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Abstract: Hazy weather degrades the contrast and visual quality of infrared imaging systems due to the presence
of suspended particles. Most existing dehazing methods focus on enhancing global contrast or exploit a local grid
transmission estimation strategy on images, which may lead to loss of information, halo artifacts and distortion in
sky region. To address these problems, a novel single image dehazing model based on superpixel structure decom-
position and information integrity protection is proposed. In this model, based on the local structure information,
the image is first adaptively divided into multiple objective regions using a hierarchical superpixel algorithm to
eliminate halo artifacts. Meanwhile, to avoid the error estimate caused by the local highlighted targets, a modi-
fied quadtree subdivision based on superpixel blocks is applied to obtain the global atmospheric light. Further-
more, a combined constraint is used to optimize the transmission map by minimizing the loss of information.
Compared with state-of-the-art methods in terms of qualitative and quantitative analysis, experiments on real-
world hazy infrared images demonstrate the efficacy of the proposed method in both contrast and visibility.

Key words: infrared image dehazing, physical model restoration, superpixels segmentation, combined
constraint, enhance visibility
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Introduction

Owing to the effect of reflection and scattering of
light by suspension particles, fog and haze are common
atmospheric conditions that reduce the perception of the
imaging system and result in low contrast, local blur,
and narrow dynamic range of the imaging system ">, In
the field of surveillance, infrared (IR) systems with bet-
ter penetration have more advantages over visible light
systems, but are also affected by haze. Continuous haze
increases the difficulty of observation and identification,
and seriously affects the reliability and environmental
adaptability of imaging systems . With the develop-
ment of computer technology, image dehazing algorithms
have received significant attention.

Image haze removal is a challenging problem be-
cause the degree of image degradation is affected by the
concentration of suspended particles and the distance
from target to detector, both of which are difficult to be
obtained directly from the images *'. In recent years, re-
searchers have proposed a variety of dehazing methods,
which can be divided into two main categories: multiple
information fusion, and single-frame image process-
ing”. The first category requires additional information
to assist with image restoration. Schechner ef al. estimat-
ed the degree of polarization and atmospheric light from
two polarized images taken at orthogonal polarization an-
gles'® , and then calculated the physical model parame-
ters. Narasimhan et al. obtained the depth structure by
analyzing the changes in the intensities of more than two
images under various weather conditions . Owing to the
stronger near-IR transmittance, Kudo et al. fused IR im-
age with visible image in the same scene to remove haze
from visible images, but it was not effective for thick fog
1 The application of these methods is limited because
of the additional hardware and complex operations. Re-
cently, mainstream schemes based on single-image resto-
ration have two development directions: image enhance-
ment, and image reconstruction.

Image enhancement methods optimize visual quality
by adjusting image contrast through digital image process-
ing techniques without considering the physical factors of
image degradation. Xu et al. applied contrast limited
adaptive histogram equalization (CLAHE) to enhance the
contrast of foggy images . Direct manipulation of the his-
togram can easily be over-enhanced and thus reduce im-
age authenticity. Multi-scale retinex (MSR) theory is an
effective method in the field of image dehazing, but the in-
cident component is estimated by Gaussian convolution,
which leads to halo artifacts around the edges'”. Filtering
approaches, such as homomorphic filters"" and high-
boost filters'™ , can enhance the edge information and
achieve better real-time performance. Bo et al. recon-
structed foggy images using wavelet decomposition and
guided filtering . Such methods are simple and fast,
but often tend to fail when the scene changes dramatical-
ly. Moreover, the processing of details is non-ideal.

In the field of image restoration, atmospheric scat-
tering model is the theoretical basic for reconstruction,
and its optimum parameters are estimated by increasing

the priori information. The dark channel prior (DCP)is a
classical and effective method proposed by He et al. "',
but halo artifacts and block effects are introduced into the
reconstructed images. Tan et al. "' and Ancuti et al.
proposed improved algorithms based on the DCP to revise
the transmission map. Tan utilized Markov random fields
to avoid underestimating the transmission, while Ancuti
fused multi-scale image patches to refine the reconstruc-
tion process in which local information is fully used. The
color attenuation prior proposed by Zhu et al. "'*, the de-
tail prior proposed by Li et al. """, and gradient channel
prior proposed by Singh et al. were also applied to es-
timate the thickness of the haze. Compared with DCP,
these methods have better performance, but fail to com-
pletely eliminate halo artifacts and deal with highlighted
regions.

