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A convolution approach for the epilayer thickness
in liquid phase epitaxial growth
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Abstract: The relation between the film thickness and the growth conditions in the liquid phase epitaxy (LPE)
process is discussed. A convolution approach for the thickness is developed on the assumption that the growth rate
is determined by the solute diffusion process. Using this convolution expression, the relations between thickness,
growth time and cooling rate can be obtained for various LPE techniques. Moreover, the convolution algorithm
can also be used to deal with some complex growth conditions, such as nonuniform cooling rate, nonlinearity of

the liquidus curve and the finite growth solution.
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Introduction

As a mature technique for the growth of semiconduc-
tor films, Liquid Phase Epitaxy (LPE) has been widely
used to grow III-V and II-VI semiconductor materials. In
the LPE process, a substrate is inserted into the saturat-
ed solution and then the temperature of the system de-
creased while the solute crystallizes and deposits on the
substrate to form a film. The thickness is the fundamen-
tal parameter of the film. Compared to Vapor epitaxy
methods (MBE, MOCVD, etc. ), it is usually difficult
to monitor the thickness directly in the LPE process be-
cause the temperature of the growth solution is quite high
and the growth crucible is opaque. So, it is essential to
control the growth conditions carefully to obtain a de-
signed film thickness.
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Some factors that affect the epilayer thickness in-
clude the growth temperature, the growth time, the cool-
ing rate, the Solid-Liquid phase diagrams, and so on. It
is important to reveal the relation between the film prop-
erties and these factors. In the early study ", a diffusion
equation was set up to describe the LPE process and it
was demonstrated that the growth rate was mainly decid-
ed by the diffusion of the solute. An analytical solution
was derived to describe the relation between the growth
parameter and the growth rate in the semi-infinite bound-
ary conditions. Henry T. Minden investigated the details
of the phase diagram and gave the solution of the diffusion
equation in semi-infinite and bounded conditions”. The
question of constitutional supercooling was also present-
ed in his study. R. L. Moon also studied the influence of
thickness of growth solution on the LPE layer thickness
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and constitutional supercooling®. Assuming the equilib-
rium concentration followed an Arrhenius law, Richard
Ghez obtained an exact expression of the growth rate in
unbounded condition'”’. Muralidharan and S. C. Jain de-
rived a more accurate solution of the diffusion equation in
a solution with finite thickness and pointed out the dis-
crepancy between the theory and the experiments was
caused by the temperature variations of the diffusion coef-
ficient of the solute””. Crossley studied the LPE process
using numerical method which was in principle adapted
to various boundary conditions and cooling process'®®.
Besides these theoretical approaches, R. L. Moon, J.
Kinoshita and J. J. Hsieh investigated the LPE of GaAs
and compared the differences between the experiments
and the theory ™. Their results demonstrated the epitax-
ial thickness calculated from the diffusion equation con-
sisted with the experimental data. In the later stud-
ies!'"™ | the numerical simulation methods were widely
used due to the improvement of the computational abili-
ty. The contents investigated extended to 2-D, 3-D and
ternary alloy system. Meanwhile, the computational flu-
id method was adopted to study the influence of the melt
convection on the epitaxial process.

These studies were mostly based on the diffusion-
limited model. The driving force of growth is the constitu-
tion gradient caused by the solute deposition in the cool-
ing process. A constant cooling rate was mostly adopted
in the theoretical models """, In their experiments,
B. L. MOON and J. KINOSHITA “ observed the dis-
crepancy between the experimental data and the theoreti-
cal prediction. They ascribed these to the enhanced
growth rate in the beginning of growth or thermal inertia
of the growth furnace. In the LPE process, it is actually
difficult to keep a constant cooling rate due to the ambi-
ent influence. The cooling rate will fluctuate around an
average value, especially in a long-time growth process
(one hour or more). For this nonuniform cooling rate,
the numerical method is preferred. However, an analyti-
cal model is more explicit and intuitive in the physical
sense compared to the numerical method. In this paper,
a convolution expression relating the film thickness to the
growth time is derived based on the diffusion-limited
model. The convolution algorithm could deal with bound-
ed or unbound growth solution, nonuniform cooling rate,
nonlinearity of the liquidus curve, and so on.

