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Abstract：Hazy weather degrades the contrast and visual quality of infrared imaging systems due to the presence
of suspended particles. Most existing dehazing methods focus on enhancing global contrast or exploit a local grid
transmission estimation strategy on images，which may lead to loss of information，halo artifacts and distortion in
sky region. To address these problems，a novel single image dehazing model based on superpixel structure decom⁃
position and information integrity protection is proposed. In this model，based on the local structure information，
the image is first adaptively divided into multiple objective regions using a hierarchical superpixel algorithm to
eliminate halo artifacts. Meanwhile，to avoid the error estimate caused by the local highlighted targets，a modi⁃
fied quadtree subdivision based on superpixel blocks is applied to obtain the global atmospheric light. Further⁃
more，a combined constraint is used to optimize the transmission map by minimizing the loss of information.
Compared with state-of-the-art methods in terms of qualitative and quantitative analysis，experiments on real-
world hazy infrared images demonstrate the efficacy of the proposed method in both contrast and visibility.
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摘要：雾霾天气由于悬浮粒子的存在，降低了红外成像系统的对比度和视觉质量。现有的去雾方法大多侧重

于增强全局对比度或在图像中采取局部网格透射率估计策略，容易导致图像信息丢失、光晕伪影以及天空区

域失真的现象。针对这些问题，本文提出了一种基于超像素结构分解以及信息完整性保护的单幅图像去雾

方法。在该模型中，首先基于局部结构信息，设计了分层超像素算法自适应地将图像分割成多个目标区域以

消除光晕伪影。同时为了避免局部高亮目标造成估计误差，采用基于超像素块的改进四叉树细分方法获得

全局大气光值。在此基础上，利用组合约束通过最小化信息损失实现透射率图最优化。在真实红外雾天图

像上的实验表明，在定性和定量方面与现有的经典算法相比，本文所提方法在对比度和可见性方面具有优

越性。
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Introduction
Owing to the effect of reflection and scattering oflight by suspension particles，fog and haze are commonatmospheric conditions that reduce the perception of theimaging system and result in low contrast，local blur，and narrow dynamic range of the imaging system ［1-2］. Inthe field of surveillance，infrared（IR）systems with bet⁃ter penetration have more advantages over visible lightsystems，but are also affected by haze. Continuous hazeincreases the difficulty of observation and identification，and seriously affects the reliability and environmentaladaptability of imaging systems ［3］. With the develop⁃ment of computer technology，image dehazing algorithmshave received significant attention.Image haze removal is a challenging problem be⁃cause the degree of image degradation is affected by theconcentration of suspended particles and the distancefrom target to detector，both of which are difficult to beobtained directly from the images［4］. In recent years，re⁃searchers have proposed a variety of dehazing methods，which can be divided into two main categories：multipleinformation fusion， and single-frame image process⁃ing［5］. The first category requires additional informationto assist with image restoration. Schechner et al. estimat⁃ed the degree of polarization and atmospheric light fromtwo polarized images taken at orthogonal polarization an⁃gles［6］，and then calculated the physical model parame⁃ters. Narasimhan et al. obtained the depth structure byanalyzing the changes in the intensities of more than twoimages under various weather conditions［7］. Owing to thestronger near-IR transmittance，Kudo et al. fused IR im⁃age with visible image in the same scene to remove hazefrom visible images，but it was not effective for thick fog

［8］. The application of these methods is limited becauseof the additional hardware and complex operations. Re⁃cently，mainstream schemes based on single-image resto⁃ration have two development directions：image enhance⁃ment，and image reconstruction.Image enhancement methods optimize visual qualityby adjusting image contrast through digital image process⁃ing techniques without considering the physical factors ofimage degradation. Xu et al. applied contrast limitedadaptive histogram equalization（CLAHE）to enhance thecontrast of foggy images［9］. Direct manipulation of the his⁃togram can easily be over-enhanced and thus reduce im⁃age authenticity. Multi-scale retinex（MSR）theory is aneffective method in the field of image dehazing，but the in⁃cident component is estimated by Gaussian convolution，which leads to halo artifacts around the edges［10］. Filteringapproaches，such as homomorphic filters［11］ and high-boost filters［12］，can enhance the edge information andachieve better real-time performance. Bo et al. recon⁃structed foggy images using wavelet decomposition andguided filtering ［13］. Such methods are simple and fast，but often tend to fail when the scene changes dramatical⁃ly. Moreover，the processing of details is non-ideal.In the field of image restoration，atmospheric scat⁃tering model is the theoretical basic for reconstruction，and its optimum parameters are estimated by increasing

the priori information. The dark channel prior（DCP）is aclassical and effective method proposed by He et al. ［14］，but halo artifacts and block effects are introduced into thereconstructed images. Tan et al. ［15］ and Ancuti et al. ［2］

proposed improved algorithms based on the DCP to revisethe transmission map. Tan utilized Markov random fieldsto avoid underestimating the transmission，while Ancutifused multi-scale image patches to refine the reconstruc⁃tion process in which local information is fully used. Thecolor attenuation prior proposed by Zhu et al. ［16］，the de⁃tail prior proposed by Li et al. ［17］，and gradient channelprior proposed by Singh et al. ［18］were also applied to es⁃timate the thickness of the haze. Compared with DCP，these methods have better performance，but fail to com⁃pletely eliminate halo artifacts and deal with highlightedregions.