[18]

(®)

Fig. 1 Sample result of our proposed method, (a) original real
hazy infrared image, (b) reconstructed image obtained by our
technique
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Currently, the vast majority of image dehazing algo-
rithms are targeted at multispectral color images and un-
derwater images, and IR images only provide additional
auxiliary information for dehazing. Haze weather also af-
fects the visual quality and subsequent processing of IR
imaging systems, as shown in Fig. 1(a), but there is lit-
tle reference to deal with the degradation of IR images.
The process of single-wave IR image dehazing is more dif-
ficult due to noise and less information. In this paper,
we propose a novel IR image dehazing method based on
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physical model that utilizes superpixel segmentation and
upper-lower boundary constraints to avoid halo artifacts
and distortions in the sky region. The resulting technique
achieves excellent reconstruction and better visual recov-
ery, as shown in Fig. 1(b). The main contributions of
our article can be summarized as following aspects :

® lLocal grid windows are replaced by superpixels
to eliminate halo artifacts. To produce content-sensitive
superpixels, a hierarchical subdivision superpixel-split-
ting algorithm is proposed, that texture information is
added to the segmentation process to guide the re-seg-
mentation of complex regions. Hierarchical subdivision
based on local texture information and regional mergers
can guarantee consistency of local information.

® A modified superpixel-based quadtree subdivi-
sion is proposed to obtain the airlight value. This method
can ensure the accuracy of airlight value, while solving
the drawback of artificially preset thresholds. Compared
to other methods, our method is more robust for local
highlighted targets.

® A combined upper-lower boundary constraint
based on information integrity prior is proposed for IR im-
ages to calculate the transmission map, which improves
visual quality and solves the distortion in the sky region.
The reconstructed image can be inverted by a reasonable
estimation of the scattering model parameters.

The remainder of this paper is organized as follows.
In Sect. 1, we briefly introduce the physical model of the
optic energy attenuation process in a foggy atmosphere.
Sect. 2 describes the proposed method in detail. Sect. 3
presents the experimental results of our algorithm and
several existing methods. Finally, a summary is present-

ed in Sect. 4.
1 Background

1.1 Atmospheric scattering model of image forma-
tion

Fog and haze are common atmospheric conditions
and typical aerosol particles, especially in winter. The
target energy received by the photoelectric system along
the line of sight consists of two parts: target radiation that
is attenuated by atmospheric absorption and scattering,
and path radiation that is superimposed on the target and
background. Path radiation increases the background
noise detected by the system and reduces the contrast be-
tween the target and background, which caused distant
targets to become grayish white . McCartney’ s atmo-
spheric scattering model ™ has been proven to be a rea-
sonable approximation for light propagation in the atmo-
sphere, defined as follows:

()= J(x) - t(x) + A (1 =2(x)) , (1)
where [(x) and J(x) are the degraded image and the
scene radiance, respectively; A is global atmospheric
light at infinity, which is independent of the position of
the target; and t(x) is the atmospheric transmission
along the path from the target to the detector. Referring
to Eq. 1, the first term, J(x) - t(x), is known as the di-
rect transmission, which represents the attenuation in the
medium; the second term, A - (1 — t(x)), represents the

impact of airlight, which is the main cause of low con-
trast and poor visibility.

The aerosol particle radius in hazy weather is con-
centrated in 0. 5~10 wm, and the scattering efficiency of
the particles K is related to the relative size between the
scattered particle radius r and the wavelength of the inci-
dent light A, their relationship is shown in Fig. 27"
When the radius r is approximately equal to the wave-
length A, the maximum value of K is close to 3.8, and
the scattering ability is strongest™. From the above anal-
ysis, it can be concluded that hazy weather also has a sig-
nificant effect on IR images. We assume that the sus-
pended particulates in the atmosphere are spherical and
uniformly distributed, and according to the Lambert-
Beer law and Mie scattering theory, ¢(x) is approximated
as follows:

t(x) = e , (2)

B=a+vy , (3)
where 8 is the extinction coefficient, consisting of the ab-
sorption coefficient a and the scattering coefficient 7,
and is related to the particle radius and aerosol particle
concentration; and d is the length of the optical path be-
tween the target and the receiver. When the observed dis-
tance and atmospheric status remain stationary, the val-
ue of ¢ is constant. In other words, ¢ is negatively related
to d.

