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Abstract：A novel Graphics Processing Units（GPU）accelerated level set model which organically combines the
global fitting energy and the local fitting energy from different models and the weighting coefficient of the global
fitting term can be adaptively adjusted，is proposed to image segmentation. The proposed model can efficiently
segment images with intensity inhomogeneity regardless of where the initial contour lies in the image. In its nu⁃
merical implementation，an efficient numerical scheme called Lattice Boltzmann Method（LBM）is used to break
the restrictions on time step. In addition，the proposed LBM is implemented by using a NVIDIA GPU to fully uti⁃
lize the characteristics of LBM method with high parallelism. The extensive and promising experimental results
from synthetic and real images demonstrate the effectiveness and efficiency of the proposed method. In addition，
the factors that can have a key impact on segmentation performance are also analyzed in depth.
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GPU和格子玻尔兹曼方法联合加速的水平集模型及其在图像分割中的应用
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摘要：面向图像分割应用，提出了一种新颖的GPU加速水平集模型，将来自于不同模型的全局及局部拟合能

量有机地整合一起，并且可以自适应地调整全局项的加权系数。无论初始轮廓位于图像中的任何位置，模型

都可以有效地分割出具有强度非同质性图像中的前景目标。在数值实现环节，采用格子玻尔兹曼方法的策

略来打破传统求解方法对于时间步长参数的限制条件。另外，借助NVIDIA GPU来高效地组织格子玻尔兹曼

方法的数值解算过程，以充分利用格子玻尔兹曼方法所具有的并行特性。在合成及真实图像数据上的实验

结果验证了所提方法的有效性。另外，还对影响分割结果的数个关键因素进行了深入的分析。
关 键 词：强度非同质性；水平集方法；分割；格子玻尔兹曼方法；图形处理单元 .
中图分类号：TP391.4 文献标识码：A

Introduction
Image segmentation is a fundamental task in many

image processing and computer vision applications. Dueto the presence of noise，low contrast，and intensity inho⁃
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mogeneity，it is still a difficult problem in majority of ap⁃plications. Image segmentation techniques have been ex⁃tensively studied over the past few decades. A well-estab⁃lished class of methods is active contour models［1-3］，which are based on the theory of surface evolution andgeometric flows，have been deeply studied and success⁃fully used in image processing. The level set method
（LSM）proposed by Osher and Sethian［4］ is widely usedin solving the problems of surface evolution. Later，geo⁃metric flows were unified into the classic energy minimi⁃zation formulations for image segmentation［5-8］. Generallyspeaking，the existing active contour models can be cate⁃gorized into two types：edge-based models［9-10］and region-based models［11-12］. The edge-based models use the gradi⁃ent information of the image to construct the driving forcerequired for the evolution process. When the input imagehas a sharp gradient，such models can indeed outputhigh-quality segmentation results. However，they maysuffer from some terrible problems such as poor robust⁃ness to noise interference，highly sensitive to initializa⁃tion，edge leakage，and easy to fall into local minimum.Contrary to the edge-based models，the region-based ac⁃tive contour models use the regional statistical informa⁃tion from inside and outside of the evolution contour toconstruct the driving force to guide the whole level setevolution process. Compared with the edge-based mod⁃els，region-based models have the following obvious ad⁃vantages：First，region-based models have more freedomin terms of the contour initialization，i. e.，the initialcontour can be located anywhere in the image coordinatesystem，and the exterior and interior contours can be de⁃tected simultaneously. Second，they are very insensitiveto noise and can efficiently segment the images with weakedges or even without edges. One of the most successfulregion-based models is the Chan-Vese（C-V）model ［11］，which has been widely used in binary phase segmentationwith the assumption that each image region is statisticallyhomogeneous. However，the C-V models fail to segmentthe images with intensity inhomogeneity.In order to overcome the segmentation difficultycaused by the intensity inhomogeneity，some local re⁃gion-based segmentation models［13-15］ had been proposed.These methods generally believe that the images with in⁃tensity inhomogeneity satisfy the assumption of homoge⁃neity within a very small local region，that is，within asufficiently small local image region，we can assume thatthe intensity of the image is approximately statisticallyuniform. Thus，by fitting the given image in the sense oflocal region rather than global region，they can segmentthe images with intensity inhomogeneity. For example，in Ref.［13］，the entire target boundary is obtained byminimizing the local binary fitting（LBF）energy. Sincethe LBF model makes full use of the local region informa⁃tion，it achieves good segmentation performance in seg⁃ment inhomogeneous images. However，like most exist⁃ing active contour models，the LBFmodel is also verysensitive to contour initialization，which restricts its ap⁃plication range to some extent.

