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Abstract: To ensure the fusion quality and efficiency simultaneously, a novel image fusion method based on
multi-scale Gaussian filtering and morphological transform is proposed. The multi-scale Gaussian filtering is de-
signed to decompose the source images into a series of detail images and approximation images. The multi-scale
top- and bottom-hat decompositions are used respectively to fully extract the bright and dark details of different
scales in each approximation image. The multi-scale morphological inner- and outer-boundary decompositions are
constructed to fully extract boundary information in each detail image. Experimental results demonstrate that the
proposed method is comparable to or even better in comparison with typical multi-scale decomposition-based fu-
sion methods. Additionally, the method operates much faster than some advanced multi-scale decomposition-
based methods like NSCT and NSST.

Key words: image fusion, multi-scale decomposition, multi-scale Gaussian filtering, morphological transform
PACS: 07.57.-C, 07.57. Ty, 85. 25. Pb, 85. 60. Gz

ETZRESHIREMESETHRIANSHMLXBEGMSTTIE

RV ORAET, BERS, EHE, A OB
(1. b k2t (5 B S5 TR, 1S KJE 0300515

2. b REE MRS X, L FE W14 0360005

3. bR FesE &, 10 Kt 030051)

BE-ATAHRI#EREMRE, RHT —HETIZREGHRUMBSEL BN ERE ST &, i
T HREGH R KR E GRS RA — AP A E R R, R S RZTUE AR i 2 ok 2 2R
ABREGEAEARENAGHEYT, WET ZREVSF NI LGS UT L2 RBRATEHGNALER,
SRAERKN  ZT R SBRBNETERESBOBE T EMLEEES Ak —LARNETLEREL

R U 7 % (4n NSCT 1 NSST) 15 H 3 & 13 %

X B W.HEGRES;SREEGLIME; ZREGIRIGH SR

FE 5SS . TN219;TP391.4 X ERERIRAD : A

Introduction

Visible, infrared, and infrared polarization images
individually captured by different sensors present comple-
mentary information of the same scene, and they could
be combined by the image fusion technology to obtain a
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new, more accurate, comprehensive, and reliable image
description of the scene '''. The fusion methods are var-
ied with image sources, fusion requirements, or purpos-
es 7. In general, the fusion methods can be classified
into pixel-, feature- and decision-level. Compared with

the latter two fusion levels, the first fusion level can
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maintain the source image data as much as possible, so it
plays an important role in most image processing tasks.
Major pixel-level image fusion methods can be put into
four groups according to their adopted theories °', name-
ly multi-scale decomposition-based methods, the sparse
representation-based methods, methods in other do-
mains, and methods combining different transforms. For
the multi-scale decomposition-based methods the decom-
position schemes and fusion rules are two aspects that af-
fect fusion quality and efficiency.

For the decomposition schemes, various methods are
proposed, like the discrete wavelet transform (DWT) ',
dual-tree complex wavelet transform (DTCWT) 7, sta-
tionary wavelet transform (SWT) | wavelet packet
transform (WPT) ™!, non-subsampled contourlet trans-
form (NSCT) "' and non-subsampled shearlet trans-
form (NSST) . And many practices proved that NSCT
and NSST usually outperform other multi-scale decompo-
sition-based methods in representing 2-D singular signals
contained in digital images '*'. But the design of multi-
directional filter banks for NSCT and NSST is relatively
complex and computational time-consuming, which
greatly reduces the efficiency of image fusion.

Fusion rules generally include low and high frequen-
cy coefficients fusion rules. The AVG-ABS rule is a sim-
ple fusion rule which uses the average rule to combine
low-frequency coefficients and uses the absolute maxi-
mum rule to combine the high-frequency coefficients.
The AVG-ABS fusion rule is computed easily and imple-
mented simply, however, it always causes distortions
and artifacts """, To overcome these shortcomings and
improve the fusion quality, a large number of rules have
been proposed "**”. These rules in Refs. 15-20 have
achieved satisfactory results, but they have the disadvan-
tage of high computational complexity.