Referring to Eq. 1, to obtain J, it is necessary to uti-
lize additional information and constraints to infer ¢ and
A. 1In short, the haze-free IR image J can be derived
from Eq. 4 with the reasonable parameters:

B I(x)-A
]_7“96) +A . (4
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Fig. 2 The relationship between scattering efficiency and the ra-
tio of the wavelength to the radius of scattered particles. As the
particle radius increases, the scattering efficiency eventually con-
verges about 2 after a slight oscillation

B2 BUNSCR G B MR R 2 ORI SE R o BB R T4
PRI R, U AR R 2SR 2 72

1.2 Simple linear iterative clustering

Achanta et al. proposed the concept of simple linear
iterative clustering (SLIC) , which optimizes k-means
clustering . Tt has obvious advantages over other super-
pixel segmentation algorithms, in that SLIC limits the
search range to a space proportional to the patch size,
which dramatically reduces the number of distance calcu-
lations. The complexity of SLIC is linearly related to the
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total number of pixels NV and is not dependent on the num-
ber of blocks k. Therefore, SLIC is characterized by fast
processing speed and low computational complexity;
more importantly, it can better identify boundaries.

SLIC utilizes a multidimensional feature vector to
calculate the similarity between pixel pairs. The desired
number of superpixels k and the compactness m are the
only two parameters that need to be specified. For color
images in the CIELAB color space, each image is trans-
formed into a five-dimensional feature space V =
[L,a,b,x,v]", which is expanded from the color space
and coordinate space. The initial cluster centers C, are

grid sampled at a constant interval S = V' NIk on the im-
age. To avoid the overlap of C; and edge pixels on the im-
age, center point C; is moved to the pixel with the lowest
gradient in the 3X3 pixel neighborhood. D is defined as
the distance in multidimensional space, which describes
the similarity of pixels and cluster centers.

Dz/(dm,)“(d")z-m2 . (5)

S
diy = J(, = 1,0 +(a,=a, ) +(b, -0, ., (6)

d = [(x,—x,} +(y,—y,) , (1)
where d,,, and d, represent the luminance proximity and
spatial proximity, respectively; p and ¢ are two pixels
within the bounded range; [/, a,b] and («x,y) indicate

the color of pixels in the CIELAB color space and coordi-
nate, respectively. Compactness m is relevant to the
boundary preservation ability. When m is large, it tends
to produce regular superpixels. More details can be
found in Ref. [23]. After several iterations of the cen-
ters and blocks, all pixels were divided into correspond-
ing blocks to minimize D.

2 Image dehazing method

In this section, we provide a detailed description of
our dehazing method. First, the foggy image is divided
into several parts using a hierarchical subdivision super-
pixel segmentation algorithm. Then, a modified quadtree
method is proposed to automatically obtain accurate glob-
al atmospheric light A. Next, a reasonable transmission
map ¢ is inferred based on information integrity prior to
improve visual quality and avoid information loss. Final-

Image
preprocessing

Pre-processing
image

Original infrared
image

' Hierarchical subdivsion
and regional merger

Fig. 3 The flowchart of the proposed algorithm
K3 ki

‘Modified

Superpixels map

ly, the haze-free image J can be deduced from Eq. 4.
Fig. 3 shows a flowchart of the proposed method.
2.1 Superpixels structure decomposition

In Ref. [14] and Ref. [24], the foggy image was
divided into small blocks using fixed-size rectangular
patches in a localized area to analyze atmospheric trans-
mission. However, halo artifacts and block effects are in-
evitable, regardless of the size of the patches chosen. Al-
though some techniques (e. g. guided filters and soft mat-
ting) can mitigate this phenomenon, they require a large
amount of computation and memory consumption. Refer-
ring to Eq. 2, the value of transmission ¢ is correlated
with the distance d; it is difficult to ensure that an identi-
cal depth is suitable for each pixel in a fixed segmenta-
tion block. For example, when the rectangular block is
located at the junction of two targets with different
depths, a fixed transmission ¢ applied to the reconstruc-
tive process of this block may lead to some pixels over-en-
hancement (1 is less than the optimal value) or under-en-
hancement (¢ is more than the optimal value ).

A superpixel block is a set of adjacent pixels that
have analogous colors, similar brightness, or related
structures. Compared with rectangular patch segmenta-
tion, the superpixel segmentation guarantees the same
depth of pixels in the local block. Therefore, superpixels
reduce the probability of over-segmentation and under-
segmentation, which is the essential reason for halo arti-
facts. Compared with color images, IR images only carry
luminance information, and the classical SLIC algorithm
is not applicable. We transform Eq. 6 as a luminosity
function for IR images, and the spatial distance D’ can
be expressed as:

D= /d>+(=)Y -m , (8)

S
d= -1y . (9)

where d, represents the luminance proximity, and [ is the
luminance value. Due to the non-uniformity of IR imag-
es, stripe noise adversely affects results of segmentation.
Bilateral filter is widely used in infrared image process-
ing ' and is effective in reducing image noise while
maintaining sharp edges . Therefore, bilateral filter is
applied as a pre-processing step before segmentation.