Currently，the vast majority of image dehazing algo⁃rithms are targeted at multispectral color images and un⁃derwater images，and IR images only provide additionalauxiliary information for dehazing. Haze weather also af⁃fects the visual quality and subsequent processing of IRimaging systems，as shown in Fig. 1（a），but there is lit⁃tle reference to deal with the degradation of IR images.The process of single-wave IR image dehazing is more dif⁃ficult due to noise and less information. In this paper，we propose a novel IR image dehazing method based on

Fig. 1 Sample result of our proposed method，（a）original real
hazy infrared image，（b） reconstructed image obtained by our
technique
图 1 所提方法结果对比，（a）原始真实雾天红外图像，（b）去
雾后重建图像
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physical model that utilizes superpixel segmentation andupper-lower boundary constraints to avoid halo artifactsand distortions in the sky region. The resulting techniqueachieves excellent reconstruction and better visual recov⁃ery，as shown in Fig. 1（b）. The main contributions ofour article can be summarized as following aspects：● Local grid windows are replaced by superpixelsto eliminate halo artifacts. To produce content-sensitivesuperpixels，a hierarchical subdivision superpixel-split⁃ting algorithm is proposed，that texture information isadded to the segmentation process to guide the re-seg⁃mentation of complex regions. Hierarchical subdivisionbased on local texture information and regional mergerscan guarantee consistency of local information.● A modified superpixel-based quadtree subdivi⁃sion is proposed to obtain the airlight value. This methodcan ensure the accuracy of airlight value，while solvingthe drawback of artificially preset thresholds. Comparedto other methods，our method is more robust for localhighlighted targets.● A combined upper-lower boundary constraintbased on information integrity prior is proposed for IR im⁃ages to calculate the transmission map，which improvesvisual quality and solves the distortion in the sky region.The reconstructed image can be inverted by a reasonableestimation of the scattering model parameters.The remainder of this paper is organized as follows.In Sect. 1，we briefly introduce the physical model of theoptic energy attenuation process in a foggy atmosphere.Sect. 2 describes the proposed method in detail. Sect. 3presents the experimental results of our algorithm andseveral existing methods. Finally，a summary is present⁃ed in Sect. 4.
1 Background
1. 1 Atmospheric scattering model of image forma⁃
tion Fog and haze are common atmospheric conditionsand typical aerosol particles，especially in winter. Thetarget energy received by the photoelectric system alongthe line of sight consists of two parts：target radiation thatis attenuated by atmospheric absorption and scattering，and path radiation that is superimposed on the target andbackground. Path radiation increases the backgroundnoise detected by the system and reduces the contrast be⁃tween the target and background，which caused distanttargets to become grayish white ［19］. McCartney’s atmo⁃spheric scattering model ［20］ has been proven to be a rea⁃sonable approximation for light propagation in the atmo⁃sphere，defined as follows：

I ( x ) = J ( x ) ⋅ t ( x ) + A ⋅ (1 - t ( x ) ) , （1）where I ( x ) and J ( x ) are the degraded image and thescene radiance，respectively；A is global atmosphericlight at infinity，which is independent of the position ofthe target；and t ( x ) is the atmospheric transmissionalong the path from the target to the detector. Referringto Eq. 1，the first term，J ( x ) ⋅ t ( x )，is known as the di⁃rect transmission，which represents the attenuation in themedium；the second term，A ⋅ (1 - t ( x ) )，represents the

impact of airlight，which is the main cause of low con⁃trast and poor visibility.The aerosol particle radius in hazy weather is con⁃centrated in 0. 5~10 μm，and the scattering efficiency ofthe particles K is related to the relative size between thescattered particle radius r and the wavelength of the inci⁃dent light λ，their relationship is shown in Fig. 2［21］.When the radius r is approximately equal to the wave⁃length λ，the maximum value of K is close to 3. 8，andthe scattering ability is strongest［22］. From the above anal⁃ysis，it can be concluded that hazy weather also has a sig⁃nificant effect on IR images. We assume that the sus⁃pended particulates in the atmosphere are spherical anduniformly distributed，and according to the Lambert-Beer law and Mie scattering theory，t ( x ) is approximatedas follows：
t ( x ) = e-βd (x ) , （2）
β = α + γ , （3）

