55 42 B4 4 1) A 5 2 KUk R R Vol. 42, No. 4
2023 4 8 J. Infrared Millim. Waves August, 2023

XEHS: 1001-9014(2023)04-0538-08 DOI:10. 11972/j. issn. 1001-9014. 2023. 04. 016

Sub-pixel mapping based on spectral information of irregular scale areas for
hyperspectral images

WANG Peng'??, CHEN Yong-Kang’, ZHANG Gong’, WANG Hong-Ying*, ZHAO Chun-Lei’, HAN Ling"

(1. Key Laboratory of Southeast Coast Marine Information Intelligent Perception and Application, Ministry of Natural
Resources, Zhangzhou Institute of Surveying and Mapping, Zhangzhou 363000, China;

2. Anhui Province Key Laboratory of Physical Geographic Environment, Chuzhou University, Chuzhou 239000, China;
3. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing
210016, China;

4. School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;

5. Key Laboratory of Meteorology and Ecological Environment of Hebei Province , Meteorological Institute of Hebei,
Shijiazhuang 050021, China;

6. Xi’an Key Laboratory of Territorial Spatial Information, Chang’an University, Xi’an 710064, China)

Abstract: Sub-pixel mapping technology can analyze mixed pixels and realize the transformation from fractional
images to fine a land-cover mapping image at the sub-pixel level. However, the spectral information used by the
traditional sub-pixel mapping methods is usually constructed in a specified rectangular local window, and the spec-
tral information of all bands is rarely used, affecting the performance of sub-pixel mapping. To solve this issue,
sub-pixel mapping based on spectral information of irregular scale areas (SIISA) for hyperspectral images is pro-
posed in this paper. The experimental results on three remote sensing images show the proposed SIISA outper-
forms the existing sub-pixel mapping methods.

Key words: hyperspectral images, sub-pixel mapping, super-resolution mapping, spatial-spectral information,
irregular scale areas

ETAANREXERIBESNSLEEBRKIERTEML

T OB, BRAE, % §° IUAY, HAE, & H”
(1. N2 BE F ARG UGB AR B VR v A B BB IR 5 oy ) B s SC 0 28, A 22 T 363000
2. I BE S5 b B PRI 22 0048 T 05 S 00 2, &0 BRI 2390005
3. MRS IR K2 B 75 B D RE2ARE V190 7 &t 2100165
4. FARTHREL K AF A 4B, VT95 B AT 210003 ;
5. W AEE TG RE T WALA R 5A S E S E Il A4 050021 ;
6. KK V4T 25 (045 B H A SR 22, BV 7742 710064 )

BE: TR TEMEART UM R G, FLANEEEGIN T RUENE S L E E B REH%, &
T, 5 i AR TR AL 7 ik B R i R 5 S 4 T AT R B E 1 b A, SF LR DGR BT A B

HECE, R TR T SR, F TR - AXRET —AETAANRE XRE LT ERN
FhEEG TG EM T % (SIUSA), = E3E & E G Lot 45 R v, T4 B B9 SHSA T3 A w9 T 1%
TG ALK %,

Received date: 2022- 07- 12, revised date: 2023- 04- 15 Yrf8 B H8:2022- 07- 12, &8 HH#:2023- 04- 15

Foundation items : Supported by the Foundation of Anhui Province Key Laboratory of Physical Geographic Environment (2022PGE010) ; The Fundamental
Research Funds for the Central Universities, CHD (300102353508) ; the Key Laboratory of Southeast Coast Marine Information Intelligent Perception and
Application, MNR (22101) ; National Natural Science Foundation of China (61801211) ; Natural Science Foundation of Jiangsu Province (BK20221478) ;
Hong Kong Scholars Program (XJ2022043) ; S&T Program of Hebei (21567624H) ; Open Project Program of Key Laboratory of Meteorology and Ecological
Environment of Hebei Province (Z202102YH)

Biography: HANG Ling (1964— ), Female, Liaoning, Professor, Doctor. Research area involves remote sensing information processing