To ensure both the fusion quality and computational
efficiency simultaneously, a novel multi-scale decompo-
sition-based fusion method with dual decomposition struc-
tures is proposed. Our method is dedicated to improving
the image fusion quality and efficiency from the aspect of
image decomposition scheme, while for the rule aspect,
our method only uses simple AVG-ABS rule. Firstly, in-
spired by the idea of constructing octaves in SIFT " and
SURF ™' algorithms, the source images are decomposed
into a series of detail and approximation images by multi-
scale Gaussian filters to construct the undecimated pyra-
mid structures. The multi-scale Gaussian filters have in-
creasing standard deviation as well as up-scaling size.
Secondly, for the approximation images, i. e., the top
layers of the undecimated pyramid structures, multi-scale
morphology top- and bottom-hat decompositions *** are
used to fully extract bright and dark details of different
scales on the background, and then the contrast of the
fused layer is improved by the absolute maximum rule.
Thirdly, the multi-scale morphological inner- and outer-
boundary decompositions are especially constructed
based the idea of constructing multi-scale top- and bot-
tom-hat decompositions. For each detail image, these
two morphology decompositions are implemented to ex-

tract the boundary information. And then the decom-
posed coefficients are combined by the approach of choos-
ing absolute maximum. At last, the fused image is recon-
structed through taking the inverse transforms corre-
sponding to the decompositions mentioned.

1 Related theories and work

1.1 The pyramid transforms

The theory and mathematical representation for con-
structing multiresolution pyramid transform scheme are
presented by Ref. 25 and extended by Ref. 26. A domain
V; of signals is assigned at each level, the analysis opera-
tors i, maps an image to a higher level in the pyramid,
while the synthesis operator (ﬁji maps an image to a lower
level in the pyramid, i. e. lﬁjT:Vj: V.., and lllfl ViV
The detail signal y = x — & contains information of x which
does not exist in £, where £ = ¢ /4|, (x) and — is a subtrac-
tion operator (x, £) = x — £ mapping V, X Y, into the set V..
The decomposition process of an input image f is ex-
pressed as Eq. 1:

JO o YO O) o e [0, 0 (1)

where

f(“) :f € VO
f(ﬁ]):w (f(/‘))el/jH, ji=0 . (2)
W=~y () ey,

And the reconstruction process through the backward re-
cursion is expressed as Eq. 3:

f :f(O),f(/) - l/fjl (f(/+ 1)) + y(/)’j >0 , (3)

Eq. 1 and Eq. 3 are called the pyramid transform and the
inverse pyramid transform respectively.

1.2  Scale space representation and multi—scale
Gaussian filtering

The scale space of an image can be generated
through convolving the image with Gaussian filters, and
it has been successfully applied in SIFT " to detect key
points which are invariant to scales. In Ref. 26 the scale
space is divided into octaves. For each octave, the initial
image is iteratively convolved with Gaussians with in-
creasing standard deviation to generate a set of scale
space images (Gaussian images) , and one of the Gauss-
ian images is downsampled to obtain the initial image of
the next octave. Then, the Difference of Gaussians
(DoG) images are obtained by subtracting adjacent
Gaussian images. In SURF 20" in order to omit the
down-sampling step, the scale space is obtained by in-
creasing the size of filter.

Inspired by the above algorithms, we have the
source image repeatedly convolved with Gaussian filters
whose standard deviation and size increase simultaneous-
ly to construct undecimated pyramid structure. Then,
the DoG images are produced by subtracting adjacent
Gaussian images. Accordingly, the transform scheme of
such pyramid is given by Eq. 4:
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fO=feV,
f”‘ GHVeV,, j=0 . (4
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where
= (1/2’170'?)' exp[ - (x2 + yz)/20'j2] .

G, is the Gaussian kernels (filters) with a size of (60, +
1) X (60; + 1) in this paper, and * denotes the convolu-
tion operation. The parameter o; is the standard devia-
tion, which is increasing with j, and in this paper o, , =
ko, k > 1. Then the source image f can be decomposed
into an approximation image and a set of detail images as

shown in scheme 1, and it can also be exactly recon-
structed through the foﬂ()wing recursion :

f= f(O)f f(]+1+y(’,j>0 . (6)

The four-level decomposition scheme is illustrated
in Fig. 1.

2 I /’
\‘/Coaraser

levels
Source image ——

Difference—of—Gaussion(DoG)images

Fig. 1 Example of four-level decomposition by multi-scale
Gaussian filtering
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1.3 Multi-scale morphological transforms

The multi-scale top-hat transform using structuring
elements with up-scaling size can extract the light and
dark details at different image scales in image fusion **.
Based the idea of constructing multi-scale top-hat trans-
form, the multi-scale morphological inner-boundary
transform is constructed. These two kinds of morphologi-
cal transforms can be expressed as Eq. 4, with the Gauss-
ian kernel G; being replaced by morphological opening
operation Open,,J and erosion operation Erosion,,l, respec-

tively. For purpose of extracting details of different
scales, the scale of structuring element b, increases with
J. The inverse transforms can be expressed as Eq. 6.