1 Theory

Assuming the thickness of the solution is L, the ori-
gin locates in the solid-liquid interface and the positive x
direction points to the liquid, the LPE process could be
described with the following diffusion equation, bound-
ary, and initial conditions. f
Diffusion equation:
dC (x,t) D FC(x,t)
al o’

Initial condition:

C(x,0)=C, . (2)

Boundary condition
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Fig. 1 The schematic phase-diagram used in the LPE growth model
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C(04)=C,(t)

aC (x.0) . (3)
— 1., =0
0x
With the semi-infinite growth solution, I — o, the
boundary condition Eq. 3 changes to
Boundary condition
C(Ovt) =Ci(1)

4
C(»t)=C, @

Referring to Fig. 1, C(x,1t)is the concentration of
the solution at the coordinates x and the time ¢, D is the
diffusion coefficient of the solute, C, is the concentration
of the initial solution, T, is the equilibrium temperature
corresponding to C,, T,(t) is the temperature on the solid-
liquid interface at time ¢. Assuming the solid-liquid two-
phase keep equilibrium at the interface, C,(t) is then the
solute concentration corresponding to T,(¢) on the liqui-
dus. In appendix A, a Laplace transform method is used
to solve the Eqs. 1-4 and the relation between the epilay-
er thickness and the growth time is obtained. Although
the solving process is similar to that of in Refs. [2,9-10]
except the developing of the convolution expression, a
detailed derivation is given for the sake of clarity.

2 Discussion

In appendix A, the relation between the epilayer
thickness and the growth time in the semi-infinite solu-
tion condition is given by

1 D 1
d(t)=cx'/;'\/;*[Co—Cl(t)] . (5)

The symbol * in Eq. 5 is the convolution operator.
So, the epilayer thickness is proportional to the convolu-
tion of the reciprocal of the square root of time and the
“constitutional supercooling”. For different growth pro-
cess, ‘constitutional supercooling” may have different
form. J. J. Hsieh " classified the LPE process into four
types which are Step-cooling, Equilibrium-cooling, Su-
per-cooling and Two-phase solution technique. For the
first three techniques, the relation between the epilayer
thickness and the growth time can be described by the
diffusion-limited model.

For the Equilibrium-cooling technique, the cooling
rate « is a constant. Assuming the slope of liquidus is al-
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so a constant m, it is obvious that C, — C,(¢)=

Ty = T/(1) «
—=—._ So,
m

m
1 D 1 t\ 4 1 D 3
d(1)=—- .*(a)z.. |2 a2 (6)
C.NT i \m 3 Cm N
For the Step-cooling technique, the degree of the su-

A
percooling A is a constant and C, — C,(t) = —. So,
m

1 /D 1 1 [0 1
d(”zcjﬁy; [co-c,(t)]:a./;.w

(i):(fm/fAﬁ )

For the C,-C(1)=
A+ at
. So,

d(z):Ck2’7z-\/§-(2-A'\/?+;‘-oz-tz . (8)

Equations 6-8 consist with those derived in Ref.
[10]. For the widely used Equilibrium-cooling tech-
3

supercooling  technique,

m

nique, the thickness is proportional to the time 2 which
means the growth rate of film increases gradually with
time. It is possible to design a special cooling process in
which the growth rate will be a constant. According to
Eq. 5, if the decrease of temperature is proportional to
t'?, the film thickness will be proportional to time ¢. In
such cooling process, the growth rate is a constant which
may benefit the uniformity of film and the simplicity of
operation.

As for the two-phase-solution technique, the pro-
cess deviates from equilibrium and the deposition will oc-
cur on both the substrate and the precipitates '*'. The dif-
fusion-limited model is not applicable for the two-phase-
solution process.

Moreover, in appendix A, the epilayer thickness on
the bounded solution condition is also obtained. On such
conditions, the epilayer thickness is a sum of infinite se-
ries as described by Eq. A19. Supposing C,(t) = C, -

— , then the epilayer thickness can be calculated,

D
« 2 el 1
d(t)=——-|Lt+ ] O
@) csmt02+1 sl @
n

This result consists with that of obtained in Ref.
[3]. So, Eq. 5 is a general one which can be simplified
to various forms under different conditions.

