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W-band dual-sheet beam traveling-wave tube with a novel planar slow-wave
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Abstract: A dual-beam rectangular ring-bar (DBRRB) slow wave structure (SWS), which is with a planar struc-
ture and is suitable for micro fabrication, is proposed for W-band traveling-wave tubes (TWT). Supported by a
pair of T-shaped dielectric rods, the RRB SWS is fit for dual-sheet beam operation. The high frequency character-
istics are analyzed by using computer simulations. Wide bandwidth input-output structures adopting tapered struc-
ture and step waveguide are designed. Hot-test performance of the RRB SWS is investigated by means of Particle-
in-cell (PIC) simulations. A solenoid magnetic field of 0. 6 T is adopted to focus the sheet beams with voltage
and current of 11.2 kV and 0. 12 A. The saturated output power of 56. 7 W at 94 GHz is obtained at the output
port, corresponding a gain of 27. 4 dB. In addition, an attenuator is added to suppress oscillations and achieve sta-
ble operation.
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Introduction

As the development of radar detection technology,
the requirement on target resolution ratio becomes higher
and higher. Thus, millimeter wave radar system has at-

tracted researcher’ s attentions. W-band (75~110 GHz)
is characterized by a large bandwidth and high resolu-
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tion, which can be effectively utilized with lower atmo-
spheric absorption, and it has an important application
prospect in radar and satellite space communication .
The high-power devices in W-band are mainly vacuumed
electron devices, including TWT ', backward-wave os-
cillator (BWO) ', gyrotron 4 ete. among them TWT
has been widely investigated for its wide bandwidth.
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A slow wave structure is the core parts of a TWT. At
W-band, the folded waveguide ' has been the most pop-
ular slow wave structure for the advantages as high power
and excellent heat dissipation. The cylindrical electron
beam has been commonly used in folded waveguides, but
as the structure size decreases, the cylindrical electron
beam will suffer a strong space charge effect when the
current is relatively large. Therefore, sheet electron
beam becomes more and more popular with its weak
space charge effect by increasing the width or height of
the sheet beam.

There are several SWSs have been proposed and ap-
plied for W-band sheet-beam TWTs, including sine
waveguide SWS | double-staggered grating SWS "
and meander-line SWS “'". In addition, the RRB SWS
developed from the conventional ring-bar SWS is also
suitable for sheet-beam TWTT.

For the RRB SWS, reference *' found that its ratio
of backward-wave interaction impedance and forward-
wave interaction impedance of the RRB SWS is lower
than that of the planar helix with straight-edge connec-
tions (PH-SEC) SWS, indicating that the RRB SWS
could operate more stability. In the reference ', the
RRB SWS based on dielectric substrates was presented,
and its dispersion characteristics and interaction imped-
ance were analyzed by using quasi-TEM approximation
approach. The results show that the dispersion of the
RRB SWS became weaker and the bandwidth became
wider after adding dielectric substrates, and it has the
characteristic of high gain.

In this paper, the DBRRB SWS is proposed for a W-
band dual-sheet beam TWT. The high frequency charac-
teristics have been investigated by using simulation. A
wide band input-output structure has been proposed for
the DBRRB SWS, leading to a good transmission curve.
The hot performance of the DBRRB SWS, cooperating
with two sheet electron beams, are obtained by using par-
ticle in cell (PIC) simulation.

1 High-frequency characteristics of the
DBRRB SWS

Fig. 1 shows the single-period structure model of
the DBRRB SWS, which consists of two rectangular
rings and metal rods. The SWS is supported by a pair of
T-shaped dielectric rods at the narrow sides. As a result,
there are space for two sheet electron beams, locating
along the broad sides. Although the inner tunnel of the
rectangular ring has a higher interaction impedance than
the outer side, the size of the inner tunnel is much small-
er, leading to a higher current density and higher capture
rate for electrons.

For a TWT, the lower the normalized phase velocity
of the SWS is, the lower the operation voltage will be.
And the higher the interaction impedance is, the stronger
the wave interaction will be. For the proposed SWS, H
and W are the height and width of the rectangular ring, L
is the length of the metal rod, ed is the vertical distance
between the electron beam and the SWS. The single peri-

od length of the SWS is 2% (L+dt), when dt is deter-

mined, L has great influence on the high frequency char-
acteristics of the SWS. The CST Eigen-mode solver and
HFSS are used to analyze the high frequency characteris-
tics of the SWS. Fig. 2 shows the effect of parameter L
on interaction impedance and normalized phase velocity
of the SWS by CST. When L decreases, the normalized
phase velocity will decrease and the interaction imped-
ance will increase, which means that reducing L can de-
crease the working voltage and increase the degree of
beam-wave interaction. Besides, the phase velocity is
not linearly proportional to the period length (v,/P,#v,,/
P,, v,/P=27f/p) in the RRB SWS, for the reason of the
phase shift changes with the period length, as shown in
Fig. 3. The phase shift at 94 GHz increases by an aver-
age of 15° for every 0.04 mm increase in the period
length.
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W and H mainly affect the upper and lower cut-off
frequencies of the fundamental mode of the slow-wave