" Corresponding author : E-mail : hanling@chd. edu. cn



41 WANG Peng et al:Sub-pixel mapping based on spectral information of irregular scale areas for hyperspectral images 539

X 8 WH:.EEEG; BRI AP R bR AN K

FE 425 . TP751 X ERARIRAD - A

Introduction

Due to its rich spectral information from hundreds of
bands, hyperspectral images not only have been actively
investigated by remote sensing scholars in recent years,
but also widely utilized in many fields, such as burned-
area mapping, flood inundation mapping, and forest cov-
er monitor'”. However, with the continuous improve-
ment of spectral resolution of hyperspectral images, its
spatial resolution will be affected, resulting in many
mixed pixels™*. Spectral unmixing could handle with
these mixed pixels to obtain the abundance images in-
cluding the proportional values of sub-pixels belonging to
land-cover classes, but the specific spatial distribution
information on land-cover classes still cannot be extract-
ed™. To solve this issue, sub-pixel mapping which is as
the subsequent processing technology of spectral unmix-
ing is proposed. In sub-pixel mapping, each pixel is di-
vided into S* sub-pixels according to factor scale S, land-
cover class labels are then assigned to sub-pixels to ob-
tain the fine land cover-class mapping images at sub-pix-
el scale™.

According to the method of obtaining the sub-pixel
mapping results, there are two main types, the initializa-
tion-then-optimization sub-pixel mapping and soft-then-
hard sub-pixel mapping. In the initialization-then-optimi-
zation sub-pixel mapping, class labels are allocated ran-
domly to sub-pixels, and the location of each sub-pixel is
optimized to obtain the final result®’. The sub-pixel map-
ping methods based on the perimeter minimization, pixel
swapping, and particle swarm optimization all belong to
the initialization-then-optimization  sub-pixel = map-
ping”*". However, this type usually has a long process-
ing time due to the high computational complexity of opti-
mization. On the other hand, the soft-then-hard sub-pix-
el mapping type has simple processing, which makes this
type be more popular than the other sub-pixel mapping
type™”. The soft-then-hard type involves two steps, the
sub-pixel sharpening and the class allocation. Fine frac-
tional images with the land-cover class proportions corre-
sponding to the sub-pixels are first obtained by sub-pixel
sharpening using the methods based on super-resolution
reconstruction, backpropagation neural network, spatial
attraction model, indicator-cokriging, and Hopfield neu-
ral networks """, Then, the class labels are allocated to
all sub-pixels by class allocation according to the propor-
tions. The class allocation methods include the simulated
annealing, the linear optimization, the highest fraction
value, and units of classes'™* ',

Most soft-then-hard sub-pixel mapping methods are
based on the spatial dependence assumption, namely,
the closer the spatial distance is, the more likely the sub-
pixels belong to the same land-cover class'*". Accord-
ing to the spatial dependence assumption, Mertens et al.
obtained the pixel-scale spatial information by using the

spatial attraction model between sub-pixels and pixels,
and the mapping result was derived according to this spa-
tial information™™’. In order to obtain more precise scale
spatial information, Ling et al. proposed a spatial attrac-
tion model between sub-pixels to obtain sub-pixel scale
spatial information, improving the mapping accuracy of
land-cover classes™’. Chen et al. used the image seg-
mentation algorithm to segment the abundance images,
and then calculated the irregular scale areas from the seg-
mentation images to obtain a kind of object-scale spatial
information®. Further, Wang et al. used the random
walk algorithm to consider the spatial dependence among
and within the irregular scale areas at the same time, so
as to obtain the better mapping results”. However, the
current sub-pixel mapping methods usually use the de-
pendence between sub-pixels in the specified rectangular
local window to obtain the spectral information, as shown
in Fig. 1(a), and the number of spectral bands used is
also little. But the distribution area of land-cover class is
irregular in the actual environment, as shown in Fig. 1
(b), and the spectral information in each band is also
different. Therefore, the spectral information in the cur-
rent sub-pixel mapping methods is usually not accurate
enough, affecting the final mapping result.