In addition，over the past few years，the GPU hasbeen proposed as a general-purpose computing architec⁃ture. As the simple increase in the clock speed will pushthe transistors to thermal limits，the multi-core technolo⁃gy has become an obvious solution to enhance the com⁃puting performance. In this context，The GPU has beenrecognized as one of the most promising techniques to ac⁃celerate scientific computations. The GPU architecturefavors dense data and local computations because thecommunications between microprocessor is time consum⁃ing. In order to overcome the problems mentioned aboveand take into account the promotion role of GPU in termsof computation，in this paper，we propose a new GPU ac⁃celerated region-based active contour model under varia⁃tional level set framework. Firstly，based on the twomodels of C-V and LBF，we construct a hybrid level setmodel，which integrates the global fitting energy used inC-V model and the local fitting energy used in LBF mod⁃el and the weighting coefficient of the global fitting termcan be adaptively adjusted. The proposed model can notonly segment inhomogeneous and weak-edge targets，butalso make evolution process insensitive to contour initial⁃ization，i. e.，our model inherits the advantages of thetwo models of C-V and LBF，while overcoming their re⁃spective shortcomings. Secondly，in its numerical imple⁃mentation，we adopt the LBM method，which can breakthe restrictions of the traditional implementation methodson time step. Compared with the traditional schemes，the LBM strategy can further shorten the time consump⁃tion of the evolution process，thus allows the level set toquickly reach the true target location. Thirdly，the pro⁃posed level set model is computed by using a NVIDIAGPU to fully utilize the characteristics of LBM method ofhigh parallelism.The remainder of this paper is organized as follows：Section 2 is a brief description of the classical C-V andLBF models which are background knowledge directly re⁃lated to the proposed model. Section 3 presents the for⁃mulation and implementation of the proposed model. Sec⁃tion 4 validates the proposed model by extensive experi⁃ments and discussions on synthetic and real images.Last，conclusions are drawn in section 5.
1. 1 C-V modelWhen the classical active contour models performimage segmentation tasks，their external energy termsare usually based on the local gradient information of theimage. Such external energy terms can perform excellent⁃ly when the gradient of the image is very obvious. Howev⁃er，for those images whose contours are either smooth orcannot be defined by gradient，the aforementioned ener⁃gy terms will undoubtedly encounter great difficulties. Inorder to solve this problem effectively，Chan and Vese［11］proposed a novel region-based active contour model（usu⁃ally referred to as C-V model）based on the simplifiedMumford-Shah model. Its energy functional definition isas follows：
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ECV (ϕ) = λCV1 ∫Ω( )I ( )x - Min

2
H (ϕ (x)) dx +

λCV2 ∫Ω( )I ( )x - Mout

2 (1 - H (ϕ (x))) dx +
μ ⋅ ∫Ω δ ( )ϕ ( )x | ∇ϕ (x) |dx + ν ⋅ ∫ΩH ( )ϕ ( )x dx

,（1）
where H ( ⋅ ) and δ ( ⋅ ) are one-dimensional Heaviside
and Dirac functions. This minimization problem is solvedby deducing the associatedEuler-Lagrange equations andupdating the level set function ϕ by the gradient descent
method（with ϕ (0，x ) = ϕ0 ( x ) defining the initial con⁃tour）：

∂ϕ
∂t = δ (ϕ)
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Min (ϕ ) = ∫Ω I ( x )H (ϕ ( x ) )dx∫ΩH (ϕ ( x ) )dxdy
Mout (ϕ ) = ∫Ω I ( x ) (1 - H (ϕ ( x ) ) )dx∫Ω(1 - H (ϕ ( x ) ) )dx

,（3）

and -λCV1 (I - Min)
2 + λCV2 (I - Mout)