11 DONG Yang et al: W-band dual-sheet beam traveling-wave tube with a novel planar slow-wave structure

307

2
s

w
g

0.20  —s— W=0.17mm, H=0.46mm
—e— W=0.25mm, H=0.36mm
0.15 W=0.33mm, H=0.25mm

—=— W=0.17mm, H=0.46mm
1 —e— w=0.25mm, H=0.36mm
W=0.33mm, H=0.25mm

Interaction Impedance/Ohm
oy
g

Normalized Phase Velocity

=

=

20 40 60 80 100 |i0 20 40 60 80 100 120
Frequency/GHz Frequency/GHz

(a) (b)

Fig. 4 The interaction impedance (a) and normalized phase ve-
locity, (b) vary with W/H
K4 FES YT () FIT—fL A, (b)FE W/H #9722 1L

structure, and increasing W is beneficial to the focusing
of the dual-sheet beam. When W increases, H needs to
be reduced to keep the cut-off frequency of the fundamen-
tal mode consistent. Fig. 4 shows the variations of inter-
action impedance and normalized phase velocity with W/
H, as can be seen, when W/H increases, the interaction
impedance and normalized phase velocity will decrease.

Fig. 5 (a) shows the electric field distribution of
the SWS along the direction of electron beam propagation
in 94 GHz, which has axial field components, and the
closer the electron beam to the SWS is, the stronger the
electric field is and the higher the interaction impedance
will be. From Fig. 5 (b) , ed varies from 0. 04 mm to
0. 06 mm, the interaction impedance is about 28 €} to 18
Q) in 94 GHz. When ed is set to 0. 04 mm, the interac-
tion impedance is about 36~15 ) from 89~100 GHz in
CST. And the interaction impedance curves calculated
by CST and HFSS have the same trend with a little differ-
ence.

When the structural parameters of the SWS are de-
termined, the dispersion curve of the SWS is confirmed
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Fig. 5 (a) Axial electric field distribution of the SWS in
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and shown in Fig. 6. The dispersion curves calculated
by CST and HFSS are consistent, which verifies the ratio-
nality of the design of the structure. The operation volt-
age at 94 GHz is calculated as 10. 6 kV. The 10. 6 kV
beam line intersects with mode 1 and mode 2 at 94 GHz
of working frequency point and 130 GHz of backward-
wave frequency point, respectively. The interaction im-
pedance of the backward-wave frequency point is about
10 Q, which may cause oscillation in the TWT.
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Fig. 6 The dispersion curves of the SWS
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2 Analysis of transmission characteris-
tics

The simulation model of the whole TWT is shown in
Fig. 7 (a), which includes the input and output cou-
pling structure, the slow wave line (Molybdenum plated
with Copper, conductivity of 2. 8x10” S/m) , dielectric
rods (BN, relative dielectric constant of 3.8, loss tan-
gent of 0. 005), the attenuator and two cathodes. The at-
tenuator, as shown in Fig. 7 (b), is designed to sup-
press backward-wave oscillation and reflection oscilla-
tion, the material is BeO with the relative dielectric con-
stant of 6.5 and loss tangent of 0.5. The input-output
coupling structure consists of two sections, one is the gra-
dient structure, as shown in Fig. 7 (¢), which includes
three periods of gradient structure with a height ratio of
S. The other section is a step waveguide, as shown in
Fig. 7 (d), which transits the slow wave line to the WR-
10 standard rectangular waveguide, and the size of WR-
10 is 2. 540 0 mmx1. 270 0 mm.

The parameters of the TWT are listed in Table 1.
The S-parameters of the step waveguide are investigated.
The main parameters affecting the S-parameters of the
step waveguide are gx1, gx2 and gx3, which can be opti-
mized by adjusting the size and proportion between those
parameters. From Fig. 8, we can see that the S11 of the
step waveguide is lower than -15 dB in the whole W-band
and the S21 is close to 0.