To solve this issue, sub-pixel mapping based on
spectral information of irregular scale areas (SIISA) for
hyperspectral images is proposed in this paper. The con-
tributions of this work are as follows:

(1) Through establishing the normalized model, the
proposed SIISA considers the spectral information of ir-
regular scale areas and utilizes the spectral information of
all bands, improving the accuracy of mapping results.

(2) The proposed SIISA combines the spectral infor-
mation of irregular scale areas with the spatial informa-
tion of irregular scale areas generated from our previous
work'?' to obtain more accurate spatial-spectral informa-
tion. The spatial-spectral information is closer to the real
distribution of land-cover classes, which improves the
performance of sub-pixel mapping.

(3) The superiority of SIISA over the existing sub-
pixel mapping methods is demonstrated by testing three
remote sensing images.

(a) (b)

Fig. 1 Spatial information in (a) the rectangular local window
and (b) the irregular scale areas
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This paper is organized as follows. Section I intro-
duces the proposed method in detail. Section II shows
the experimental analysis. Section III gives the conclu-
sions.

1 Method

The overall process of SIISA is shown in Fig. 2.
The coarse original hyperspectral image is first upsam-
pled by bicubic interpolation according to factor scale.
The upsampled image is then unmixed and segmented to
obtain the abundance image of each class and the seg-
mentation image, respectively. Next, the random walker
algorithm is used to calculate the proportional values of
sub-pixels belonging to irregular scale areas from the fu-
sion result of the abundance image of each class and seg-
mentation image to obtain the spatial information of irreg-
ular scale areas. In addition, the normalized model is
constructed to calculate the segmentation image to yield
the spectral information of irregular scale areas for all
bands. Finally, according to fusion results of spatial in-
formation and spectral information, class labels are as-
signed to sub-pixels to obtain the mapping result by class
allocation method.

Suppose the coarse original hyperspectral image is
Y. The upsampled image Y is obtained by bicubic inter-
polation. The abundance image from the upsampled im-
age Yis H, (m=1, 2, , M, Mis the number of land-
cover classes) Wlth the proportlonal value Hm( ) of sub-
pixel p, (a=1, , NS?, N is the number of mixed
pixels, NS*is the number of sub-pixels) belonging to the
mthland-cover class. At the same time, the segmentation
result from the upsampled image Y is ¥ with the irregular
scale areas 0, (i=1, 2, ,I, Iis the number of irreg-
ular scale areas) by a segmentation scale parameter V,
where O, contains K, sub-pixels. We integrate the abun-
dance image of each class with the principal component
of segmentation images to obtain the proportional values
of sub-pixels in irregular scale areas. Therefore, the pro-
portion value U,”(Oi) of the irregular scale areas O, be-
longing to the mthland-cover class is obtained by averag-
ing these proportion values Hm(pa) of sub-pixels p, in this

area, as shown in Eq. (1).

z / ()

Next, we will introduce in detail the two modules in-
cluded in the proposed SIISA method, namely the spatial
information module and the spectral information module.
1.1 Spatial information module

In spatial information module, we calculate the pro-
portion value U, (0,) of the irregular scale areas to obtain
the spatial information E** of irregular scale areas by us-
ing the random walk algorithm®’, as shown in Eq. (2).

£ = min 3 (1 - ) Ex(U,) + yE=4(U,). (2)

m=1

where U, = [U,,l(Ol), Um(Oz), cey U,,L(Oi):| is the col-
umn vector and 7y is the empirical weight parameter,
which is set to 0. 5 here. E""(U) represents the internal
spatial information of each irregular scale area, and
E®(U) represents the spatial information between adja-
cent irregular scale areas. They can be calculated by
(3) and (4), respectively.
M
Ey'n(U,) = U'AU, + (U, - 1)'A,(U, - 1),(3)

n=1ln#m

Ex(U,) = U,LU, . (@)

where A, is a diagonal matrix, where the value on the di-
agonal is the proportional value of each irregular scale ar-
ea belonging to the nthland-cover class, and the value on
the diagonal in A, is the proportional value of each irreg-
ular scale area belonging to the mthland-cover class. The
representation of 1 is a vector whose elements are 1. L is
a Laplace matrix which represents the difference between
adjacent areas, as shown in Eq. (5).
> —z,ifj=gq
L=¢-z

