文章编号:1001-9014(2022)05-0804-06

截止波长2.2 μm的平面型延伸波长InGaAs探测器

程吉凤^{1,2,3}, 李 雪^{1,2*}, 邵秀梅^{1,2}, 李 淘^{1,2}, 王红真^{1,2,3}, 马英杰^{1,2}, 杨 波^{1,2}, 龚海梅^{1,2*}

(1. 中国科学院上海技术物理研究所 传感技术国家重点实验室,上海 200083;

2. 中国科学院红外成像材料与器件重点实验室,上海 200083;

3. 中国科学院大学,北京 100049)

摘要:采用闭管扩散的方法成功研制了截止波长2.2 µm的平面型延伸波长InGaAs探测器芯片。在分子束外延法(MBE)生长的In_{0.75}Al_{0.25}As/In_{0.75}Ca_{0.25}As/In_{0.75}Ca_{0.25}As/In_{0.75}Al_{0.25}As外延材料上,采用砷化锌作为扩散掺杂源、SiN_x作为扩散掩膜层,实现了扩散成结。分析了扩散结深和载流子侧向收集宽度、*I-V*特性、光谱响应特性和探测率,结果表明:150 K 温度下,器件暗电流密度0.69 nA/cm²@-10 mV,响应截止波长和峰值波长分别为2.12 µm 和 1.97 µm,峰值响应率为1.29 A/W,峰值量子效率达82%,峰值探测率为1.01×10¹² cmHz^{1/2}/W。这些结果对后续进一步优化平面型延伸波 长 InGaAs 焦平面探测器有重要的指导意义。

关 键 词:延伸波长; InAlAs/InGaAs; 扩散; 暗电流密度; 量子效率 中图分类号: TN215 **文献标识码**: A

Planar wavelength-extended In_{0.75}Ga_{0.25}As detector with 2.2-µm cutoff wavelength

CHENG Ji-Feng^{1,2,3}, LI Xue^{1,2*}, SHAO Xiu-Mei^{1,2}, LI Tao^{1,2}, WANG Hong-Zhen^{1,2,3}, MA Ying-Jie^{1,2}, YANG Bo^{1,2}, GONG Hai-Mei^{1,2*}

(1. State Key Laboratories of Transducer Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;

2. Key Laboratory of Infrared Imaging Materials and Detectors, Chinese Academy of Sciences, Shanghai 200083, China;

3. University of the Chinese Academy of Sciences, Beijing 100049, China)

Abstract: Planar-type 2. 2 μ m wavelength-extended InGaAs photodetectors (PDs) using the sealed-ampoule diffusion method was reported. The zinc arsenide powder was used as the dopant source, which was driven into the cap of the In_{0.75}Al_{0.25}As/In_{0.75}Ga_{0.25}As/In_{0.75}Ga_{0.25}As/In_{0.75}Al_{0.25}As hetero structure materials grown by molecular beam epitaxy (MBE), using a SiN_x as diffusion mask deposited by ICP-CVD. The junction depth, the lateral collection width of photogenerated carriers, the I-V characteristics, the spectral response and the detectivity of the detector at different temperatures were analyzed. The results indicate that the PD exhibits a low dark current density of 0. 69×10⁻⁹ A/cm² at -10 mV at 150 K. The cutoff wavelength and peak wavelength were 2. 12 µm and 1. 97 µm. The peak detectivity, peak responsivity and quantum efficiency was 1. 01×10¹² cm·Hz^{1/2}/W, 1. 29 A/W and 82% respectively. These results suggest that the planar-type InGaAs can reach high performance.

Key words: wavelength-extended, InAlAs/InGaAs, diffusion, dark current density, quantum efficiency

收稿日期:2022-02-15,修回日期:2022-03-30 Received date:2022-02-15,revised date:2022-03-30

基金项目:上海市优秀学术/技术带头人计划资助(21XD1404200);中国科学院重点部署项目(ZDRW-CN-2019-3);中国科学院联合基金 (6141A01170106);上海市级科技重大专项(2019SHZDZX01);国家自然科学基金(62075229),国家自然科学基金(62175250).