The multi-scale morphological bottom-hat transform
and its inverse are shown as follows

fO=fev,

U = Close, (S eV j=0 (1)
0 = flis) _ f0) ¢y,

ffOS ==z (8)

where the analysis operator is morphological closing oper-
ation Close, , with b, also increasing with j. The morpho-

logical outer-boundary transform and its inverse are simi-
lar to the bottom-hat transform and its inverse, with

Close, being replaced by dilation operation Dilation,.

2 Proposed method framework

The proposed fusion method comprises three pro-
cesses that are multi-scale decomposition, fusion, and
reconstruction.

2.1 Multi—scale decomposition process

The K-level decomposition of a given source image f

by the scheme (4) has the form

f— {y y<z) (k) (A)Jcmn} . (9)

represents the detail image at level k and f**"
denotes the approximation image of this multi-scale struc-
ture.

f** Vs a coarse representation of f and usually in-
herit a few bright and dark details, thus the multi-scale
top- and bottom-hat decompositions are used to extract
bright objects on a dark background and dark objects on
a bright background of different scales, respectively.
Henceforth, f**" can be decomposed by schemes men-
tioned in subsection 1. 3 as

: {yfl)’yzmv ’yt(l)v' Y W)zﬁ ey }
f(k +1) — , ( 10)
{9’1;])79”1] P ?yle)’ ’yhmsz' e }

where y and y{" represent the detail images at level [ ob-
tained by the top- and bottom-hat decomposition process,
respectively. And £ *" and " *" denote the approxima-

where y®

tion images of the multi-scale top- and bottom-hat struc-
ture, respectively. Figure 2 is given as an example of
three-level top- and bottom-hat decompositions.

Fig. 2 Example of three-level top- and bottom-hat decomposi-
tions of the input image /'

B2 WA RGO 2T 3 JZ TR E 7 A 7 161)

The detail image y* in scheme 9 comprises various
details like edges and lines, thus the multi-scale inner-
and outer-boundary transforms mentioned in subsection
1.3 are used to extract inner-boundary as well as outer-
boundary information of different scales. Hence, y*
be decomposed as
kN kN, + 1
" T R A
y = o an
Py e ey

where y* and y!* represent the detail images at level [

of y®

that are obtained by the inner- and outer-boundary
(k, N, + 1) kN, + 1)
decomposition process, respectively. f; and f

are the approximation images of y*' at the highest level
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of the multi-scale inner- and outer-boundary structure,
respectively. Figure 3 gives an example of three-level
inner- and outer-boundary decompositions.

(2.2)
Ji

IeA))
Vi

2.1) 2.2)
Yo Yo

Fig. 3 Example of three-level inner and outer-boundary decom-
positions of the input image y®.
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2.2 Fusion process

In this paper, the composite approximation coeffi-
cients of the approximation image in the multi-scale top-
and bottom-hat structures take the average of the approxi-
mation of the sources. For the composite detail coeffi-
cients of the detail images, the absolute maximum selec-
tion rule is used.
2.2.1 Fusion rules for the multi-scale top— and
bottom—hat structures

The vector coordinate n =(n, m) is used here to
denote the location of an image. For instance,
y"(nlA) represents the detail coefficient for the multi-
scale top-hat structure at location n within level [ of
source image A. And the notation (*) will be used to
denote an image, e. g., y"(+I14) refers to the detail
image.

The arbitrary fused detail coefficient y(nlF) and
the fused approximation coefficient y* (nlF) of the multi-
scale top-hat structure are obtained through

YO (nlF) = max{| 5 yO(nlB)]}
0 (nlF) = a, 7 (nlA) + B,V (nlB)

The weights a, and B, take 0. 5, which preserves the
mean intensity of the two source images. Likewise,

y(nlF) and £"*"(nlF) of the multi-scale bottom hat

structure are obtained through

{/ y(nlF) = max { |y1(]

(12)

" (niB)|}
0 + 1)(n|B)’

(M + ”(n|F) =q, h(w+ ”(n|A) + ,Bb
with a, =B, = 0.5.