., ifjand ¢ are adjacent areas , (5)

0  otherwise

where z;, = exp(=(y; = 7,)*) is the spectral value differ-
ence between the jth irregular scale area O, and the gth ir-
regular scale area O,.
1.2 Spectral information module

In spectral information module, the spectral infor-

mation £ of all bands in the irregular scale areas is ob-

Spatial information module

. Bicubic Spectral
interpolation immlxm g

Original Upsampled ‘
image image |

Spatial information
of irregular scale areas _

Class Mapping
allocation| _result

Scale S

Spatial-
Spectral

Segmentation image

informatio
| / Spectral information
o

f irregular scale areas

Spectral information module

Fig. 2 The flowchart of SIISA
K2 SISA FifEE
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tained by using the previously obtained segmentation im-
age Y. The segmentation image contains / irregular scale
regions 0,, and each O, includes K, sub-pixels. Assum-
ing that the spectrum of sub-pixels in each irregular scale
area follows an approximate normal distribution”™’, a nor-
malized model is constructed to calculate the spectral in-
formation of all bands in irregular scale areas as:

e — s N 1 o xw—x_t-fz
E —mln; KLBEE o , (6)

k=1j=1

where B is the number of spectral bands, and x_” and o ;
is the average value and standard deviation of the spec-
tral reflectance of the irregular scale area O, in the band
J. They are obtained by calculating the spectral reflec-
tance of all sub-pixels in this irregular scale area. «x, ; rep-
resents the spectral reflectance of the kth sub-pixel in the
jth band in the irregular scale area O..
The spatial information E** and spectral information
E™ are then integrated through the weight parameter 8 to
obtain the irregular scale spatial- spectral information £,
as shown in Eq. (7).
E =minBE™ + (1 - B)E™ . (7

Finally, the class allocation based on particle
swarm optimization'™' is used to optimize the objective
function E to obtain the final mapping result. First,
land-cover class labels are randomly assigned to all sub-
pixels. Then, the labels of these sub-pixels are updated
iteratively until the objective function reaches the mini-
mum value. In each iteration, when the label assigned to
a sub-pixel is converted to other labels, if the objective
function value decreases, the conversion will be accept-
ed, and if it increases, the conversion will be rejected.
It is stipulated that when the converted sub-pixel is less
than 0. 1% of the total number, the class allocation termi-
nates, obtaining the final mapping result.

2 Experiment

2.1 Experimental dataset

Three datasets are tested to evaluate the perfor-
mance of the proposed SIISA. According to the general
experimental process of sub-pixel mapping, the original
fine hyperspectral image is downsampled by an S X S
mean filter to obtain the simulated coarse image as in-
put™ . Due to its good robustness, the spectral unmix-
ing method based on support vector machine is used to
obtain the abundance images from the simulated coarse
image'""’. A reference image is yielded by classifying the
fine hyperspectral image. The weight parameter 3 is se-
lected as 0.6, 0.6 and 0. 5 for experiments 1, 2 and 3,
respectively. The segmentation scale parameter V is set
to 10, 10 and 5 for the three datasets, respectively.

In the experiment 1, the performance of the pro-
posed method is tested in the dataset from the multispec-
tral sensor. The tested dataset is acquired over Rome, It-
aly from Landsat 8. As shown in Fig. 3(a), the fine mul-
tispectral dataset is with six bands, 300 x 300 pixels,
and 30-m spatial resolution. Figure 3 (a) is downsam-
pled with S=8 to produce the simulated coarse image

shown in Fig. 3(b). The dataset of experiment 2 is from
the hyperspectral sensor. As shown in Fig. 4(a), the
fine hyperspectral image with 320 X 320 pixels, 103
bands, and 1. 3-m spatial resolution is captured over the
Engineering School at University of Pavia, Italy by reflec-
tive optics system imaging spectrometer (ROSIS). As
shown in Fig. 4(b), the fine hyperspectral is downsam-
pled with S = 8 to produce the simulated coarse image.
In order to verify the performance of the proposed SIISA
in hyperspectral image with larger size, as shown in Fig.
5(a), the fine hyperspectral image with 1500 x 3000 pix-
els, 250 bands, and 0.5-m spatial resolution captured
over Xiong'an New Area, China is tested in experiment
3. The five sub-pixel methods are evaluated by repeating
experiments for three scale factor values (i.e., 10, 15,
and 25). Figure 5(b) shows the simulated coarse image
at S = 10.