Foundation items: Supported by the Program of Shanghai Academic/Technology Research Leader under Grant (21XD1404200), Key deployment projects of the Chinese Academy of Sciences(ZDRW-CN-2019-3), Joint fund of Chinese Academy of Sciences(6141A01170106), the Shanghai Municipal Science and Technology Major Project(2019SHZDZX01) and the National Natural Science Foundation of China(62075229,62175250)

作者简介(Biography):程吉凤(1981-),女,河南固始人,高级工程师,博士学位,主要研究领域为短波红外探测器.Email:chengjf@mail.sitp.ac.cn. *通讯作者(Corresponding authors): e-mail:hmgong@mail.sitp.ac.cn; lixue@mail.sitp.ac.cn

引言

常规的短波红外(SWIR)InGaAs 探测器在室温 下的响应波长范围为0.9~1.7 μm,具有材料生长 工艺成熟、功耗低、响应率高等优点,在遥感、夜视、 天文等多个应用领域都引起了越来越多的研究兴 趣[1-2]。同时,地球观测、多光谱和高光谱成像等应 用领域,需要具有1.0~2.5 µm 光谱响应的短波红 外探测器,例如1.9~2.5 µm 波段应用于资源卫星 中高分辨率多光谱成像,可实现农作物水分探测[3]; 2.26~2.38 µm 近红外光谱包含 CH4、CO、H,O 和 N₂O的吸收线,用于ENVISAT卫星的对地观测;欧 空局的 EarthCARE 有效载荷集成了截止波长 1.7 μm、2.2 μm 和 2.5 μm 波段的 InGaAs 探测器,用于 对云层、气溶胶和大气辐射的观测[4-5],这些涉及国 计民生的重要应用都是推动响应波长范围1.0~ 2.5 µm的延伸波长 In₂Ga_{1-x}As(0.53<x<0.83) 探测器 持续发展的主要动力。

Ⅲ-V族化合物 In_xGa_{1-x}As(0.53<x<1)是赝二 元系直接带隙半导体材料,可通过 In_xGa_{1-x}As化合物 中 In组分在0.53~0.83之间的逐渐增加,实现截止 波长从1.7 μm至2.6 μm的延伸。高铟含量的 In_x-Ga_{1-x}As通常使用金属有机化学气相沉积(MOCVD) 或分子束外延(MBE)等技术在 InP 或 GaAs 衬底上 生长^[6]。

根据成结方式的不同, InGaAs 探测器可分为台 面型器件和平面型器件。台面型器件因 PN 结截面 裸露在外,对器件钝化工艺提出很高要求;平面型 器件的PN结处在材料内部,降低了器件钝化难度, 因此器件暗电流低、可靠性高,且器件占空比接近 100%,被常规波长的 InGaAs 探测器广泛采用。相 比于常规波长的InGaAs材料,高In组分的In_xGa_{1-x}As (0.53<x<1)外延层同衬底之间存在较大的晶格失 配,材料内部存在较多的位错、缺陷,杂质元素可能 会沿缺陷快速扩散,扩散机制更为复杂,结深较难 精确控制,因而延伸波长平面型器件的研制面临更 大困难。目前,国外延伸波长的In_xGa_{1-x}As平面型结 构探测器已经较为成熟:Epitaxx公司、UTC 航空航 天系统公司、Sensor Unlimited公司等报道了不同截 止波长的平面型线列和面阵延伸波长 In,Ga1-,As 探 测器[7~9],规模范围为256×1、512×1、1024×1至320× 256, 像素中心距为 25 μm 到 12.5 μm。普林斯顿红 外技术公司(Princeton Infrared Technologies)最近也 展示了一款平面型中心距12 µm的百万像素

 $In_{0.66}Ga_{0.34}As/InAs_{0.25}P_{0.75}$ 焦平面^[10]。国内延伸波长 $In_{s}Ga_{1-s}As$ 平面型探测器的研究仍处于探索阶段。

本文采用闭管扩散技术,在MBE技术生长的 NIN结构的高In组分InGaAs外延材料上制备了平 面型延伸波长InGaAs探测器,展示了通过扩散成结 法精确控制延伸波长器件的可行性,采用扫描电容 显微技术(Scanning Capacitance Microscopy, SCM) 表征了扩散结深,通过激光诱导电流技术(Light Beam Induced Current, LBIC)研究了载流子的侧向 收集宽度。并对探测器变温条件下的暗电流特性、 光谱特性以及探测率的温度响应特性进行了研究, 为延伸波长InGaAs器件的新工艺途径提供参考。