As mentioned above, it is difficult to maintain a con-
stant cooling-rate « in a real growth process. The cooling-
rate a will change slightly during the cooling process.
According to Eq. 6, we should get a straight line passing
through the origin if we make a curve of d(t) versus ¢
However, the line did not always pass through the origin
in the experiments. R. L. Moon etc. "' have observed
this phenomenon. They thought the intercept would be

positive if the growth rate was fast at the beginning of
growth, while a negative intercept would occur if the
cooling rate is small at the beginning due to the thermal
inertia of the furnace. This non-uniform cooling process
can be manipulated using Eq. 5. Assuming the slope of
liquidus is a constant m, the degree of supercooling is
T.(ty=T,-T,/(t)= [CO - C,(t)]'m. Then, from Eq.
5, we can get:

1 D 1
d(t)= ——
0=z

——*T (1) . (10)
T Vi
Numerically, the growth time ¢ is divided into N
4
equal parts and the interval is n for each part. The mid-
point of each time interval is ¢;(i = 1,2---N). The de-
gree of supercooling at moment ¢, is T_w(t,»). According to

Eq. 10 and the definition of convolution, we get,

B 1 . D_ il Tsc(ti) 1
d(t)—w/; 21 — v (11)

In the above expression, ¢, and T, (ti) are both mea-

surable values. So, for this non-uniform cooling process,
the numerical solution of the partial differential equation
(PDE) is simplified to an algebraic sum.
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Fig. 2 The relation between temperature and the time in a LPE
process

P2 JRARAINIE A e A LS Bl ] PR 285G R

As an example, the relationship between the tem-
perature and the growth time in a HgCdTe LPE is shown
in Fig. 2. The circle-solid line is the measured tempera-
ture. The decrease of the temperature is 6.5 °C during
the growth time of 63.5 minutes. The average cooling-
rate is @ = 0.102 C/minute. The dashed straight line is a
supposed ideal cooling curve with a slope of 0.102
“C/minute. A deviation exists between these two curves
which illustrates the cooling-rate is not a constant. The
maximum deviation is about 0.5°C. The cooling-rate is
small at the beginning, and it will change slightly during
the whole growth process. If we suppose that the cooling-
rate o keeps constant as 0. 102°C/minute in the growth
process, we could get an epilayer thickness d, according
Eq. 6. Meanwhile, we can also calculate the thickness
d, by adopting the real cooling curve in Fig. 2 and
Eq. 11. Finally, we get
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G2 _ _ : =0.93. (12)

The above result means the real thickness will be
smaller than the value calculated by Eq. 6, the deriva-
tion of the thickness is about 7%. In Fig. 2, the real cool-
ing curve is above the ideal cooling curve and takes a
“convex” shape. This convex feature results in d, < d,.
If the real cooling curve is “concave” , the curve will be
under the ideal cooling curve. Following the same calcu-
lation method, we will get d, > d,.
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Fig. 3 LPE layer thickness versus 3/2 power of growth time.
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In the LPE process illustrated in Fig. 2, we can also
calculate the thickness variation with time according to
Eq. 11. The calculated results are shown in Fig. 3. In
Fig. 3, the x-axis is the 3/2 power of time and the Y-axis

| /D
is the nominal thickness in which assuming ——-+ [— =
Cm N m

1. The dashed-line is to guide the eyes. It can be seen
the plot of the thickness versus :*? is approximately a
straight line except the first few data points. This straight
line does not pass through the coordinate origin and gives
a negative intercept. This result consists with that of ob-
tained in Ref. [9].