An image usually contains both smooth and complex
regions, and the size of superpixels is determined by the

_Model
inversion

quaddtree

Airlight region

Reconstructed
image

Combined

boundary

‘consteaint

Transmission
heat map
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expected number k. However, the value of k is only spec-
ified in the initialization phase, which causes the seg-
mentation process not distinguishing the image content.
When the value of £ is small, the size of the superpixel is
larger, and it tends to be under-segmented in texture-
rich regions. Under-segmentation results in the superpix-
el easily containing targets of different depths. When the
value of k is large, it is easy to produce over-segmenta-
tion which reduces the correlation of uniform depth tar-
gets. To solve this problem, we develop a hierarchical
subdivision SLIC based on image texture and regional
merger. The principle of our modified SLIC method is
based on the analysis of the image: a small value of £
should be used for simple texture regions, such as the
sky; conversely, a large value of k should be used for tex-
ture-rich regions to ensure adequate segmentation. To
achieve this, we propose a hierarchical segmentation
method. We use k, to obtain a series of rough superpixel
blocks with large size; the sky region is often guaranteed
to be segmented accurately with £,. At this point, the su-
perpixels from sky region tend to be simple in texture and
do not need to be segmented again; we need to segment
the richly-textured superpixel blocks again to ensure con-
sistent depth within the superpixels. The entropy value
of image is widely used to characterize image texture in-
formation " which can be defined as:

en = —iP(i)log [P(i)] , (10)

where H is the number of gray-scale interval; and P(i) is
the probability of each gray interval obtained by the histo-
gram statistic. When en of superpixel block p, is greater
than threshold T, p, needs to be segmented. The number
of sub-superpixels k, is set to further segment p,. After
the two-level segmentation, we obtained a series of finer
sub-superpixels. In the process of fine segmentation, lo-
cal over-segmentation could occur because it does not fo-
cus on image texture similarity, which is more likely to
result in block effects. To reduce the block effect, a re-
gional merger is applied to combine the over-segmented
fine sub-superpixels. The region adjacency graph
(RAG) centered on each superpixel block is constructed
as shown in Fig. 4. The RAG, as an undirected graph,
provides a spatial view for the segmented image, where
each superpixel p, is regarded as a nodes v, We let G =
(V,E) be the RAG for superpixel p,,

{v,,v, **,v,} is a set of nodes and E ={e,, e,, **

where V =
e, }is

the corresponding edge between adjacent nodes. Each
edge has a weight w, that represents the similarity be-
tween two adjacent nodes. The luminance average I and
texture entropy en are utilized to achieve a reasonable
representation of the regional similarity as follows :

w; = aw, + bw,, , (11D)
min (1 (p.),{ (p;)) (12
max (1 (p).1 ()
min (en(p,hen(p,)

max (en(p; )en(p;))
where p, and p, are adjacent nodes; a and b are two
weight factors (@ + b = 1). When the content of the IR
image is simple, the luminance average I has a higher in-
fluence than the texture entropy en, so that we can set a
greater than b. When w;, is greater than the thresholdw,,
p; and p; are highly similar, thus performing the merge
operation. In the following experiments, we set w,=0. 8,
a=0.5, and b=0.5. Each superpixel needs to be
searched, and the merger process of each layer is iterat-
ed until convergence; then a final superpixel map is ob-
tained, which has the desired characteristics.
2.2 Quadtree method based on superpixel blocks
The global atmospheric light A describes the ambi-
ent illumination in the scene, which should be estimated
from the most haze-thick region in the image, as pro-
posed by Narasimhan . Generally, the infinite region
of the sky to obtain A is precise. In most existing meth-
ods, the top 0. 1% of the brightest pixels from the dark
channel obtained by DCP are selected to extract the value
of A" Overly bright objects, such as local artificial
light sources, are easily to be mixed in candidate pixels
leading to erroneous estimate. Besides, DCP is not suit-
able for IR images because it is derived from the statis-
tics of multispectral color images. The local highlighted
region usually occupies a small portion of the image, and
the influence of highlighted region can be reduced by the
surrounding pixels when calculating the average value.
Therefore, in order to accurately locate the sky regions,
a hierarchical searching method based on quadtree subdi-
vision is normally adopted, as shown in Fig. 5(b) 7%,
The process divides the image into four equal parts and
selects the sub-block with the largest average value as the
new block, and then repeats until the size of the eventual
block is less than a preset threshold. The size of the
threshold affects the selection of the final region and is

w, =

, (13)

w. =

en

(b) ()

Fig. 4 Example of RAG in local region (a) A local region in fine segmented layer, (b) the corresponding RAG,(c) the next RAG after

merge of P1 and P5 if the weight w is greater than w;,
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less robust to images with a small sky region. When the
threshold is large, it is difficult to ensure that the final
block contains only the sky region. In this work, in-
spired by quadtree subdivision, a modified quadtree
method based on superpixels is proposed to obtain air-
light4, as shown in Fig. 5(a).