1 器件制备

采用分子束外延法生长的 NIN 型 $In_{0.75}Al_{0.25}As/In_{0.75}Ga_{0.25}As$ 外延材料,在厚度 350 µm 的 InP 衬底上 依次生长了 n⁺ In_xAl_{1-x}As 线性渐变缓冲层(x: 0.52→ 0.74,Si 掺杂浓度为 2.5×10¹⁸ cm⁻³) $n^{-1}In_{0.75}Ga_{0.25}As$ 吸 收层(Si 掺杂浓度约 3×10¹⁶ cm⁻³) $n^{-1}In_{0.75}Al_{0.25}As$ 帽层 (Si 掺杂浓度约 3×10¹⁶ cm⁻³),材料结构和器件结构示 意图如图 1 所示。

图1 平面型InGaAs器件的剖面示意图

Fig. 1 The cross section scheme of planar type InGaAs detector

采用氮化硅作扩散掩膜、Zn,As₂粉末作为掺杂 元素进行扩散掺杂,扩散条件为:500℃、10 min;继 而进行450℃、10 min 热激活处理;接着,采用 ICP 刻 蚀 N 槽,生长 SiN_x钝化膜,开P、N孔,生长P、N 接触 电极。最终制备了7×1 元测试结构器件,如图2所 示。样品制备完成后,测试其变温 I-V 特性。

2 实验结果及讨论

2.1 扩散结果分析

PN结的结深是影响器件性能的关键参数,理想

表1	7×1	兀线:	列当	吉构谷	·光钡フ	亡六	.寸		
Table	1	Size	of	each	pixel	of	7×1	linear	arrays

	1	2	3	4	5	6	7
光敏元尺寸/µm²	30×30	50×50	100×100	120×120	150×150	200×200	500×500

图 2 7×1元线列器件照片

Fig. 2 The microscopic picture of 7×1 linear arrays

的 PN 结为掺杂后的 In_{0.75}Al_{0.25}As 帽层 P型区界面顶 端刚好到达 In_{0.75}Ga_{0.25}As 吸收层。扫描电容显微技 术(SCM)是获得 p-n 结电学分布的重要微观表征手 段,扫描图像的获得主要依赖材料表面载流子的耗 尽和积累,非本征材料中的载流子主要来源于激活 的掺杂元素,通过 SCM测试可以获得外延层的厚度 和 p-n 结深度^[11-14]。In_{0.75}Al_{0.25}As/In_{0.75}Ga_{0.25}As 异质结 构扩散后的横截面 SCM测试结果如图 3 所示,由图 可以明显看出,样品由四层材料组成,从左到右分 别为:扩散形成的 p型 InAlAs 帽层、轻 n⁻掺杂的 In-GaAs 层、重 n⁺掺杂的渐变缓冲层及衬底 InP 层。可 以观察到:500 °C,10 min 闭管扩散后,Zn 元素均匀 地扩散进入帽层并抵达 InGaAs 吸收层界面处,且 SCM 图像中显示的帽层厚度与材料生长设计的帽 层厚度一致。由 SCM测得 p-n结深度为1.09 μm。

图 3 SCM 测得外延层的 p-n 结深 Fig. 3 P-n junction depth of epitaxial layer by SCM

在光敏元扩散孔尺寸确定的情况下,造成平面 型器件光敏元扩大的原因有两个:扩散成结过程中 的掺杂元素的横向扩散和PN结对结区外围载流子 侧向收集作用^[15]。其中,扩散中PN结的横向扩散 一般是一个小量;影响平面型器件有效光敏元扩大 的主要因素来自PN结对结区外围载流子的侧向收 集。为了观察侧向收集区域对光敏元扩大的影响, 采用激光诱导电流(LBIC)技术测试了载流子的侧 向收集宽度。100×100 μm²光敏芯片的LBIC信号分 布如图4(a)所示,光敏区外存在显示误差,可通过 LBIC 信号电流校正测试结果。图4(b)所示为扫描 图提取的横向LBIC响应信号曲线,取电流信号下降 至最大值的1/e时的宽度计算得到器件在150 K下 的侧向收集宽度为3.8 µm。对于平面型面阵器件, 侧向收集效应一方面有利于器件占空比的提高,另 一方面可能会使相邻光敏元之间信号收集产生串 扰。为了获得最大化的占空比同时减小信号串扰, 在光敏元中心距确定的情况下,光敏元扩散孔之间 的设计距离应考虑到载流子的侧向收集宽度。侧 向收集宽度的表征为光敏元扩散孔尺寸设计和器 件结构的优化提供参考,对提高器件占空比和串音 抑制有重要意义。

图 4 150 K条件下 100×100 μm²光敏芯片的 (a) LBIC 扫描 图, (b) 横向 LBIC 响应信号曲线

Fig. 4 (a) LBIC mapping and (b) the lateral LBIC signal of the $100 \times 100 \ \mu m^2$ detector at 150 K