The selective rule in Eq. 12 means that we choose
the brighter ones in the bright details, and the selective
rule in Eq. 13 means that we choose the darker ones in
the dark details. In this way, the bright and dark details
of different scales can be fully extracted and hence the
contrast at each layer can be improved.

2.2.2 Fusion rules for the multi-scale inner— and
outer—boundary structures

For an arbitrary fused detail coefficient y*" (nlF) of
the multi-scale inner-boundary structures, we only use
the absolute maximum selection rule:

Y (nlA) i [y (nld) | > |y (nlB) |

y* (nlB) otherwise

y* (nlF) = (14)

Sois the fused approximation coefficient ;""" (nlF)
In such way, the boundary information such as edges and
lines of different scales can be well preserved. Likewise,
arbitrary y*" (nlF) and ﬂ,(k”w"”)(an) of the multi-scale
outer-boundary structures are also obtained by the abso-
lute maximum selection rule.
2.3 Reconstruction process

According to Egs. 6 and 8, the reconstruction of the
approximation image f* *V(+1F) can be obtained through
the multi-scale top- and bottom-hat inverse transforms as

FEOCIE) = (e £ CIE) + Xy lF))/2+
(Kw+1fb(u+”( |F) 21 0 lyb])( |F))/2 s

which means both bright and dark information are of
equal importance to the source image. In addition, we at-
tach equal importance to the features of different scale
levels, thus the weights in Eq. 15 are set to be y, = k, =
05, p=1,2,---,(M + 1).

Similarly, inner- and outer-boundary information
are considered to be equally important to the source im-
age, and so are the features of different scale levels.
Thus, according to Egs. 6 and 8, the reconstruction of an
arbitrary detail image y* (+1F) through the multi-scale in-
ner- and outer-boundary inverse transforms can be ob-
tained as

y“’(°IF)=(ﬁ("““”( F)+ 3"y (- |F))/2+
((“ SR Jﬂk[('lF))/Z . (16)

At last, the fused image f (*|F) can be reconstructed
by
FCIF) = fOCIF) = fEDCIF) + Y5 yP(-1F).(17)

3 Experiments

3.1 Experimental setups

In order to validate the performance of the proposed
method, experiments are conducted on two categories of
source images including ten pairs of infrared-visible im-
ages (Fig. 4(a)) and eight pairs of infrared intensity-po-
larization images (Fig. 4(b)). The two source images in
each pair are pre-registered and the size of each image is
set to 256%X256 pixels. The experiments in this paper are
programmed by Matlab 2016b and run on an Intel (R)
Core (TM) i5-6500 CPU @ 3. 20GHz Desktop with 16. 0
GB RAM.

Various pixel-level multi-scale decomposition-based
methods including DWT, DTCWT, SWT, WPT, NSCT,
and NSST are compared with the proposed method. All
the compared methods adopt the simple AVG-ABS rule.
According to Ref. 13, most of the methods mentioned
above perform well when the decomposition levels for
them are set to 3. Thus, for purpose of making reliable
and persuasive comparisons, the decomposition levels
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(b)

Fig. 4 The two kinds of source images (a) infrared-visible imag-
es, (b) infrared intensity-polarization images
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P

for the methods mentioned above are all set to 3. And to
make each method achieve a good performance the other
parameters are also suggested by Ref. 13, some of which
are listed in Table 1.

Table 1 The parameters set in the compared methods.
‘Filter’ represents the Orientation filter; ‘Levels’
denotes the decomposition levels and the corre-
sponding number of orientations for each level.

F1 TR PSHEIEE “Filter" R 0IEHK 2 ; “Levels”

REDBEHINEGANEX AT EH

Methods Pyramid filter Filter Levels
DWT thiol. 3 3

DTCWT 5-7 q-6 3
SWT biorl. 3 3
WPT biorl. 3 3
NSCT maxflat dmaxflats 4,8,16
NSST maxflat 4,8,16