2is the global image
fitting force，which uses the global image information ofthe input image to guide the evolution of level set model.As a representative region information-based level setsegmentation model，the C-V model has an importantcharacteristic，i. e.，its evolution is not sensitive to theinitial position of the curve. However，when the intensityof the image is not homogeneous，the difference betweenthe two means（Minand Mout）and the real image data willbe very large，this phenomenon will inevitably lead theC-V model to be difficult to give an ideal segmentation re⁃sult.
1. 2 LBF MODEL

In order to extend the application range of the levelset model to the field of inhomogeneous image segmenta⁃tion applications，Li et al. constructed a region-based ac⁃tive contour model based on the local region statistical in⁃formation of the image. It first defines a local energyfunction with the following expression for each pixel x onthe image plane：
Ex = λLBF1 ∫

inside ( )C
Kσ (x - y)| I (y) - f1 (x) 2 |dydx +

λLBF2 ∫
outside ( )C

Kσ (x - y)| I (y) - f2 (x) 2 |dydx
,（4）

where I is the image data to be segmented，C is a closedcontour on the image plane，λLBF1 and λLBF2 are two controlconstants for balancing the forces inside and outside thecontour C，Kσ is a Gaussian window function（the local⁃

ization effect of the LBF model is exactly caused by thiswindow function）with standard deviationσ，f1 (x) and
f2 (x) are fitting values of two sub-regions divided by the
contour C（the divided object is the local region centeredat the current pixel x）.Then， by integrating the aforementioned energyfunction over the entire image region，the overall targetfunctional of the LBF model in form of level set formula⁃tion can be generated as follows：
ELBF = ∫ΩEx (ϕ,f1 (x) ,f2 (x)) dx

= λLBF1 ∫Ω éëê∫ΩKσ (x - y)| I (y) - f1 (x) |2H (ϕ (y)) dyùûú dx
+λLBF2 ∫Ω éëê∫ΩKσ (x - y)| I (y) - f2 (x) |2 (1 - H (ϕ (y))) dyùûú dx

,（5）
where ϕ ( ⋅ ) is the level set function and H ( ⋅ ) is the
Heaviside function. Minimizing the energy functional
ELBF with respect to ϕ by using the calculus of variationand the steepest descent method，we can easily deducethe corresponding gradient descent flow as：∂ϕ

∂t = -δ (ϕ) (λLBF1 e1 - λLBF2 e2) ,（6）
e1 and e2 in Eq.（6）are defined as：
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f1 ( )x = Kσ∗[ ]Hε ( )ϕ I ( )x

Kσ∗Hε ( )ϕ

f2 ( )x = Kσ∗[ ]1 - Hε ( )ϕ I ( )x

Kσ∗[ ]1 - Hε ( )ϕ

.（8）

In the above equations，we actually use the regular⁃ized versions of Heaviside function H ( ⋅ ) and Dirac func⁃
tion δ ( ⋅ ) which are expressed as follows：
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arctan ( )zε

δε ( )z = 1π ⋅
ε

ε2 + z2 , z ∈ R
.（9）

The parameter ε affects the profile of δε (ϕ). A big⁃ger ε will cause a broader profile，which will expand thecapture scope but decrease the accuracy of the final con⁃tour. In actual calculation，the construction process of
the local binary image (λLBF1 e1 - λLBF2 e2)is based on all
the pixels in a local Gaussian window，this localizationproperty is the real reason for the LBF model to be able tosegment non-homogenous images. However，when thecontour is located at a certain location whereλLBF1 e1 =
λLBF2 e2，the local image fitting force will be zero，whichleads to the evolution process be trapped into certain lo⁃cal minima，thus the segmentation result has a strong cor⁃
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relation with the initial position of the curve.
2 The proposed method
2. 1 Our model and its variational level set formula⁃
tion For the segmenting level set function ϕ of an image，
we define its local fitting energy as：
Elocal (ϕ) = λCV1 ∫Ω éëê∫ΩKσ (x - y)| I (y) -

f1 (x) |
2
H (ϕ (y)) dyùûú dx +

λCV2 ∫Ω éëê∫ΩKσ (x - y)| I (y) - f2 (x) |2 (1 -
H (ϕ (y))) dyùûú dx .（10）

At the same time，its corresponding global fitting en⁃ergy is defined as the following form：