The proposed SIISA was compared with four sub-
pixel mapping methods including spatial-spectral interpo-
lation (SSI)"*, pixel and sub-pixel spatial dependence
(PSSD)™ object-scale spatial information (osn! |
and s random walk algorithm (RWA )", The evaluation
indices of mapping results include the mapping accuracy
of each land-cover class, the overall accuracy (OA) ,
and the Kappa coefficient (Kappa). All experiments are
tested by MATLAB 2018a software on a Pentium@®) Dual-
core Processor (2. 20 GHz).

(a) (®)
Fig. 3 Multispectral images covering Rome, Italy, (a) RGB of
multispectral image, (b) coarse image (S=8)
K3 BORHS S 26k KR, (a) 2015 RGB,
(b) HlkE KI5 (S=6)

(b)

Fig. 4 Hyperspectral images covering University of Pavia, Italy,
(a) RGB of hyperspectral image, (b) coarse image (S = 8)

K4 B BORHIA 4R R 1w is RS, (a) motig g
fRGB, (b) HLfE {5 (5=8)

2.2 Results analysis
The results of experiment 1 are shown in Fig. 6.



542 AP/ NS Qb g A 42 3%

Fig. 5 Hyperspectral images covering Xiong'an New Area, Chi-
na, (a) RGB of hyperspectral image, (b) coarse image (S = 10)
s s b e 22 0 DX DGR R, (a) mOLIS BRI
RGB, (b) HlkE &% ($=10)

When compared with the reference image in Fig. 6(a),
it is noted that there are still some artefacts in the four tra-
ditional methods in Figs. 6(b)-(e). For example, there
is a sort of grid in Building in Fig. 6(c), this is because
the PSSD favors the class of the majority of the sub-pixel
neighbors, form aggregated and homogenized patches.
Since the more comprehensive spectral information of the
irregular scale areas is considered in the proposed
SIISA, the SIISA outperforms the other four SPM meth-
ods. Smoother boundaries and more continuous regions
in Fig. 6(f) are achieved and the result of SIISA is clos-
er to the reference image. In addition, the evaluation in-
dicators of the five methods are listed in Table 1. When
comparing with the mapping accuracy of each class in
RWA, the accuracy of Vegetation, Building, and Soil in
the proposed SIISA are increased by about 1.49%,
3.59%, and 1.73%, respectively. The OA (% ) is
78.67% in SIISA, around 2.62% greater than that in
RWA. According to the definition of OA (%), since the
tested region has 300x300 pixels, the correct number of
pixels in SIISA is about 2358 pixels more than that in
RWA. The SIISA can also obtain the highest Kappa of
0. 656 6. The gain in accuracy of the proposed method is
appeared.

The mapping results of experiment 2 are shown in
Figs. 7(b)-(f). Since the spatial information used in
SSI and PSSD is usually constructed according to the as-
sumption in the regular rectangular local window, many
disconnected patches and obvious burrs are observed in
Figs. 7(b)-(c). Due to considering the more accurate
spatial information of the irregular scale areas in OSI,
RWA and SIISA, these phenomena are alleviated in
Figs. 7 (d) - (f). Especially, the proposed SIISA also
considers the spectral information of the irregular scale
areas, the mapping result of the proposed SIISA in Fig. 7
(f) is the closest to the reference image in Fig. 7 (a).
The mapping accuracy of each class, OA (%) and Kap-
pa values for five sub-pixel mapping methods are listed in
Table 2. As shown in Table 2, the proposed SIISA ob-
tains higher values of the three evaluation indices than
the other four methods. For example, compared with the
mapping accuracy of each class in RWA, the accuracy of
Road, Tree, and Grass in the proposed SIISA are im-
proved by about 8.02%, 3.79%, and 1.48%, respec-
tively. In addition, the proposed SIISA has the highest
OA (%) of 85.22%, and Kappa of 0. 8157. When com-
pared by RWA, there is a growth about OA (% ) of
2.03% and Kappa of 0. 018. Since the tested region has
320%320 pixels, growth about OA (%) of 2. 03% means