2.2 暗电流特性

暗电流的温度依赖性是探测器的一个关键参数,通过Agilent B1500A半导体器件分析仪进行了 探测器变温下的暗电流的测量。在测试中,将器件 密封在杜瓦中,采用液氮致冷,并用Laker Shore 控 温仪进行温度控制。图5为In_{0.75}Ga_{0.25}As器件7×1线 列中30×30 μm光敏元在150~300 K范围的暗电流 密度特性曲线。在-10 mV偏压下,器件300 K和 150 K 暗电流密度分别为 1. 1×10⁻⁴ A/cm² 和 0. 69× 10⁻⁹ A/cm²,相应的优值因子 *R*₀A 分别为 99. 8 Ω·cm² 和 1. 94×10⁷ Ω·cm²,暗电流密度随着温度每 25 ~ 30 ℃下降一个数量级。

为了分析暗电流和温度之间的关系,在不同反向偏置电压下绘制了Arrhenius图,如图6所示,器件的暗电流与温度的变化关系可以表示为:

$$I = I_0 \exp(-\frac{E_a}{kT}) \qquad , \quad (1)$$

式中: I_0 为反向饱和电流;k为Boltzman常数, E_a 称为 激活能。通过不同斜率的线性相关性,使用式(1) 拟合计算激活能。在整个温度范围(150~300 K) 内,探测器的暗电流有两个不同的斜率,在260~ 300 K的温度范围内,以-10 mV偏压条件作为典型 曲线,提取的 E_a 为0.50 eV,这与 $In_{0.75}Ga_{0.25}As$ 的相应 带隙(E_a)非常接近^[16],说明平面型器件PN结侧面的 漏电流已得到有效抑制,并实现了扩散电流占主导 的状态;在150~240 K的温度范围内,提取的 E_a 为 0.259 eV,激活能接近于 $In_{0.75}Ga_{0.25}As$ 的 E_a /2,说明在 该温度范围内,产生复合电流仍为暗电流的主要成 分。另外,暗电流随温度变化受偏压影响很小,说 明平面型器件PN结侧面漏电非常低。

图5 变温I-V特性曲线

Fig. 5 Dark current density curves ranging from 150 K to 300 K for the detector

图 7 为线列器件 180 K下 P/A 比与暗电流密度 关系曲线,曲线斜率为反向,且不同偏压下表现一 致,说明器件侧面漏电低,暗电流主要来自于体电 流。由于所用材料缺陷密度较大,7×1 元线列中面 积较大的光敏元缺陷多,相应体漏电大;面积较小 的光敏元缺陷少甚至没有落入缺陷,相应体漏电 低,因此 P/A 比与器件暗电流密度曲线斜率呈反向

图6 反向 I-V 的温度响应特性

Fig. 6 Temperature-dependent reversed I-V characteristics

图 7 7×1线列器件 180 K下 P/A 比与暗电流密度关系曲线 Fig. 7 Relationship of P/A and Current density at 180 K for the 7×1 linear arrays

2.3 响应光谱特性

实测的响应光谱随温度的变化曲线如图 8 所示,随着温度的降低,器件的截止波长向短波方向移动。在150 K和300 K温度下,峰值响应50%的长波截止波长分别为2.12 μm和2.27 μm。对于 In_x. Ga_{1-x}As 三元体系,禁带宽度随温度及组分的变化可以表示为^[17]:

$$E_{g}(x,T) = E_{g}^{lnAs}(0) - \frac{\alpha^{lnAs}(0)T^{2}}{T + \beta^{lnAs}} + \left[E_{g}^{GaAs}(0) - \frac{\alpha^{GaAs}T^{2}}{T + \beta^{GaAs}} - E_{g}^{lnAs}(0) + \frac{\alpha^{lnAs}T^{2}}{T + \beta^{lnAs}}\right]x - 0.475x(1 - x) , \quad (2)$$

式中: $E_g^{InAs}(0)$ 、 $E_g^{GaAs}(0)$ 分别表示 0 K时 InAs 和 GaAs 的禁带宽度, $E_g^{InAs}(0)=0.35$ eV; $E_g^{GaAs}(0)=1.43$ eV; $\alpha^{InAs}=2.7\times10^{-4}$ eV/K; $\alpha^{GaAs}=5.1\times10^{-4}$ eV/K; $\beta^{InAs}=83$ $K;\beta^{InAs} = 190 K_{\circ}$