The attenuator divides the whole slow wave line into
three segments with period numbers of p1=60, p2=10
and p3=80, respectively. The S-parameters of the whole
simulation model are simulated by CST time domain solv-
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Table 1 Parameters of the TWT (mm)
1 THEESHRT (mm)

Parameter Value Parameter Value
L 0. 04 H 0. 46

w 0.17 dt 0.03

dw 0.03 Dx 0. 80
Dy 0.15 gxl 0.81
2x2 0.38 gx3 0.08
2y 0.52 LI 0.07

L2 0.50 L3 1. 00

L p2 3

Cathodes |

Dielectric rods  Slow wave line

Output Port
~ Input Port

(@)
Attenuator T
HI
I
S=HI:H=H2:HI=H3:H2
(b) (©
8 8 8
WR-10
" Rectangular
L3 Waveguide
axl gx2 gx3 ._1
(d)

Fig. 7 (a) The whole TWT structure, (b) attenuator, (c)
three periods gradient structure, (d) three-segment step wave-
guide
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Fig. 8 S-parameters of the step waveguide
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er, and the results are shown in Fig. 9. The parameter S
is the height gradient ratio of the gradient structure and S
=1 means there is no gradient structure. When S=0. 8,
the S11 parameter becomes better than S=1, which
means the gradient structure can effectively improve the

S11 of the TWT. As can be seen, the S11 is lower than -
20 dB in the range of 83~113 GHz. From Fig. 8 (b),
the S11 curves are almost the same with or without attenu-
ator. The S21 without attenuator is -30 dB in 94 GHz duo
to dielectric and metal loss, and after adding the attenua-

tor the S21 is reduced to -60 dB.
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Fig. 9 (a) S11 with different S of the TWT, (b) S-parameters
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3 Simulation of beam wave interaction

The beam wave interaction of the TWT is simulated
by using CST particle-in-cell studio (CST-PIC). The
PIC simulation of the TWT is carried out with the model
in section-2, the attenuator has been added to suppress
the possible oscillations, and good S-parameters have
been obtained. Parameters that need to be optimized in-
clude the voltage and current of the electron beam, p3,
ed, and the input power.

The height and width of the two identical cathodes
are set as eh=0.4 mm and ew=0. 08 mm respectively.
And the vertical distance between the electron beam and
the SWS is optimized to ed=0. 04 mm, which is decided
under the condition of electron interception loss and inter-
action impedance. The smaller the value of ed is, the
stronger the interaction between the electron beam and
the SWS is, and the higher the output power can be ob-
tained. However, when it is too small, electrons will be
captured by the SWS, resulting in electron interception
loss. The optimized voltage and current of each electron
beam are found as 11.2 kV and 0.06 A, respectively.
The corresponding current density of each cathode is
187.5 A/em®, which can be further decreased by increas-
ing the width or height of the cathode.

In addition, the focusing magnetic field is set to 0. 6
T, and the number of periods of the SWS is 150. The out-
put signals of the SWS after beam wave interaction is
shown in Fig. 10 (a) as well as the input signal, from
which the output power can be calculated as 56.7 W at
94 GHz with the input power of 0. 1 W, corresponding a
gain of 27.4 dB and electron efficiency of 4.2%. Be-
sides, the output signals when there is no input signal
have been investigated, as shown in Fig. 10 (b). It is
clear that there are no oscillations for at least 20 ns simu-
lation, indicating that no oscillation occurs without input
power.

Fig. 11 shows the spectrum of the ports’ signals,
there is no indication of backward wave oscillation, as
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the reflected signal is significantly lower than the inci-
dent signal and the frequency spectrum of output signal is
relatively clean. That is to say, the attenuator has effec-
tively suppressed the oscillations. Fig. 12 shows elec-
tron beam bunching and phase space diagram, as the in-
teraction length increases, the number of electrons in the
deceleration zone gradually exceeds that in the accelera-
tion zone, and the energy of electrons is gradually ex-
changed to the high frequency field. Besides, the TWT
is operating at a linear region and close to saturation in
length.
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Fig. 10 The time-domain output signals with (a) and without,
(b) input power
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Fig. 12 Electron beam bunching and phase space diagram
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Fig. 13 shows the output power varies with beam
width ew and beam height eh, while the beam current is
retained. It can be seen that the increase of eh has little
effect on output power. And the increase of ew has a
greater impact on the output power, which is because of
the interaction impedance decreases when goes far from
the center of the slow wave structure. Fig. 14 shows the
input-output power and gain curves, the saturated output

power is 56.7 W when the input power of 0. 1 W, and
the gain decreases as the input power increases. The f-
power and f-gain curves are shown in Fig. 15, the output
power exceeds 20 W in the range of 91~96 GHz and the
3- dB bandwidth is close to 5 GHz.
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Fig. 13 The output power varies with ew and eh
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4 Conclusion

In this paper, the DBRRB SWS with T-shape dielec-
tric rods supporting has been proposed for a W-band
TWT. Good transmissions have been obtained with the
addition of the gradient structure and the step wave-
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guide. The oscillations were well suppressed by the addi-
tion of an attenuator. The beam wave interaction results
show that the saturated output power is 56.7 W and the
gain is 27.4 dB at 94 GHz under the condition of two
sheet beams (11.2 kV, 0.12 A), 0.6 T focusing mag-
netic field and the input power of 0.1 W. The output
power exceeds 20 W in the range of 91~96 GHz.
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