the correct number of pixels in SIISA is about 2079 pix-
els more than that in RWA. The above indices further
confirm that the proposed SIISA can significantly im-
prove the mapping result.

The mapping results of experiment 3 are presented
in Figs. 8 (b)-(f). To facilitate observation, in Fig. 9,
the salient sub-regions with 4000x4000 pixels marked in
Fig. 8(a) with a white frame are magnified. Compared
with the reference image in Fig. 9(a), there were many
boundaries with burrs in Figs. 9(b) - (e). This was be-
cause these methods lacked the accurate spectral infor-
mation of the irregular scale areas. Nevertheless, the
proposed SIISA could consider not only spatial informa-
tion of the irregular scale areas but also spectral informa-
tion of the irregular scale areas. The boundaries became
smoother, as shown in Fig. 9 (f). Therefore, similar to
the visual comparison results of Experiment 1 and 2, the
proposed SIISA is the closest to the reference image. The
OA (%) and Kappa for three scale values (i. e. , 10,
15, and 25) are shown in Fig. 10, where it can be seen
that the OA (% ) and Kappa of the five methods de-
creased as S increased. This is because a larger value of
S referred to a coarser generated image, which affects the
performance of the five sub-pixel methods significantly.
However, consistent with the experimental results in Ta-
ble 1 and 2, the proposed SIISA achieves the highest OA
(%) and Kappa value in all three cases. Namely, SIISA
shows the best performance for all considered degrees of
coarse images.

2.3 Results discussion

As shown in Eq. (7), the weight parameter B is
used to balance the influence of spatial information
E**and spectral information E* in SIISA. Therefore, we
discuss how to select the weight parameter 8. In addi-
tion, this study also demonstrates the spatial information
and spectral information can improve the mapping re-
sults, respectively. Experiments 2 (S =8) and 3 (S =
10) are repeated to obtain the OA (%) for ten combina-
tions of B in the range of [0, 0.9] at an interval of 0. 1.
As shown in Fig. 11, when 8 =0, there is only spatial
information in the proposed SIISA. As the value of 8 in-
creases, the value of OA (%) also increases due to add-
ing the spectral information to the SIISA, and the more
accurate spectral properties are utilized to improve the
mapping result. It is noted that when the value of OA
(% ) achieves the highest value, the most appropriate
value of B in experiments 1 and 2 is 0. 6 and 0. 5, respec-
tively.

In addition, the segmentation is an important step to
obtain the irregular scale areas in the proposed SIISA.
The segmentation scale parameter V mainly decides the
quality of the irregular scale areas. Hence, the optimal
selection of the segmentation scale parameter V is neces-
sary to analyze. Ten segmentation scale parameters
(from 5 to 50 with an interval of 5) are applied to experi-
ments 2 (S =8) and 3 (S =10). Figure 12 presents the
experimental results, and it can be observed that the best
segmentation scale parameters of experiments 2 and 3 are
10 and 5, respectively, when the OA (% ) achieves the
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[ Vegetation [ Building Ml Soil

Fig. 6 Mapping results, (a) reference image, (b) SSI, (¢)
PSSD, (d) OSI, (e) RWA, (f) SIISA

Klo QLA (a) 2% E R, (b) SSI, (c) PSSD, (d) OSI,
(e) RWA, (f) SIISA

Table 1 Accuracy evaluation of the five methods

®1 EFAENBEIEN

Class SSI PSSD 0SI RWA SIISA
Vegetation (%) 66.99  69.28 71.20 73.39  74.88
Building (%) 76.06  74.27 78.26 80.72  84.31
Soil (%) 61.66 64.45 67.44 69.64  71.37
0A (%) 70.10  71.45 73.73 76.05 78.67
Kappa 0.5250 0.5455 0.5830 0.6225 0.6566