由上式计算得, x=0.75时, T=150K和300K条 件下 $In_{0.75}Ga_{0.25}As$ 禁带宽度 E_{g} 分别为0.58 eV、0.53 eV, 对应的截止波长 λ_{c} 分别为2.13 μ m、2.32 μ m; 实测截止波长如表2所示, 可见低温条件下实测值 与理论计算值基本吻合。

图 8 器件响应光谱及其温度特性

Fig. 8 Spectrum response of detectors versus temperature

表2 不同温度下的峰值波长和峰值响应率、量子效率

Table 2The measured peak wavelength, peak responsivitysivity and quantum efficiency at differenttemperatures

温度 /K	截止波 长/μm	峰值波 长/μm	G	峰值响应 率 A/W	量子效 率%
130	2.10	1.95	22	1.27	81
150	2.12	1.97	21	1.29	82
170	2.14	1.98	20	1.30	82
190	2.16	1.98	19	1.31	83
210	2.18	1.99	18	1.32	83
230	2.20	2.00	17	1.34	84
250	2.22	2.01	16	1.35	84
270	2.24	2.02	15	1.35	83
290	2.26	2.03	14	1.36	84
300	2.27	2.03	13	1.30	80

2.4 探测率分析

采用黑体作为辐射光源,将所研制的线列探测 器密封在真空杜瓦中,对线列中的500×500 μm²光 敏元进行了信号测试,并将杜瓦置于屏蔽盒中进行 噪声测试,信号测试条件:黑体温度900 K,黑体孔 径8 mm,固定测试距离23.0 cm,测试环境温度300 K,测试频率带宽80 Hz。采用以下公式计算了探 测率:

$$P = \frac{\sigma(T_2^4 - T_1^4)}{2\sqrt{2}\pi L^2} \times \frac{\pi d^2}{4} \times A_D \qquad , \quad (3)$$

$$D_{bb}^* = \frac{V_s}{P} \sqrt{A_D \Delta f} \qquad , \quad (4)$$

$$D_{\lambda_{c}}^{*} = G \times D_{bb}^{*} = G \times \frac{V_{s}}{P} \sqrt{A_{D}\Delta f} \quad . \quad (5)$$

式(3)中:P代表黑体辐射功率,L为黑体辐射孔 和探测器距离, σ 为斯忒潘常数, T_i 为黑体温度, T_2 为调制盘温度(一般是室温),d为黑体出射孔直径, A_p 为光敏区面积。

式(4)中, V_s 为信号电压, V_N 为噪声电压, Δf 为带宽;

式(5)中,G为G因子^[18],取值如表2所示。

探测器在不同温度下的信号与噪声测试结果如图9所示,测试结果表明:信号随温度的升高呈单调变大,而噪声先是缓慢增加,当温度高于230K后呈非线性增大,峰值探测率在150K达到1.02×10¹² cm·Hz^{1/2}/W,峰值响应率1.29 A/W,量子效率82%。

Fig. 9 Signal and noise versus temperature

3 结论

研制了平面型延伸波长的测试结构短波红外 InGaAs探测器,测试并分析了探测器在不同温度下 的光电性能。在260~300 K的温度范围内,提取的 *E*_a为0.50 eV,这与 In_{0.75}Ga_{0.25}As 的相应带隙(*E*_g)非 常接近,说明平面型器件 PN 结侧面漏电流已得到 有效抑制,实现了扩散电流占主导的状态;随着温 度的降低,器件逐渐变为以产生复合电流主导的状态。150 K下器件响应截止波长为2.12 μm,峰值探 测率为1.01×10¹² cm·Hz¹²/W,峰值响应率为1.29 A/ W,量子效率为82%,并显示出良好的暗电流性能。 后续进一步优化材料生长参数,降低缺陷密度,预 期器件性能将进一步提高,并在2.2μm大面阵焦平 面器件研制中推广应用。