Eglobal (ϕ) = λLBF1 ∫Ω( )I ( )x - Min

2
H (ϕ (x)) dx +

λLBF2 ∫Ω( )I ( )x - Mout

2 (1 - H (ϕ (x))) dx
.（11）

They come from the two models of C-V and LBF，re⁃spectively. By combining these two energy terms，we pro⁃pose the new energy functional as follows：
E (ϕ) = Elocal (ϕ) + w ⋅ Eglobal (ϕ) ,（12）

where w is a weight control parameter and its value varieswith image coordinates.To get better segmentation results，we need to makea reasonable combination of Elocal (ϕ) and Eglobal (ϕ) in
Eq.（12）. The key point is how to adaptively determinethe weight coefficient w of the auxiliary global fitting en⁃ergy term. In regions far from the true target boundaries，such as point p1 in Fig. 1，where the intensity distribu⁃tion is nearly homogeneous，the fitting values f1and f2 ob⁃tained by local fitting process are almost identical，whichmeans that within this type of regions，f1and f2 cannot cor⁃rectly reflect real background information and foregroundtargets. The reason is that the processing flow only takesinto account the local information. However，in such re⁃gions，local information is not sufficient for the true back⁃ground and foreground description task. In view of this，we need to increase the weight coefficient of the global fit⁃ting term so that the active contour can towards right di⁃rection under the driving of global fitting energy. Con⁃versely，within the regions close to the true target bound⁃aries，for example，point p2 in Fig. 1. At this time，theforeground f1 and background f2 obtained by local fittingprocess can correctly reflect the distributions of fore⁃ground and background. When the image has an inhomo⁃geneous intensity distribution，Min and Mout obtained byglobal fitting process may seriously deviate from the realforeground and background，and the existence of globalfitting term will affect the accuracy of segmentation. As aresult，in such regions，we need to reduce the weight co⁃efficient of global fitting energy to ensure the accuracy ofsegmentation output.

Based on the above analysis，we should adaptivelygenerate the weighting coefficient of global fitting term ac⁃cording to the image region in which the active contour islocated， i. e.， in a region where intensity changessmoothly，a smaller value needs to be taken，while in aregion where intensity changes greatly，it is necessary totake a larger value. To match this requirement，we de⁃fine the following local contrast factor corresponding to alocal window：
LCRN = Vmax - VminL

,（13）
where N is used to mark the size of the local window，Vmaxand Vmin are the maximum and minimum intensity valuesof the local window，respectively，L is the intensity levelof image，and for grayscale images，its value is 255. Ob⁃viously，the value range of LCRN is [ 0，1 ]. At the physi⁃cal meaning level，it reflects how fast the intensity chang⁃es in a local region，which have smaller values in thesmooth regions and bigger values in the regions close totargets boundaries. In view of this，we define the weightcoefficient as the following functional form：

w = κ ⋅ mean (LCRN) .(1 - LCRN) ,（14）
where κ is a constant parameter，mean (LCRN) is the av⁃
erage value of LCRN over the entire image region，whichreflects the overall contrast of the image. For images withstrong overall contrast，they must have a clear foregroundand background，so we can increase the weight coeffi⁃
cient on the whole. (1 - LCRN)can adaptively adjust the
weight coefficient of global term in all local regions，mak⁃ing it smaller in regions with high local contrast ratio andlarger in regions with low local contrast ratio.

For more accurate computation involving the levelset function and its evolution，we need to regularize thelevel set function by penalizing its deviation from asigned distance function［16］，characterized by the follow⁃ing energy functional：
P (ϕ) = ∫12 (| ∇ϕ (x) | - 1) 2dx .（15）

As in typical level set methods，we need to regular⁃ize the zero level set by penalizing its length to derive asmooth contour which is as short as possible during evolu⁃

Fig. 1 Explanation of how to adaptively determine the weight
coefficient of global fitting term
图1用于解释如何自适应确定全局拟合项权重系数的示意图
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tion：
L (ϕ) = ∫| ∇H (ϕ (x)) |dx .（16）

In summary，we can express the total energy func⁃tional as the following：
Eour = E + μ ⋅ P (ϕ) + ν ⋅ L (ϕ) ,（17）

where μ and νare control parameters to balance the contri⁃
bution of the corresponding energy term.Keeping Min and Mout fixed，and minimizing the en⁃tire energy functional Energy with respect to ϕ，we de⁃
duce the associated Euler-Lagrange equation for ϕ as fol⁃
lows：∂ϕ
∂t = δε (ϕ) ( - λCV1 (I - Min)