where β is the extinction coefficient，consisting of the ab⁃
sorption coefficient α and the scattering coefficient γ，
and is related to the particle radius and aerosol particleconcentration；and d is the length of the optical path be⁃tween the target and the receiver. When the observed dis⁃tance and atmospheric status remain stationary，the val⁃ue of t is constant. In other words，t is negatively relatedto d. Referring to Eq. 1，to obtain J，it is necessary to uti⁃lize additional information and constraints to infer t and
A. In short，the haze-free IR image J can be derivedfrom Eq. 4 with the reasonable parameters：

J = I ( x ) - A
t ( x ) + A . （4）

1. 2 Simple linear iterative clusteringAchanta et al. proposed the concept of simple lineariterative clustering（SLIC），which optimizes k-meansclustering［23］. It has obvious advantages over other super⁃pixel segmentation algorithms，in that SLIC limits thesearch range to a space proportional to the patch size，which dramatically reduces the number of distance calcu⁃lations. The complexity of SLIC is linearly related to the

Fig. 2 The relationship between scattering efficiency and the ra‐
tio of the wavelength to the radius of scattered particles. As the
particle radius increases，the scattering efficiency eventually con‐
verges about 2 after a slight oscillation
图 2 散射效率与波长和粒子半径之比的关系。随着粒子半径
的增大，散射效率最终收敛到2左右
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total number of pixels N and is not dependent on the num⁃ber of blocks k. Therefore，SLIC is characterized by fastprocessing speed and low computational complexity；more importantly，it can better identify boundaries.SLIC utilizes a multidimensional feature vector tocalculate the similarity between pixel pairs. The desirednumber of superpixels k and the compactness m are theonly two parameters that need to be specified. For colorimages in the CIELAB color space，each image is trans⁃formed into a five-dimensional feature space V =[ l，a，b，x，y ]T，which is expanded from the color space
and coordinate space. The initial cluster centers C i aregrid sampled at a constant interval S = N/k on the im⁃age. To avoid the overlap of C i and edge pixels on the im⁃age，center point C i is moved to the pixel with the lowestgradient in the 3×3 pixel neighborhood. D is defined asthe distance in multidimensional space，which describesthe similarity of pixels and cluster centers.

D = (dlab )2 + ( dsS ) 2 ⋅ m2 , （5）
dlab = ( lp - lq )2 + (ap - aq )2 + (bp - bq )2 , （6）

ds = ( xp - xq )2 + ( yp - yq )2 , （7）
where dlab and ds represent the luminance proximity andspatial proximity，respectively；p and q are two pixels
within the bounded range；[ l，a，b ] and ( x，y ) indicate
the color of pixels in the CIELAB color space and coordi⁃nate，respectively. Compactness m is relevant to theboundary preservation ability. When m is large，it tendsto produce regular superpixels. More details can befound in Ref.［23］. After several iterations of the cen⁃ters and blocks，all pixels were divided into correspond⁃ing blocks to minimize D.
2 Image dehazing method

In this section，we provide a detailed description ofour dehazing method. First，the foggy image is dividedinto several parts using a hierarchical subdivision super⁃pixel segmentation algorithm. Then，a modified quadtreemethod is proposed to automatically obtain accurate glob⁃al atmospheric light A. Next，a reasonable transmissionmap t is inferred based on information integrity prior toimprove visual quality and avoid information loss. Final⁃

ly，the haze-free image J can be deduced from Eq. 4.Fig. 3 shows a flowchart of the proposed method.
2. 1 Superpixels structure decompositionIn Ref.［14］and Ref.［24］，the foggy image wasdivided into small blocks using fixed-size rectangularpatches in a localized area to analyze atmospheric trans⁃mission. However，halo artifacts and block effects are in⁃evitable，regardless of the size of the patches chosen. Al⁃though some techniques（e. g. guided filters and soft mat⁃ting）can mitigate this phenomenon，they require a largeamount of computation and memory consumption. Refer⁃ring to Eq. 2，the value of transmission t is correlatedwith the distance d；it is difficult to ensure that an identi⁃cal depth is suitable for each pixel in a fixed segmenta⁃tion block. For example，when the rectangular block islocated at the junction of two targets with differentdepths，a fixed transmission t applied to the reconstruc⁃tive process of this block may lead to some pixels over-en⁃hancement（t is less than the optimal value）or under-en⁃hancement（t is more than the optimal value）.A superpixel block is a set of adjacent pixels thathave analogous colors，similar brightness，or relatedstructures. Compared with rectangular patch segmenta⁃tion，the superpixel segmentation guarantees the samedepth of pixels in the local block. Therefore，superpixelsreduce the probability of over-segmentation and under-segmentation，which is the essential reason for halo arti⁃facts. Compared with color images，IR images only carryluminance information，and the classical SLIC algorithmis not applicable. We transform Eq. 6 as a luminosityfunction for IR images，and the spatial distance D' canbe expressed as：