Our proposed method regards the rough superpixel
p;» obtained by the first segmentation, as the basic ele-
ment, and the routine quartered region is replaced by a
combination of superpixels. The detailed description is
as follows. First, the initial segmentation is executed to
generate rough superpixels, and each superpixel is la-

belled as L,.
L =i,

i=12,k , (14)
where £ is the total number of superpixel p,. Each pixel x
in the image is tagged with the label L, of the correspond-
ing superpixel.

L.,=L X € p; , (15)
where L, represents the label of pixel x. Next, the im-
age is divided into four parts of equal size, and the labels
that have appeared in the largest average part are counted
as ¢. A new sub-block ), is constructed with superpix-
els corresponding to the labels in ¢.

Q,={3pL, <o} . (16)

where (), is the new sub-block formed by the nth itera-
tion. Finally, the sub-block , will perform a new round
of quadtree subdivision. This process is repeated until
each pixel within the quarter part with the maximum aver-
age belongs to a same label. The average luminance val-
ue of the final block (), is an accurate estimation of the

airlight A.
S
- M X € n

P

, (17)

where [(x) represents the luminance value of the pixel;
and M is the total number of pixels in region €,’. When
the sub-block to be segmented contains fewer than four
superpixels, the selected quarter part with the maximum
average may contain all the labels that appear in the sub-
block. In this situation, the iterative process falls into
partial circulation. To obtain the airlight automatically,
the occurrence of the first circulation is set as the termi-
nation criterion for the iteration. The average values of
each superpixel in the sub-block were calculated, and
the maximum value was selected as the airlight A. This
modified method without human intervention can reduce
the impact of local noise and blind pixels on the estima-
tion of the airlight. For images without sky regions, the
method is also robust in finding the most blurred region
in the image.
2.3 Estimation of the transmission map based on
information integrity prior

After obtaining the atmospheric light A, the quality
of the haze-free image J depends on the value of the trans-
mission ¢, referring to Eq. 4. Assuming that ¢* is the op-
timal transmission for a superpixel, the dehazed image
will remain a little haze with values of ¢ > ¢". Converse-
ly, the effects of low brightness, poor vision, and loss of
detail will be brought into the reconstructed image with
values of ¢ < t". The relationship between transmission ¢
and image J is shown in Fig. 6. The original image in
Fig. 6 is captured from a short-wave infrared camera with
resolution of 640*512. The frame rare, integration time
and focal length are 50 Hz, 2 ms and 50 mm, respectively.

For most existing method based on image restora-
tion, the reconstruction of the sky regions and highlight-
ed target regions are more or less distorted because a
small value of transmission is estimated in these regions,
which overly magnifies the differences between pixels.

(b)

Fig. 5 Searching method to obtain A. Marked region is the next sub-block (a) process of modified quadtree method based on superpixels,
(b) result and process of traditional quadtree method, (c) result of our method
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Fig. 6 Relationship between transmission and reconstructed image. Haze is added to a block with ¢ = 0. 6. Dehazing the artificial
block withzis (a) 0.3, (b) 0.5, (¢) 0.7, (d) 0.9, and the histogram distribution for each block.
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For a target with obvious features, taking too large or
small value of transmission can lead to poor results such
as Fig. 6(a) and Fig. 6(d). Although it is an effective
way to obtain accurate transmission map through statisti-
cal priors (e. g. DCP and color attenuation prior) , sin-
gle-wave IR images carry less information, and multi-
band statistics are not applicable. In terms of the quality
of dehazing images, the reconstructed IR images should
have better visual quality, and the highlighted targets
cannot be erased. Therefore, the goal of image recon-
struction is to improve visual quality while maintaining
information integrity for subsequent recognition tasks.