2 + λCV2 (I - Mout)
2) -

w ⋅ δε (ϕ) (λLBF1 e1 - λLBF2 e2) +
μ (Δϕ - div ( ∇ϕ || ∇ϕ )) + νδε (ϕ) div ( ∇ϕ || ∇ϕ )

,（18）

where Min，Mout，e1 and e2 are formulated by expressions
（3），and（7），respectively.The new hybrid fitting energy is a weighted linearcombination of the global image fitting force from the C-
V model and the local binary fitting force from the LBFmodel. The advantages of this weighted combined formof image fitting energy are as follows：The global imagefitting force component makes the combined model insen⁃sitive to the initial position of the curve，and the local bi⁃nary fitting force component makes the combined modelcan segment the images with intensity inhomogeneity.We combine these two forces together with the control pa⁃rameter w so that the new hybrid model can have the ad⁃vantages of the C-V model and the LBF model. There⁃fore，the proposed model can effectively deal with the in⁃tensity inhomogeneity，regardless of where the initialcontour lies in the image.
2. 2 The implementation of the proposed model
2. 2. 1 The reason for the high computational com⁃
plexity of traditional level set methodsThe traditional level set methods usually need tospend more iterative times（corresponding to a highertime consumption）to segment an image，which is unac⁃ceptable for image data-based real time applications ormass image data processing problems. The following rea⁃son leads to this high computational complexity phenome⁃non：An explicit scheme is the most popular way for solv⁃ing Eq.（18），but due to the Courant-Friedreichs-Lewy
（CFL）［17］ condition which asserts that the numericalwaves should propagate at least as fast as the physicalwaves，so the curve can only move a small distance ineach iteration，it requires very small time step and if thecurve is not near the edge of interested object，the curvemay take a long time to reach the final position.
2. 2. 2 Lattice Boltzmann Method for breaking the
restrictions on time stepThe CFL condition limits the time step of the tradi⁃tional numerical solution of the level set equation，whichleads to the increase of the number of iterations in the

evolution process. Under the finite difference frame⁃work，the process needs to approximate the continuousPDE to a discrete form，while LBM［18］derives a continu⁃ous PDE which has the same form of the level set equa⁃tion from a discrete form. Since the time step is notstrongly restricted and highly parallelizable，LBM is afast numerical solution of the level set equation.LBM is proposed as a computational fluid dynamics
（CFD）method for fluid modeling［19］. Instead of solvingthe Navier-Stokes equations， the discrete boltzmannequation is solved to simulate the flow of the Newtonianfluid by collision models such as Bhatnagar-Gross-Krook
（BGK）［20-21］.In this paper，we use the D2Q9（2D with 8 linkswith its neighbors and one link for the cell itself）LBMlattice structure. Fig. 2 shows a typical D2Q9 model.

The evolution equation of LBM can be written as
fi (r + eiΔt,t + Δt) = fi (r,t) + 1τ [ f eqi (r,t) - fi (r,t) ]

+ D
bc2
⋅ F ⋅ ei ,（19）

where ei is the velocity vector of a given link i，fi (r，t) thedistribution of the particle that moves along that link，t
the time，Δtthe time step，r the position of the cell，Fthe body force，D the grid dimension，b the link at eachgrid point and c the length of each link which is set to 1in this paper. The parameter τ represents the relaxationtime determining the kinematic viscosity in Navier-Stokes equations，and f eqi is the local equilibrium particledistribution which has the following form.
f eqi (ρ,u) = ρ (Ai + Bi (


ei ⋅ u) + Ci (


ei ⋅ u) + Di (u) 2),（20）

where the constant coefficients Ai to Di are determinedbased on the geometry of the lattice links，ρ and u are re⁃
spectively the macroscopic fluid density and velocity cal⁃culated from the particle distributions as
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ïï
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ρ =∑i
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ρ∑i
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Fig. 2 Spatial structure of the D2Q9 LBM lattic
图2 D2Q9格子玻尔兹曼方法的空间结构
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For diffusion problems， the equilibrium functioncan be simplified as［22］
f eqi (ρ,u) = ρAi .（22）