D' = dl 2 + ( dsS ) 2 ⋅ m2 , （8）
dl = ( lp - lq )2 , （9）

where dl represents the luminance proximity，and l is theluminance value. Due to the non-uniformity of IR imag⁃es，stripe noise adversely affects results of segmentation.Bilateral filter is widely used in infrared image process⁃ing ［25］ and is effective in reducing image noise whilemaintaining sharp edges ［26］. Therefore，bilateral filter isapplied as a pre-processing step before segmentation.An image usually contains both smooth and complexregions，and the size of superpixels is determined by the

Fig. 3 The flowchart of the proposed algorithm
图3 算法流程图
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expected number k. However，the value of k is only spec⁃ified in the initialization phase，which causes the seg⁃mentation process not distinguishing the image content.When the value of k is small，the size of the superpixel islarger，and it tends to be under-segmented in texture-rich regions. Under-segmentation results in the superpix⁃el easily containing targets of different depths. When thevalue of k is large，it is easy to produce over-segmenta⁃tion which reduces the correlation of uniform depth tar⁃gets. To solve this problem，we develop a hierarchicalsubdivision SLIC based on image texture and regionalmerger. The principle of our modified SLIC method isbased on the analysis of the image：a small value of kshould be used for simple texture regions，such as thesky；conversely，a large value of k should be used for tex⁃ture-rich regions to ensure adequate segmentation. Toachieve this，we propose a hierarchical segmentationmethod. We use k1 to obtain a series of rough superpixelblocks with large size；the sky region is often guaranteedto be segmented accurately with k1. At this point，the su⁃perpixels from sky region tend to be simple in texture anddo not need to be segmented again；we need to segmentthe richly-textured superpixel blocks again to ensure con⁃sistent depth within the superpixels. The entropy valueof image is widely used to characterize image texture in⁃formation［27-28］，which can be defined as：
en = -∑

i = 0

H

P ( i ) log [ P ( i ) ] , （10）
where H is the number of gray-scale interval；and P ( i ) isthe probability of each gray interval obtained by the histo⁃gram statistic. When en of superpixel block pi is greaterthan threshold T，pi needs to be segmented. The numberof sub-superpixels k2 is set to further segment pi. Afterthe two-level segmentation，we obtained a series of finersub-superpixels. In the process of fine segmentation，lo⁃cal over-segmentation could occur because it does not fo⁃cus on image texture similarity，which is more likely toresult in block effects. To reduce the block effect，a re⁃gional merger is applied to combine the over-segmentedfine sub-superpixels. The region adjacency graph
（RAG）centered on each superpixel block is constructedas shown in Fig. 4. The RAG，as an undirected graph，provides a spatial view for the segmented image，whereeach superpixel pi is regarded as a nodes vi. We let G =(V，E ) be the RAG for superpixel pi， where V =
{ v1，v2，⋯，vn } is a set of nodes and E = { e1，e2，⋯，en } is

the corresponding edge between adjacent nodes. Eachedge has a weight wi that represents the similarity be⁃tween two adjacent nodes. The luminance average -I andtexture entropy en are utilized to achieve a reasonablerepresentation of the regional similarity as follows：
wi = awl + bwen , （11）

wl = min (
-I ( pi ), -I ( pj ) )

max ( -I ( pi ), -I ( pj ) ) , （12）
wen = min (en ( pi ),en ( pj ) )max (en ( pi ),en ( pj ) ) , （13）