The mean squared error (MSE) contrast, C,,
which represents the variance of the pixel values and has
been widely applied to evaluate the contrast characteris-
tic of images™, is given by

S (I(x) = 1)
Cysi = ;T

where I is the average luminance value of image; and N
represents the total number of pixels in the image. Hu-
man vision has a stronger perception for high-contrast im-
ages, while foggy images reduce the visual perception
due to the narrow dynamic range. In general, the value
of C\g for clear natural images is larger because of large
luminance value dispersion; relatively, the value is
smaller for foggy images. Under extreme and ideal condi-
tions, the value of C\g; decreases continuously as the fog
concentrates, and eventually converges to zero. To im-
prove the visibility of the reconstructed image, the select-
ed value of transmission ¢ should optimize the image con-
trast, which means increasing the value of Cg. From
Eq. 4 and Eq. 18, C,q for each reconstructed superpix-

, (18)

el is expressed as follows:

Cupsere = ii(l(x;]; I . (19)

i=1
where ¢ is the transmission for each superpixel. Note
from Eq. 19 that the value of C,g . is a monotonically
decreasing function of the transmission; therefore, a
small value of ¢ can be selected to increase the value of
Cysp - Mathematically, the value of Cyyg . continues to
increase as ¢t decreases. But for 16-bit IR images, pixel
values cannot exceed the valid range of data bits. Some
pixel values are truncated to 0 or 65 535 because of un-
derflow or overflow. The truncation of these pixels causes
the degradation of visual quality, while the truncated pix-
el information is erased. Fig. 7 shows the mapping of the
input values to output values.

4 The calues are
65535 . truncated to 65535
° v
2 1
< ]
> ]
B The calues are;
2 truncated to 0
a 1
E g
]
' B —_
26214 !
0 65535

Input pixel value

Fig. 7 The input values of [0, 65535] are mapped to the output
with a small ¢. The information in the red region is lost because
the values are truncated

7 FAH N e d AR L0, 65535 Tt 21 4 i Y el . 21
0, DX A 5 PR 25 A 2l A T 25 2
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As shown in Fig. 7, the input values in [0, a],
and [ B, 65 535] are truncated to 0 or 65 535. The atmo-
spheric transmission ¢ determines that only the input val-
ues in range [ a, B ] can occupy the full dynamic range of
[0, 65 535] after reconstruction, which means that the
truncated pixel values lead to information loss in the red
region in Fig. 7 and decreases the details in the haze-
free image as shown in Fig. 6(a). The valid input range
is inversely proportional to slope 1/¢. For simplicity, the
squared sum of the truncated values is used to represent

the loss cost of information, and is expressed as:
N

Cioss = > {min [0,](x) P + max [0.](x) = 65535 )
p=1
. (20)
where J(x) denotes the luminance value of each pixel in
the reconstructed image. To maintain the integrity of the
image information, the selected value of ¢ should not re-
sult in any loss of information. Therefore, Eq. 20 must
satisfy the following constraint conditions :
min [0,J(x)]=0
max [0,/(x) — 65535]=0
Referring to Eq. 4 and Eq. 21, a group of con-
straint conditions is derived.
min [ I(x) ]
A
- max [[(x)]- A
T 65535-4
Accordingly, the constraint of transmission can be
inferred :

(21)

t=1-

(22)

min [7(x)] max[I(x)]-A
A 765535 -4
Based on the analysis that the value of C\g; decreas-
es as t increases, the minimum value that satisfies Eq.
23 is selected as the optimal transmission. It signifies
that a high-contrast superpixel is obtained without loss of
information, we call it information integrity prior. The
transmission of each superpixel can be calculated by

(23)

t = max{l -

t = max l—w'%[(x)],l+w-
max [ /(x)] - 65535
65535 - A . (24)

where w is a constant used to control the degree of dehaz-
ing. As w decreases, more fog is retained, and we set it
to 0. 95 in the following experiments. To further reduce
the effect of non-uniformity and blind pixels, we take the
average value of the top 1. 5% of the largest and smallest
pixels as the maximum value and minimum value. The
first term in Eq. 24 uses a similar constraint as dark
channel prior in He’ s DCP algorithm . The DCP is
considered to be an effective prior, but fails for some ob-
jects whose values are brighter than the atmospheric
light. In contrast, Eq. 24 employs an additional con-
straint to prevent overflow of the highlighted region.

3 Experimental results

In this section, to assess the performance of our pro-
posed method, we test it in real self-built infrared dataset
and compare it with CLAHE BT MSR ", the method of
Bo et al. "', and the method of Zheng et al. 27 Com-
mon natural mutation and slow-varying scenes are select-
ed to exhibit in Fig. 8 and Fig. 9. All test images were
captured from the same IR camera mentioned in Sect.
2.3, whose spectral response range is 0. 9~1. 7 pum. We
implemented the proposed technique in MATLAB 2018a
and tested it on an i5 CPU with 16 GB of RAM.