= Shadow mm Water mm Road mm Tree m= Grass ~ Roof

Fig. 7 Mapping results, (a) reference image, (b) SSI, (c)
PSSD, (d) OSI, (e) RWA, (f) SIISA

B7 mpigsR, (a) 2% E1%, (b) SSI, (¢) PSSD, (d) OSI,
(e) RWA, (f) SIISA

greatest value.
3 Conclusion

In this paper, we propose the SIISA method which
establishes a normalized model to extract the spectral in-
formation of the irregular scale areas and utilizes the
spectral information of all bands, improving the sub-pix-
el mapping result. The experimental results on three re-
mote sensing images show that the proposed method has

Table 2 Accuracy evaluation of the five methods

x2 AMAEMBETH

Class SSI PSSD 0sI RWA  SIISA
Shadow (%) 49.23  55.56  57.44  60.29  61.94
Water (%) 96.85  96.68  97.01  97.28  97.77
Road (%) 64.99  62.08  68.64  70.37  78.39
Tree (%) 75.11  75.96  78.70  80.25  84.04
Grass (%) 71.00  74.33  75.49  78.39  79.87
Rooftop (%) 76.32  78.87  80.59  83.06  83.62
0A (%) 77.94  78.88  81.15  83.19  85.22
Kappa 0.7265 0.7387 0.7659 0.7977 0.8157

117 Il

11. Rice stubble
12. Robinia pseudoacacia

=== |. Background
=== ). Acer multiflorus

== 3 Willow 13. Corn
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== 5 Rice 15. Soybean
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=== 7. White wax

=== 8. Goldenrain tree
= 0. Water

=== 10. Lotus leaf

16. Vegetable field
17. Grassland

18. Peach tree
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LETnLnnnl

Fig. 8 Mapping results, (a) reference image, (b) SSI, (c)
PSSD, (d) OSI, (e) RWA, (f) SIISA

K8 EALR, (a) 2% ER, (b) SSI, (¢) PSSD, (d) OSI,
(e) RWA, (f) SIISA

the better performance than the existing sub-pixel map-
ping methods. In terms of visual comparison, the land-
cover class mapping results obtained by the proposed
SIISA method have more continuous regions and smooth-
er boundary. In terms of quantitative comparison, for
Rome dataset, the accuracy of Road, Tree, and Grass in
the proposed SIISA achieves the highest values, achiev-
ing 74.88%, 84.31% and 71.37%, respectively. For
University of Pavia dataset, the proposed SIISA method
produces the highest OA (% ) and Kappa, achieving
85.22% and 0. 8157. For Xiong’an New Area dataset,
the proposed SIISA method can still obtain the best evalu-
ation indices under the three scales.

Because the main contributions of this paper are to
propose more accurate spectral information of the irregu-
lar scale areas, from the perspective of the universality of
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Fig. 9 Salient region, (a) reference image, (b) SSI, (¢) PSSD,
(d) 0SI, (¢) RWA, and (f) SIISA

Fo WEXI, (a) Z2FREZ, (b) SSI, (c) PSSD, (d) OSI,
(e) RWA, (f) SIISA
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Fig. 10 Values of (a) OA (%) and (b) Kappa obtained using
the five different sub-pixel methods under different values of S
10 EARTE A SIE T A TFP AN 6] 19 AR 0T 5 6 3145 1
(a) OA (%) #1 (b) KappafH

the algorithm, this useful spectral information can also
be applied to improve other remote sensing image pro-
cessing technologies, such as remote sensing image clas-
sification, target recognition and change detection. In
addition, experiments with different types of sensors also
prove that the proposed method is generally applicable to
a variety of types of multispectral images and hyperspec-
tral images. The appropriate parameter 6 is selected by
multiple tests in this paper. Therefore, an adaptive meth-
od for selecting 6 is worth studying in future work.
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