where pi and pj are adjacent nodes；a and b are two
weight factors (a + b = 1). When the content of the IRimage is simple，the luminance average -I has a higher in⁃fluence than the texture entropy en，so that we can set agreater than b. When wi is greater than the thresholdwT，
pi and pj are highly similar，thus performing the mergeoperation. In the following experiments，we set wT=0. 8，
a=0. 5， and b=0. 5. Each superpixel needs to besearched，and the merger process of each layer is iterat⁃ed until convergence；then a final superpixel map is ob⁃tained，which has the desired characteristics.
2. 2 Quadtree method based on superpixel blocksThe global atmospheric light A describes the ambi⁃ent illumination in the scene，which should be estimatedfrom the most haze-thick region in the image，as pro⁃posed by Narasimhan ［29］. Generally，the infinite regionof the sky to obtain A is precise. In most existing meth⁃ods，the top 0. 1% of the brightest pixels from the darkchannel obtained by DCP are selected to extract the valueof A［30-31］. Overly bright objects，such as local artificiallight sources，are easily to be mixed in candidate pixelsleading to erroneous estimate. Besides，DCP is not suit⁃able for IR images because it is derived from the statis⁃tics of multispectral color images. The local highlightedregion usually occupies a small portion of the image，andthe influence of highlighted region can be reduced by thesurrounding pixels when calculating the average value.Therefore，in order to accurately locate the sky regions，a hierarchical searching method based on quadtree subdi⁃vision is normally adopted，as shown in Fig. 5（b）［32-34］.The process divides the image into four equal parts andselects the sub-block with the largest average value as thenew block，and then repeats until the size of the eventualblock is less than a preset threshold. The size of thethreshold affects the selection of the final region and is

Fig. 4 Example of RAG in local region (a) A local region in fine segmented layer, (b) the corresponding RAG,(c) the next RAG after
merge of P1 and P5 if the weight w is greater than wT
图 4 局部窗口 RAG 图示例 (a)精细分割图中局部窗口，(b)局部窗口相应的 RAG 图，(c)当w大于阈值wT时,合并 P1、P5后下一层
RAG图
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less robust to images with a small sky region. When thethreshold is large，it is difficult to ensure that the finalblock contains only the sky region. In this work，in⁃spired by quadtree subdivision， a modified quadtreemethod based on superpixels is proposed to obtain air⁃lightA，as shown in Fig. 5（a）.Our proposed method regards the rough superpixel
pi，obtained by the first segmentation，as the basic ele⁃ment，and the routine quartered region is replaced by acombination of superpixels. The detailed description isas follows. First，the initial segmentation is executed togenerate rough superpixels，and each superpixel is la⁃belled as Lpi.

Lpi = i, i = 1,2,…,k , （14）
where k is the total number of superpixel pi. Each pixel xin the image is tagged with the label Lpi of the correspond⁃ing superpixel.

L (x ) = Lpi, x ∈ pi , （15）
where L (x ) represents the label of pixel x. Next，the im⁃age is divided into four parts of equal size，and the labelsthat have appeared in the largest average part are countedas φ. A new sub-block Ωn is constructed with superpix⁃els corresponding to the labels in φ.

Ωn = {∑pi| Lpi ∈ φ} , （16）
where Ωn is the new sub-block formed by the nth itera⁃tion. Finally，the sub-block Ωn will perform a new roundof quadtree subdivision. This process is repeated untileach pixel within the quarter part with the maximum aver⁃age belongs to a same label. The average luminance val⁃ue of the final block Ωn ' is an accurate estimation of theairlight A.

A =∑l ( x )
M ,x ∈ Ωn ' , （17）

where l ( x ) represents the luminance value of the pixel；and M is the total number of pixels in region Ωn '. Whenthe sub-block to be segmented contains fewer than foursuperpixels，the selected quarter part with the maximumaverage may contain all the labels that appear in the sub-block. In this situation，the iterative process falls intopartial circulation. To obtain the airlight automatically，the occurrence of the first circulation is set as the termi⁃nation criterion for the iteration. The average values ofeach superpixel in the sub-block were calculated，andthe maximum value was selected as the airlight A. Thismodified method without human intervention can reducethe impact of local noise and blind pixels on the estima⁃tion of the airlight. For images without sky regions，themethod is also robust in finding the most blurred regionin the image.
2. 3 Estimation of the transmission map based on
information integrity priorAfter obtaining the atmospheric light A，the qualityof the haze-free image J depends on the value of the trans⁃mission t，referring to Eq. 4. Assuming that t* is the op⁃timal transmission for a superpixel，the dehazed imagewill remain a little haze with values of t > t*. Converse⁃ly，the effects of low brightness，poor vision，and loss ofdetail will be brought into the reconstructed image withvalues of t < t*. The relationship between transmission tand image J is shown in Fig. 6. The original image inFig. 6 is captured from a short-wave infrared camera withresolution of 640*512. The frame rare，integration timeand focal length are 50 Hz，2 ms and 50 mm，respectively.For most existing method based on image restora⁃tion，the reconstruction of the sky regions and highlight⁃ed target regions are more or less distorted because asmall value of transmission is estimated in these regions，which overly magnifies the differences between pixels.