For NSST, the size of the local support of shear fil-
ter at each level are selected as 8, 16, 32. As for the
proposed method, the parameters o, and k for the multi-
scale Gaussian filtering process in Eq. 5 are selected ex-
perimentally. In this experiment, the source images are
decomposed by 3-layer multi-scale Gaussian decomposi-
tion, and different fused images are obtained by chang-
ing the parameters o, and k. During the fusion process,
the AVG-ABS rule is also adopted. When o and £ are in
certain value, every fusion image will be evaluated by
seven objective assessment metrics (mentioned in sub-
section 3.2). For each metric, its mean value is ob-
tained by averaging the evaluation results of the fusion
images. Then, seven mean values are summed to get the
sum values of objective metrics. Figure 5 gives three sur-
face plots which show variations of the sum of the seven
metrics with o, and k. As shown in Fig. 5, the optimal
values of o and k£ for the four kinds of images are ob-
tained. The structuring elements in the multi-scale in-
ner- and outer-boundary decompositions are selected as
square, and in the multi-scale top- and bottom-hat de-
compositions they are chosen to be disk. o, and & in Eq.
5 and the parameters K, M, N,, N,, and N, in schemes

_.
—
IS

1
=
()

Sum values of objective metrics

11.4
11.3
11.2
11.1
11

10.9
10.8
10.7
10.6

Sum values of objective metrics

Fig. 5 Estimation of the parameters o, and k for (a) infrared-vis-
ible images, (b) infrared intensity-polarization images

K5 8o, Mk () LLA 5 A WG IEE , (b) 055
55 i P P15

9, 10, and 11 are set as shown in Table 2 to make the
proposed method achieve a good performance.

Table 2 The parameters of the proposed method for
the four kinds of source images.

R2 FrRHAE EN OHIEE SN S

Parameters
Source images
T, k [K, M, N,, N,, N,]
Infrared—visible 0.6 1.4 [3,2,0,1,2]
Infrared intensity—polarization 0.6 1.1 [3,2,1,1,2]

3.2 Objective assessment metrics

Seven representative metrics, 1. e. , Q, 7l Q. (28]

L information entropy (IE) ', mutual informa-

tion (MI) ™', Tamura contrast (TC) ™', and visual in-
formation fidelity (VIF) "*' are employed to evaluate the
proposed method comprehensively. The variable n in TC
is chosen to be 4.
3.3 Experimental results
3.3.1 Subjective assessment

In this section, the subjective assessment of the fu-
sion methods is done by comparing the visual results ob-
tained from the above and proposed methods. One sam-
ple pair in each type of source images are selected for vi-
sual comparison as shown in Figs. 6 and 7.

In Fig. 6, both the DWT and WPT methods distort
the edges of the roof, which was shown clearly in magni-
fied squares. The DTCWT, SWT, NSCT and NSST

methods produce artificial edges in the sky around the
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(e) () ® (h)
Fig. 6 Fusion results of one pair of the infrared-visible images
(a) infrared image, (b) visible image, (c)-(i) the fusion results of
the DWT, DTCWT, SWT, WPT, NSCT, NSST, and the proposed
methods.
6  £sh5ar WotEHE b —t BRI E A 45 5 () 207N ER
(b) i] WGP R, (c)-(i) #KIK  DWT . DTCWT,SWT,WPT,
NSCT NSST 45 % il 5 45

(e) () (€] (h) (@

Fig. 7 Fusion results of one pair of the infrared intensity-polar-
ization images (a) Infrared intensity image, (b) Infrared polariza-
tion image, (c)-(i) the fusion results of the DWT, DTCWT, SWT,
WPT, NSCT, NSST, and the proposed methods.

BT ZLAMGER S e 4R AR b — xR il 45 2R (a) 205150
S R, (b) 208 4 18, (o) - (D) #K  DWT . DTCWT,
SWT . WPT NSCT NSST T4 5 ¥4 il & 45 5

roof, while the result obtained by the proposed method is
free from such artifacts or brightness distortions. In addi-
tion, the walls and the clouds in the sky in Fig. 6(i) are

brighter those in Fig. 6(g) and (h) , which means that
the fused image of the proposed method has better con-
trast.

The edges of the car are distorted heavily in Fig. 7
(f), and slightly distorted in Figs. 7(c-e) which is shown
more clearly in the corresponding regions in magnified
square. And Figs. 7(c-h) show some artifacts around the
edges of the car. However, in Figs. 7(i) there are no dis-
tortions or certain artifacts. In addition, the car in magni-
fied square of Fig. 7(i) is the darker than those in Figs. 7
(h) and (i), which demonstrate that the proposed meth-
od has better contrast.

The above experiments confirm that the proposed
method performs better in visual effect for the two catego-
ries of source images. Although adopting the simple
AVG-ABS rule, the proposed method does not generate
certain artifacts or distortions and simultaneously pre-
serves the detail information of source images as much as
possible.

