recommend LST1 and LST3 algo-
rithms for the LST inversion from Landsat data. Even
though it is not possible to find atmospheric profiles (ra-
diosonde data, etc. ) in place at any time and in any
place, this use (using ACPC to simulate atmospheric pro-
file information) can affect the accuracy of the method,
but from our results and the literature ®!21+16:18:30321
NASA’s ACPC provided an inversion algorithm with high
accuracy. Wang™ found that SW had the lowest sensitiv-
ity to input parameter errors, but the inversion accuracy
was not as high as other algorithms. The relationship be-
tween the dependence of the inversion algorithm on the
parameters and the accuracy of the result needs to be fur-
ther explored. In a humid environment, parameter error
has little effect on the results. Xu"™*' compared the inver-
sion results of SC and SW algorithms and concluded that
the inversion results of the SC algorithm were significant-
ly better than those of SW, especially when the atmo-
spheric water vapor content was more than 2. 5 g-cm'z.

In the comparative analysis of all LST inversion
model results, error tracing is very necessary. Through
error tracing, we can reverse calculate which parameters
the error mainly comes from and which parameters have
high sensitivity in model calculation. In the subsequent
calculation process, various considerations can be taken
to reduce the error accumulation. According to the inver-
sion results of different temperature inversion algorithms
on different data and different land cover types, we can
see that the inversion percentage error of the same inver-
sion algorithm and the same land cover type on Landsat-9
is smaller than that on Landsat-8, indicating that the da-
ta quality of Landsat-9 has been improved.

5 Conclusions

The algorithm for Landsat-8 can also be applied to
Landsat-9 data. The calculation process of the SC
(LST3) algorithm is a little simpler than that of RTE
(LST1) , but there is little difference in accuracy be-
tween the two algorithms. The RTE algorithm and SC al-
gorithm based on LSE parameters are superior to other al-
gorithms in terms of both accuracy of results and sensitiv-

ity to parameters. The retrieval results of the SC (LST2)
algorithm and SW (LST4) algorithm based on the atmo-
spheric water vapor retrieval are higher than the mea-
sured temperature. The inversion effect of the MW
(LST5) algorithm based on average temperature parame-
ters is not particularly ideal. This phenomenon shows
that among all the current surface temperature inversion
algorithms, the accuracy of surface temperature inver-
sion based on the single window algorithm is the highest,
which is also the algorithm used in the advanced products
released by USGS. However, the starting point of the
split window algorithm is to eliminate the error caused by
atmospheric influence with the help of two thermal infra-
red channels, so as to obtain higher inversion accuracy.
But the actual result is the opposite. This may be due to
unstable radiometric calibration of Landsat-8 TIRS Band
11. Calibration parameters for Band 11 of Landsat-9 are
still being tested. It is hoped that USGS will provide
more accurate calibration parameters in the future and
calculate atmospheric effects through two thermal infra-
red bands to obtain more accurate surface temperatures.

With the same inversion algorithm and the same
ground cover type, the inversion percentage error on
Landsat-9 is smaller than that on Landsat-8, indicating
that the data quality of Landsat-9 has been improved.
From the inversion results of different inversion algo-
rithms on the same data, the results of water and vegeta-
tion have good stability.
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