Fig. 5 Searching method to obtain A. Marked region is the next sub-block (a) process of modified quadtree method based on superpixels,
(b) result and process of traditional quadtree method, (c) result of our method
图 5 大气光值A搜索方法 (a)基于超像素的改进四叉树搜索方法流程图，(b)传统四叉树搜索方法流程与结果，(c)所提方法流程与
结果
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For a target with obvious features，taking too large orsmall value of transmission can lead to poor results suchas Fig. 6（a）and Fig. 6（d）. Although it is an effectiveway to obtain accurate transmission map through statisti⁃cal priors（e. g. DCP and color attenuation prior），sin⁃gle-wave IR images carry less information，and multi-band statistics are not applicable. In terms of the qualityof dehazing images，the reconstructed IR images shouldhave better visual quality，and the highlighted targetscannot be erased. Therefore，the goal of image recon⁃struction is to improve visual quality while maintaininginformation integrity for subsequent recognition tasks.The mean squared error（MSE） contrast，CMSE，which represents the variance of the pixel values and hasbeen widely applied to evaluate the contrast characteris⁃tic of images［23］，is given by
CMSE =∑

x = 1

N ( I ( x ) - -I ) 2
N , （18）

where -I is the average luminance value of image；and Nrepresents the total number of pixels in the image. Hu⁃man vision has a stronger perception for high-contrast im⁃ages，while foggy images reduce the visual perceptiondue to the narrow dynamic range. In general，the valueof CMSE for clear natural images is larger because of largeluminance value dispersion； relatively， the value issmaller for foggy images. Under extreme and ideal condi⁃tions，the value of CMSE decreases continuously as the fogconcentrates，and eventually converges to zero. To im⁃prove the visibility of the reconstructed image，the select⁃ed value of transmission t should optimize the image con⁃trast，which means increasing the value of CMSE. FromEq. 4 and Eq. 18，CMSE for each reconstructed superpix⁃

el is expressed as follows：
CMSE_re =∑

x = 1

N ( I ( x ) - -I ) 2
t2N

, （19）
where t is the transmission for each superpixel. Notefrom Eq. 19 that the value of CMSE_re is a monotonicallydecreasing function of the transmission； therefore，asmall value of t can be selected to increase the value of
CMSE_re. Mathematically，the value of CMSE_re continues toincrease as t decreases. But for 16-bit IR images，pixelvalues cannot exceed the valid range of data bits. Somepixel values are truncated to 0 or 65 535 because of un⁃derflow or overflow. The truncation of these pixels causesthe degradation of visual quality，while the truncated pix⁃el information is erased. Fig. 7 shows the mapping of theinput values to output values.

Fig. 6 Relationship between transmission and reconstructed image. Haze is added to a block with t = 0. 6. Dehazing the artificial
block with t is（a）0. 3，（b）0. 5，（c）0. 7，（d）0. 9，and the histogram distribution for each block.
图 6 透射率与重建图像关系仿真图。使用透射率 t=0. 6添加雾霾衰减，选定透射率 t为（a）0. 3、（b）0. 5、（c）0. 7、（d）0. 9复原雾霾
后图像及相应直方图分布

Fig. 7 The input values of［0，65535］are mapped to the output
with a small t. The information in the red region is lost because
the values are truncated
图 7 利用较小的 t将输入范围［0，65535］映射到输出范围 . 红
色区域信息因发生数据截断而丢失
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As shown in Fig. 7，the input values in [ 0，α ]，and [ β，65 535 ] are truncated to 0 or 65 535. The atmo⁃spheric transmission t determines that only the input val⁃ues in range [ α，β ] can occupy the full dynamic range of
［0，65 535］after reconstruction，which means that thetruncated pixel values lead to information loss in the redregion in Fig. 7 and decreases the details in the haze-free image as shown in Fig. 6（a）. The valid input rangeis inversely proportional to slope 1/t. For simplicity，thesquared sum of the truncated values is used to representthe loss cost of information，and is expressed as：
CLOSS =∑

p = 1

N { min [ 0,J ( x ) ]2 + max [ 0,J ( x ) - 65 535 ]2 }
, （20）where J ( x ) denotes the luminance value of each pixel inthe reconstructed image. To maintain the integrity of theimage information，the selected value of t should not re⁃sult in any loss of information. Therefore，Eq. 20 mustsatisfy the following constraint conditions：