3.3.2 Objective assessment

The objective assessment of the seven multi-scale
decomposition-based methods are shown in Tables 3. For
the infrared-visible images, the proposed method per-
forms the best on all the seven metrics. For the infrared
intensity-polarization images, the proposed method per-
forms the best on the other five metrics except Q, and Q,
on which it performs the second best. It can also be ob-
tained from Tables 3 that compared with the seven meth-
ods, the proposed method always has the best assessment
on metrics Q""", TIE, MI, TC, and VIF. It means that
the proposed method can transfer the original information
of source image including the edges and brightness de-
tails to the fused image sufficiently, and improve the con-
trast of the fused image.

3.3.3 Comparison of computational efficiency

To verify the efficiency of the proposed method, an
experiment is conducted on the image sequences named
as “Nato_camp”, “Tree”, and “Dune” from the TNO Im-

Table 3 Objective assessment of all methods (the best result of each metric is highlighted in bold).
x3 FEFENEVNTNME (BrEENREERAEEREET)

Images Methods Q Qe Qy IE MI TC VIF
DWT 0.4391 0.4858 0.226 8 6. 660 1 2.1658 0.258 8 0.293 6
DTCWT 0.444 6 0.5173 0.2579 6. 6830 2.2235 0.2937 0.2949
SWT 0.4452 0.5097 0.2457 6.6155 2.1872 0.2203 0.278 4
Infrared-visible WPT 0.4079 0.3952 0.1614 6.6385 2.1949 0.2745 0.273 8
NSCT 0.4669 0.528 1 0.2595 6. 696 1 2.2633 0.294 0 0.3145
NSST 0.465 3 0.5231 0.2570 6. 6858 2.2575 0.290 2 0.3103
Proposed 0.47517 0.5356 0.2689 6.7359 2.4707 0.3177 0.3626
DWT 0.3853 0.4206 0.1676 6.478 2 2.266 4 0.3476 0.2196
DTCWT 0.394 4 0.4585 0.208 9 6.5707 2.3415 0.468 4 0.2437
SWT 0.3875 0.4391 0.1931 6.4730 2.3429 0.3308 0.2300
Infrared intensity—polarization WPT 0.3469 0.3439 0.1198 6.4052 2.2917 0.4437 0.1972
NSCT 0.4133 0.4675 0.1977 6.564 6 2.3917 0.4585 0.2574
NSST 0.4138 0.464 1 0.199 5 6.5740 2.3898 0.4597 0.2592
Proposed 0.4134 0.469 0 0.2013 6. 6580 2.624 1 0.5478 0.3137
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Table 4 Average processing time (unit: sec.) comparison of eight methods. Each value represents the average run time

of a frame in a certain sequence.

x4 SHFIEHTIHAIRRT ) (B FD) LR . BNMERTERFI sy FHI1E1T B

Image sequences DWT DTCWT SWT WPT NSCT NSST Proposed
Nato_camp 0.0180 0.0362 0.064 7 0.140 1 24.5173 2.3072 0.1419
Tree 0.0165 0.0357 0.064 3 0.1398 24.8215 2.2923 0.1411
Duine 0.017 1 0.036 1 0.064 1 0.1406 24.584 1 2.2881 0.1412

age Fusion Dataset **. Table 4 shows the average pro-

cessing time of all methods for a frame. Compared with
the DWT, DTCWT, SWT, and WPT methods, the pro-
posed method is more time-consuming because these four
methods contain one types of multi-scale decomposition
while the proposed method contains two, i. e. , the multi-
scale decomposition using multi-scale Gaussian filtering
and the multi-scale morphological decomposition, as
mentioned in Sec. 2. Compared with the NSCT and NSST
methods which also contain two kinds of multi-scale de-
composition, the proposed method is far more efficient
mainly because the design of the multi-directional filter
banks for NSCT and NSST is relatively complex and the
processing speed of multi-directional filtering is much
lower than that of multi-scale morphological operations.

4 Conclusions

Experiments on both visual quality and objective as-
sessment demonstrate that although adopting the simple
AVG-ABS rule, the proposed method does not generate
certain artifacts or distortions and performs very well in
aspects like information preservation and contrast im-
provement. Under the premise of ensuring image fusion
quality, the proposed method is also proved computation-
ally efficient. The proposed method provides an option
for the fusion situations needing both high quality and
particularly computational efficiency, such as fast high-
resolution images fusion and video fusion.
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