In the more general situation, the slope of the liqui-
dus is not a constant. C, may be a function of tempera-
ture T, C, = C,(T). If the relation between temperature
T and time t is T = T'(¢), C, can be expressed as a func-
tion of time ¢, C, = C,(T(t)). For instance, Henry T.
Minden * had supposed the relation between the solute

concentration and the time near the solid-liquid interface
t

is C,(t) = Cye . Using Eq. 5, we get

L /D 1 2C, [D
d(t)ZQ‘\/:‘\/;*[CO—CI(t)]z C \/;[\[_

V7 F(\i/7)] . (13)
where F(+/t/7) is the Dawson function, F(\/ t/T):

—

Vi/To
—u 2
e”'f e dy.
0

3 Conclusions

The liquid phase epitaxy (LPE) process can be de-
scribed by the diffusion-limited model. The convolution
expression deduced in this study can deal with the three
LPE techniques, namely step-cooling, equilibrium-cool-
ing and supercooling. For the nonuniform cooling pro-
cess, we compared the difference between the convolu-
tion calculation and the simply-model (uniform cooling-
rate) calculation. The result shows there is a quite differ-
ence between these two methods which should be consid-
ered in the real LPE process. Moreover, by adopting the
phase diagram data, the epilayer thickness could be pre-
dicted which is helpful to the control of LPE process.

Appendix A:

The control equation for the one-dimension diffusion
process in a finite solution can be written as:
Diffusion equation :
9*C (x,t)

6C(x,t):D C(AD)
Jat A

Initial condition:

C(x,0) = C, . (A2)

Boundary condition

C(04)=C,(t)

aC
0| _,
dx

x=1L

, (A3)

where C,(¢) is the solute concentration at the growing in-
terface and L is the thickness of the solution.

Letf (x,t) = C(x,t) = C,, the Eqs. A1-A3 become
Y _ oS

=D—= , (A4)
Jat x’
f(x,0)=0 , (A5)
£(0)=C,(t) - C,
af;x,t) o . (A6)

The Laplace transform method is used to solve
(A4)-(A6). )
The Laplace transform of f(x,1) is f(x,p)=
L[ f(x,t)], Eq. A4 becomes
. T (x,
pF (o) = £ (0 = DL )
x

Boundary condition (A6) becomes
7(0p) = LIC(1) - €]
8}(x,p) ~0 . (A8)
ox -

x=1L
Solving the differential Eqs. (A7)-(A8) leads to

~ cosh (\/p/D +(x — L))
f(x,p) = L
cosh (\/p/D -L)

Taking the inverse Laplace transform of (A9) leads

[C,(t)-C,]. (A9)
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to 1
~ cos o(x — L 'tanh(\/p/D ‘L) (A18)
Jea) = £ NP ) ) Vi

cosh (\/p/D -L)
. (A10)

where * represents the convolution operator. The convo-
lution between two functions u(#) and v(¢) is defined as:

u(tyso(t) = [(u(z)w(t - r)dr (A11)
0
So, the differential of C(x,t) at x=0 is
dc(x,t) _ af (x,t)
ax x=0 B ax x=0
= L£7| [+ tanh (/pD +L) {CC ()]
(A12)
The thickness of the film can be expressed as
1 0C(x,7)
W=7 jop[ - } dr , (A13)

x=0

where C| is concentration in the solid.

Substituting (A12) into (A13) yields
D
d(1) = QIO{L‘{@- tanh(\/p/D-L)j‘*[Cn - C,(z)];dr

(A14)
Taking the Laplace transform of (A14) leads to

Lid(t)]= \/Cﬁ\lf tanh (\/p/D +L)-L [Cy = C,(1) ]
¢ P

(A15)

Then taking the inverse Laplace transform of
(A15), we can obtain

d(t)zg.[,-l ! - tanh (\/p/D L) |*[C, - C,(1)]
P

(A16)

If the solution is semi-infinite, L— o , tanh
(\/p/D -L)—1,eq. (A16) becomes
1
@L“ — [*[Cy - C(0)]

d(t) =
NG

=L e -cw)

C. N7 /f
If the solution is bounded, we need simplify the in-
verse Laplace transform in (A16) which is

(A17)

The residue theorem is used to calculate (A18). The
residue of the pole at p=0 is just zero. The poles due to the

D 1
hyperbolic tangent function in (A18) is p, = —P(n-lg)z’n’z.

D 1
= (n +5)27th
2

The residues of the poles p, are 2:: Oei

So, the thickness of the film in bounded solution is

1 2D (. Zaslpm
=T {Znoe G }*[co—c,m] (A19)
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