ì
í
î

min [ 0,J ( x ) ] = 0
max [ 0,J ( x ) - 65 535 ] = 0 . （21）

Referring to Eq. 4 and Eq. 21，a group of con⁃straint conditions is derived.
ì

í

î

ï
ïï
ï

ï
ïï
ï

t ≥ 1 - min [ I ( x ) ]A

t ≥ max [ I ( x ) ] - A65 535 - A
. （22）

Accordingly，the constraint of transmission can beinferred：
t ≥ max{1 - min [ I ( x ) ]A , max [ I ( x ) ] - A65 535 - A } . （23）
Based on the analysis that the value of CMSE decreas⁃es as t increases，the minimum value that satisfies Eq.23 is selected as the optimal transmission. It signifiesthat a high-contrast superpixel is obtained without loss ofinformation，we call it information integrity prior. Thetransmission of each superpixel can be calculated by

t = max{1 - ω ⋅ min [ I ( x ) ]A ,1 + ω ⋅
max [ I ( x ) ] - 65 535

65 535 - A } , （24）

where ω is a constant used to control the degree of dehaz⁃ing. As ω decreases，more fog is retained，and we set itto 0. 95 in the following experiments. To further reducethe effect of non-uniformity and blind pixels，we take theaverage value of the top 1. 5% of the largest and smallestpixels as the maximum value and minimum value. Thefirst term in Eq. 24 uses a similar constraint as darkchannel prior in He’s DCP algorithm ［14］. The DCP isconsidered to be an effective prior，but fails for some ob⁃jects whose values are brighter than the atmosphericlight. In contrast，Eq. 24 employs an additional con⁃straint to prevent overflow of the highlighted region.
3 Experimental results

In this section，to assess the performance of our pro⁃posed method，we test it in real self-built infrared datasetand compare it with CLAHE ［9］，MSR［10］，the method ofBo et al. ［13］，and the method of Zheng et al. ［27］. Com⁃mon natural mutation and slow-varying scenes are select⁃ed to exhibit in Fig. 8 and Fig. 9. All test images werecaptured from the same IR camera mentioned in Sect.2. 3，whose spectral response range is 0. 9~1. 7 μm. Weimplemented the proposed technique in MATLAB 2018aand tested it on an i5 CPU with 16 GB of RAM.
3. 1 Visual assessmentFig. 8 and Fig. 9 respectively show the visual com⁃parison of CLAHE，MSR，Bo et al.，Zheng et al. andour proposed method under mutation scene and slowly-varying scene，which are the most common scenes in thecity. In Fig. 8（a），the boundary between buildings ofdifferent depths is more obvious in the original IR imageand the visual quality of building at different distance hassignificant differences. As a comparison，Fig. 9（a）shows a scene where the distance changes slowly and theboundary of the degradation degree is not clear.The CLAHE method can effectively enhance theglobal contrast of IR images by equalizing the image sta⁃tistical histogram. The foggy region，whose pixel valuesare relatively concentrated in the histogram，has bettervisual performance after reconstruction；however，over-enhancement has occurred in the regions with slight de⁃generation such as trees and roofs，as shown in Fig. 8

Fig. 8 Visual comparisons in mutation scene (a) original image, (b) CLAHE, (c) MSR, (d) Bo et al., (e) Zheng et al.(f) proposed tech‐
nique. The zoomed-in details are shown on the right side of the picture
图8 突变场景中所提方法对比 (a)原图，(b)CLAHE，(c)MSR，(d)Bo，(e)Zheng，(f)本文方法
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（b）and Fig. 9（b）. Because the local information of theimage is not considered，the over-enhancement phenome⁃non cannot be effectively suppressed. Compared withFig. 8（b）and Fig. 9（b），the over-enhancement phe⁃nomenon is diminished in Fig. 8（c）and Fig. 9（c）. Al⁃though multi-scale Gaussian surround space constants ∂ i
（set to 10，50，and 250 in this study）are used to solvethe incident component，Gaussian convolution will resultin halo artifacts at the edges with large differences inbrightness. Besides，reconstructed image detail loss oc⁃curs in low-luminance areas with slow gradient changes，such as windows. In Fig. 8（d）and Fig. 9（d），the meth⁃od of Bo et al. achieves better results than above meth⁃ods，particularly in foggy regions，but the overall lumi⁃nance value of the image is reduced. In Bo’s method，adetail layer，which is amplified by the scene depth pro⁃portion，is added to the wavelet filtered output images，and the enhancement coefficient is set to a higher valuein the far regions. Therefore，the effect of blind pixels isthe most severe in this method，especially in the sky ar⁃ea. Over-enhancement is also present in the reconstruct⁃ed images obtained by the method of Zheng et al.，asshown in Fig. 8（e）and Fig. 9（e）. The principle oftheir algorithm is multi-exposure image fusion（MEF）based on an adaptive patch structure. Owing to the selec⁃tion of adaptive image block size and MEF for all corre⁃sponding image blocks in the underexposed image se⁃quences，a large computational volume is inevitable，leading to a long running time. Overall，the methods ofBo et al. and Zheng et al. produced better results thanthe CLAHE and MSR methods. All of the above methodsresult in poor reconstruction of the sky region，as shownin the red boxes in Figs. 8 and 9，because the sky regionhas non-uniform noise and is over-amplified. By apply⁃ing the pre-processing step for noise removal mentionedin Sect. 2. 1，we test it with the CLAHE algorithm，asshown in Fig. 10. The stripe noises are effectively sup⁃pressed，but the image details are blurred due to thesmoothing effect. Therefore，it is difficult to achieve sat⁃isfactory results by simply suppressing image noises. Ourproposed method can reduce the halo artifacts beingbrought to the reconstructed image because it ensures

that the transmission of pixels in the same superpixel isuniform. Observing the results in Fig. 8（f）and Fig. 9
（f），the results of our method is clearer and more natu⁃ral，while the sky region is not distorted because of theadditional constraint.