References

- [1] M D Michael, H Andrew, G Jon, et al. InGaAs focal plane arrays for low light level SWIR imaging [J]. Proc. SPIE, 2011, 8012:801221-1-801221-10.
- [2] J Battaglia, M Blessinger, M Enriquez, et al. An uncooled 1280×1024 InGaAs focal plane array for small platform, shortwave infrared imaging [J]. Proc. SPIE, 2009, 7298: 72983C-1-72983C-8.
- [3] ZHU Yao-Ming, LI Yong-Fu, LI Xue, et al. Extended-wavelength 640×1 linear InGaAs detector arrays using N-on-P configuration for back illumination[J]. J. Infrared Millim. Waves, 2012, 31(1):11-15.(朱耀明,李永富,李雪,等. 基于 N-on-P 结构的背照射延伸波长 640×1 线列 In-GaAs 探测器[J]. 红外与毫米波学报), 2012, 31(1):11-15.
- [4] A M S Gloudemans, H Schrijver, Q Kleipool, et al. The impact of SCIAMACHY near-infrared instrument calibration on CH₄ and CO total columns [J]. Atmos. Chem. Phys., 2005, 5:2369 - 2383.
- [5] G Hopkinson, L G Rojasa, M Skipper, et al. Testing of In-GaAs, microbolometer and pyroelectric detectors in support of the Earth CARE mission [J]. Proc. SPIE, 2020, 7106: 710610-1-710610-12.
- [6] Yong Gang Zhang, Yi Gu, Kai Wang, et al. Properties of gas source molecular beam epitaxy grown wavelength extended InGaAs photodetector structures on a linear graded InAlAs buffer[J]. Semicond. Sci. Technol., 2008, 23(12): 125029.
- [7] Olsen G, Joshi A, Mason S, et al. Room-Temperature In-GaAs Detector Arrays For2.5 Â μm[J]. Proc. SPIE, 1990, 1157:276-282.
- [8] P Mushini, W Huang, M Morales, et al. 2D SWIR Image sensor with extended wavelength cutoff of 2.5 μm on InP/In-GaAs epitaxial wafers with graded buffer layers [J]. Proc. SPIE, 2016, 9819:98190D-1-98190D-9.
- [9] Gregory H Olsen, Michael J Lange. Three-band 1.0-2.5 µm near-infrared InGaAs detector array [J]. Proc. SPIE,

1994, **2225**:151-159.

- [10] Martin H Ettenberg, Hai Nguyen, Christopher R Martin. High Resolution 1.3 Megapixel Extended Wavelength In-GaAs [J]. Proc. SPIE, 2018, 10624: 1062404-1-1062404-7.
- [11] Kazuhiko Itaya, Mark J Mondry, Philip D Floyd, et al. Impurity-Induced Disordering of AlGalnAs Quantum Wells by Low Temperature Zn Diffusion [J]. Journal of Electronic Materials, 1996, 25(4): 565 - 569.
- [12] Wintner E, Ippen E P, et al. Nonlinear carrier dynamics in $Ga_xIn_{1-x}As_yP_{1-y}$ compounds [J]. Applied Physics Letters, 1984, 44(10):999-1001.
- [13] Wichman A R, Dewames R E, Bellotti E. Three-dimensional numerical simulation of planar P⁺n heterojunction In_{0.53}Ga_{0.47}As photodiodes in dense arrays part I: dark current dependence on device geometry [J]. Proc. of SPIE, 2015, 90700:907003-1-907003-21.
- [14] DENG Hong-Hai. Study on high-performance planar In-GaAs short wavelength infrared detector[D]. University of Chinese Academy of Sciences, 2013, pp26.(邓洪海.高 性能平面型 InGaAs 短波红外探测器研究[D]. 中国科 学院大学,2013,pp26.)
- [15] DENG Hong-Hai, TANG Heng-Jing, Li Tao, et al. The temperature-dependent photoresponse uniformity of In-GaAs sub-pixels infrared detector by LBIC technique [J]. Semiconductor Science and Technoloy, 2012, 27 (115018):1-5.
- [16] Goetz K H, Bimberg D, Jurgensen H, et al. Optical and crystallographic properties and impurity incorporation of Ga_xIn_{1-x} (0.44<x<0.49) grown by liquid phase epitaxy [J]. J. Appl. Phys., 1983, 54(8):4543-4552.
- [17] Sjal P, Roy J B, Basu P K. Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in Ga_xIn_{1-x}As[J]. *Journal* of Applied Physics, 1990, 69(2): 827–829.
- [18] Kang Rong, LI Li-Hua, PENG Man-Ze, *et al.* How to Determine the Peak Detectivity from Measuring Blackbody Detectivity—the Calculation of Factor G[J]. Infrared technology, 2005, 27(3):263-265.(康容,李立华,彭曼泽, 等. 由黑体 D_{bb}*确定峰值 D_λ*以及黑体波段 D^{*}_{Δλ}—G 因 子的计算[J]. 红外技术),2005,27(3):263-265.