3.1 Visual assessment

Fig. 8 and Fig. 9 respectively show the visual com-
parison of CLAHE, MSR, Bo et al. , Zheng et al. and
our proposed method under mutation scene and slowly-
varying scene, which are the most common scenes in the
city. In Fig. 8(a), the boundary between buildings of
different depths is more obvious in the original IR image
and the visual quality of building at different distance has
significant differences. As a comparison, Fig. 9 (a)
shows a scene where the distance changes slowly and the
boundary of the degradation degree is not clear.

The CLAHE method can effectively enhance the
global contrast of IR images by equalizing the image sta-
tistical histogram. The foggy region, whose pixel values
are relatively concentrated in the histogram, has better
visual performance after reconstruction; however, over-
enhancement has occurred in the regions with slight de-
generation such as trees and roofs, as shown in Fig. 8

Fig. 8 Visual comparisons in mutation scene (a) original image, (b) CLAHE, (c) MSR, (d) Bo et al., (¢) Zheng et al.(f) proposed tech-

nique. The zoomed-in details are shown on the right side of the picture
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Fig. 9 Visual comparisons in slowly-varying scene (a) original image, (b) CLAHE, (¢) MSR, (d) Bo et al., (¢) Zheng et al.,(f) proposed
technique. The zoomed-in details are shown on the right side of the picture

Ko LAl Srh 7 R (@)L, (b)CLAHE, (¢)MSR, (d)Bo %%, (e)Zheng 25 , (DAL I 12, TORJF 4075 B T4 I g =

(b) and Fig. 9(b). Because the local information of the
image is not considered, the over-enhancement phenome-
non cannot be effectively suppressed. Compared with
Fig. 8(b) and Fig. 9(b), the over-enhancement phe-
nomenon is diminished in Fig. 8(c) and Fig. 9(c). Al-
though multi-scale Gaussian surround space constants 9,
(set to 10, 50, and 250 in this study) are used to solve
the incident component, Gaussian convolution will result
in halo artifacts at the edges with large differences in
brightness. Besides, reconstructed image detail loss oc-
curs in low-luminance areas with slow gradient changes,
such as windows. In Fig. 8(d) and Fig. 9(d), the meth-
od of Bo et al. achieves better results than above meth-
ods, particularly in foggy regions, but the overall lumi-
nance value of the image is reduced. In Bo’s method, a
detail layer, which is amplified by the scene depth pro-
portion, is added to the wavelet filtered output images,
and the enhancement coefficient is set to a higher value
in the far regions. Therefore, the effect of blind pixels is
the most severe in this method, especially in the sky ar-
ea. Over-enhancement is also present in the reconstruct-
ed images obtained by the method of Zheng et al. , as
shown in Fig. 8 (e) and Fig. 9 (e). The principle of
their algorithm is multi-exposure image fusion (MEF)
based on an adaptive patch structure. Owing to the selec-
tion of adaptive image block size and MEF for all corre-
sponding image blocks in the underexposed image se-
quences, a large computational volume is inevitable,
leading to a long running time. Overall, the methods of
Bo et al. and Zheng et al. produced better results than
the CLAHE and MSR methods. All of the above methods
result in poor reconstruction of the sky region, as shown
in the red boxes in Figs. 8 and 9, because the sky region
has non-uniform noise and is over-amplified. By apply-
ing the pre-processing step for noise removal mentioned
in Sect. 2.1, we test it with the CLAHE algorithm, as
shown in Fig. 10. The stripe noises are effectively sup-
pressed, but the image details are blurred due to the
smoothing effect. Therefore, it is difficult to achieve sat-
isfactory results by simply suppressing image noises. Our
proposed method can reduce the halo artifacts being
brought to the reconstructed image because it ensures

that the transmission of pixels in the same superpixel is
uniform. Observing the results in Fig. 8 (f) and Fig. 9
(f) , the results of our method is clearer and more natu-
ral, while the sky region is not distorted because of the
additional constraint.