3. 2 Quantitative analysisAlthough subjective visual assessment is an effec⁃tive method to evaluate the reconstructed quality，main⁃stream full reference and no-reference metrics are alsocalculated to further illustrate the performance. In the ob⁃jective evaluation，the common quality assessment pa⁃rameters were calculated： peak signal-to-noise ratio
（PSNR），structural similarity index metric（SSIM）［35］，blind assessment indicators e and -r［36］，image visibilitymeasurement（IVM）［37］，and MSE. In addition，we de⁃fined a near-scene structural similarity index metric（NS-SSIM）. In the IR imaging system，when the imaging dis⁃

Fig. 9 Visual comparisons in slowly-varying scene (a) original image, (b) CLAHE, (c) MSR, (d) Bo et al., (e) Zheng et al.,(f) proposed
technique. The zoomed-in details are shown on the right side of the picture
图9 缓变场景中所提方法对比 (a)原图，(b)CLAHE，(c)MSR，(d)Bo等，(e)Zheng等，(f)本文方法。放大后细节图于右侧展示

Fig. 10 Example of comparison on pre-processing before CLA‐
HE. (a) original infrared image,(b) Pre-processing image by bilat‐
eral filtering, (c) result of CLAHE in (a), (d) result of CLAHE in
(b)
图 10 CLAHE 算法采用图像预处理后实验图 (a)原始红外图
像，(b)滤波后效果图，(c)图 a处理效果图，(d)图b处理效果图
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tance is small，the haze effect is negligible. Comparedwith visible images，clear near-scene regions with highcontrast are more likely to exist in the IR images. Forthese near-scene regions，the transmission is a large val⁃ue close to 1，and these regions are easily problem areasdue to over-enhancement. NS-SSIM can more accuratelyassess the degree of over-enhancement. The more severethe over-enhancement and deviation from authenticity，the smaller the value. The blue rectangular boxes inFigs. 8 and 9 are the manually selected near-scene re⁃gions，which do not require excessive processing. Aquantitative comparison is presented in Table I.

PSNR and SSIM are fully reference-based metrics.If the PSNR is larger，the distortion of the reconstructedimage will be smaller. The range of the SSIM score is 0to 1，and a larger value closer to 1 means that the recon⁃structed image has better perception and realism. Exceptfor the slightly lower SSIM in Fig. 9，the proposed meth⁃od achieves the highest score. Therefore，our methodhas better performance，and the method of Zheng et al.is second. Both of e and -r assess the enhanced degree ofimage visibility using the enhanced degree of image edg⁃es. The edges of the foggy images should be enhanced forideal reconstructed images. IVM also uses the enhance⁃ment of the image edges to illustrate the performance.Among these three indices，our method is better thanMSR and that of Bo et al.，but has lower scores thanCLAHE and that of Zheng et al. This is because the pres⁃ent of over-enhancement in CLAHE and Zheng et al.，which makes the image edges more visible. Our methodobtains the highest score for the MSE and NS-SSIM met⁃rics；those of Bo et al. and Zheng et al. also have betterperformance. This shows that our images have better con⁃trast and authenticity，and the results are consistent withthose of the subjective evaluation.In summary，our method performs better in quantita⁃tive comparisons，which is consistent with the qualitative

results. The results of both qualitative and quantitativeanalyses verify that our proposed method is effective interms of contrast，visibility，and especially in the avoid⁃ance of over-enhancement.
4 Conclusion

This paper presented an effective framework forhaze removal from IR images. Our strategy optimizes thecontrast of hazy images by ensuring regional similarityand information integrity. Hierarchical subdivision su⁃perpixel segmentation ensures regional similarity to re⁃duce the impact of halo effects，and a reasonable trans⁃mission map can be estimated by maintaining the infor⁃mation integrity. The atmospheric light can be obtainedautomatically because of our hierarchical search methodbased on superpixels. Compared with advanced meth⁃ods，our approach is more natural without over-enhance⁃ment. Furthermore，the distortion problem of the sky re⁃gion can be solved. In the future，we plan to combineour method with deep learning to explore the feasibility ofextrapolating the target depth.
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