Fig. 10 Example of comparison on pre-processing before CLA-
HE. (a) original infrared image,(b) Pre-processing image by bilat-
eral filtering, (c) result of CLAHE in (a), (d) result of CLAHE in
(b)

110  CLAHE 53R ] BMR FAL 35 S 56 14T (a) I 4 21 5h1A]
B, () UEPRRCRIA, (o)1 a A PR, (d) P b b BEACR P

3.2 Quantitative analysis

Although subjective visual assessment is an effec-
tive method to evaluate the reconstructed quality, main-
stream full reference and no-reference metrics are also
calculated to further illustrate the performance. In the ob-
jective evaluation, the common quality assessment pa-
rameters were calculated: peak signal-to-noise ratio
(PSNR) , structural similarity index metric (SSIM) 7,
blind assessment indicators e and r**', image visibility
measurement (IVM) "™, and MSE. In addition, we de-
fined a near-scene structural similarity index metric (NS-
SSIM). In the IR imaging system, when the imaging dis-
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tance is small, the haze effect is negligible. Compared
with visible images, clear near-scene regions with high
contrast are more likely to exist in the IR images. For
these near-scene regions, the transmission is a large val-
ue close to 1, and these regions are easily problem areas
due to over-enhancement. NS-SSIM can more accurately
assess the degree of over-enhancement. The more severe
the over-enhancement and deviation from authenticity,
the smaller the value. The blue rectangular boxes in
Figs. 8 and 9 are the manually selected near-scene re-
gions, which do not require excessive processing. A
quantitative comparison is presented in Table 1.

Tablel Scores for PSNR, SSIM, ¢, r, IVM, MSE, NS—SSIM

for all compared algorithms in Fig. 8 and Fig. 9
*1 8 1 & 9 F1 PSNR,SSIM, ¢,r,IVM,MSE #1 NS-SSIM %
WM HERR

MSE ~ NS-

PSNR SSIM e
(x10*)  SSIM

~ |

CLAHE 13.54 0.46 9.32 2.52 9.44 3.19 0.59

MSR  13.12 0.42 2.71 1.83 9.19 2.67 0.52

Fig.8 Bo’s 14.27 0.58 3.47 1.24 9.64 3.60 0.82
Zheng’s 15.05 0.53 11.38 2.26 11.06 3.66 0.63
Proposed 15.23 0.66 4.06 1.76 9.53 3.89 0.96
CLAHE 12.72 0.48 20.66 2.84 10.01 2.00 0.74

MSE 12.13 0.40 13.33 1.84 9.37 1.16 0.56

Fig.9 Bo’s 13.36 0.50 14.20 1.40 10.07 1.97 0.73
Zheng’s 13.82 0.61 19.46 2.66 10.78 2.32 0.62
Proposed 14.08 0.57 15.25 2.06 10.32 3.07 0.91

The bolded score is the best score.

PSNR and SSIM are fully reference-based metrics.
If the PSNR is larger, the distortion of the reconstructed
image will be smaller. The range of the SSIM score is 0
to 1, and a larger value closer to 1 means that the recon-
structed image has better perception and realism. Except
for the slightly lower SSIM in Fig. 9, the proposed meth-
od achieves the highest score. Therefore, our method
has better performance, and the method of Zheng et al.
is second. Both of e and r assess the enhanced degree of
image visibility using the enhanced degree of image edg-
es. The edges of the foggy images should be enhanced for
ideal reconstructed images. IVM also uses the enhance-
ment of the image edges to illustrate the performance.
Among these three indices, our method is better than
MSR and that of Bo et al. , but has lower scores than
CLAHE and that of Zheng et al. This is because the pres-
ent of over-enhancement in CLAHE and Zheng et al. ,
which makes the image edges more visible. Our method
obtains the highest score for the MSE and NS-SSIM met-
rics; those of Bo et al. and Zheng et al. also have better
performance. This shows that our images have better con-
trast and authenticity, and the results are consistent with
those of the subjective evaluation.

In summary, our method performs better in quantita-
tive comparisons, which is consistent with the qualitative

results. The results of both qualitative and quantitative
analyses verify that our proposed method is effective in
terms of contrast, visibility, and especially in the avoid-
ance of over-enhancement.

4 Conclusion

This paper presented an effective framework for
haze removal from IR images. Our strategy optimizes the
contrast of hazy images by ensuring regional similarity
and information integrity. Hierarchical subdivision su-
perpixel segmentation ensures regional similarity to re-
duce the impact of halo effects, and a reasonable trans-
mission map can be estimated by maintaining the infor-
mation integrity. The atmospheric light can be obtained
automatically because of our hierarchical search method
based on superpixels. Compared with advanced meth-
ods, our approach is more natural without over-enhance-
ment. Furthermore, the distortion problem of the sky re-
gion can be solved. In the future, we plan to combine
our method with deep learning to explore the feasibility of
extrapolating the target depth.
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