In the case of D2Q9 structure，the concrete form of
f eqi is
f eqi = ραi (1 + 3(ei ⋅ u) + 92 (ei ⋅ u) 2 - 32 (u) 2) ,

i = 0,1,⋯,8 ,（23）
where α0 = 4 9，α1，2，3，4 = 1 9，α5，6，7，8 = 1 36， at the
same time，there is a relationship between the relaxationtime τ and the diffusion coefficient γ：

γ = 29 (2τ - 1) .（24）
By performing the Chapman-Enskog analysis the fol⁃lowing diffusion equation can be recovered from the LBMevolution equation［22］：∂ρ

∂t = γ ∇ ⋅ ∇ρ + F .（25）
By replacing ρwith the signed distance function ϕ in

Eq.（25），since level set function ϕ has the signed dis⁃
tance property | ∇ϕ | = 1，we have the following expres⁃
sion：

∂ρ
∂t = γ ∇ ⋅ ∇ρ + F = γdiv ( ∇ϕ || ∇ϕ ) + F ,（26）

where“div”is the divergence operator，and the bodyforces F represents the link with the image data in theLBM solver. Table 1 gives the corresponding forms of
τand F in D2Q9 LBM equation for the C-V model，LBFmodel and our model described in subsection 3. 1，theproposed level set equation can therefore be solved usingthe following lattice Boltzmann equation：

fi (r + eiΔt,t + Δt) = fi (r,t) + 1τ [ f eqi (r,t) - fi (r,t) ] +
D
bc2
⋅ (w ⋅ δε ( )ϕ (-λ1 ( )I - Min

2 + )λ2 ( )I - Mout

2 -
)δε ( )ϕ ( )I - I LIF ( )u1 - u2 + μ ⋅ Δϕ

.（27）

After adopting the LBM ideology，we do not need toexplicitly calculate the curvature since it is implicitlyhandled by the LBM.
2. 2. 3 Algorithm of the GPU accelerated level set
model for image segmentationThe aforementioned strategy can effectively over⁃come the problem of high computational complexity intraditional level set methods. Our GPU accelerated levelset algorithm for non-homogenous image segmentation isimplemented as follows：

（a）Initialize the level set function ϕ as a signed dis⁃
tance function；

（b）UpdateMin，Mout，e1 and e2 using（3）and（7）respectively；
（c）Compute the input of our LBM such as τand

Faccording to Table 1 and our level set equation（18）；
（d） Resolve the level set equation using LBMwith（27）；
（e）Accumulate the values of fi (r，t) at each gridpoint with Eq.（22），which updates the values of ϕand

locate corresponding contour；
（f） Return step（b） until the evolution processreaches the state of convergence.Fig. 3 shows the flowchart the proposed GPU accel⁃erated level set model.In the computer programming implementationphase，the built-in Matlab function named“arrayfun”is

used to implement the GPU-based accelerated computa⁃tion process. For example，when calculating the body
Table 1 Corresponding forms of τ and F in D2Q9 LBM equation for level set methods
表1 参数τ和F在D2Q9格子玻尔兹曼方法方程中对应的表达式

Method

C-V model

LBF model

Our model

Level set equation
∂ϕ
∂t = δε (ϕ)

é

ë
ê
êμdiv ( )∇ϕ

|| ∇ϕ - ν -

ù
û
úλCV1 ( )I - Min

2 + λCV2 ( )I - Mout

2

∂ϕ
∂t = -δε (ϕ) (λLBF1 e1 - λLBF2 e2)

∂ϕ
∂t =
w ⋅ δε (ϕ) (-λCV1 ( )I - Min

2 + )λCV2 ( )I - Mout

2 -
δε (ϕ) (λLBF1 e1 - λLBF2 e2) +

μ ⋅ (Δϕ - div ( ∇ϕ || ∇ϕ )) +
ν ⋅ δε (ϕ) div ( ∇ϕ || ∇ϕ )

τand F
τ = 94 ⋅ μ ⋅ δε (ϕ) + 0.5，

F = δε (ϕ)[-ν - λCV1 (I - Min)
2 +

ù
û
úλCV2 ( )I - Mout

2

/

τ = 94 ⋅ (ν ⋅ δε (ϕ) - μ) + 0.5，
F = w ⋅ δε (ϕ) (-λCV1 ( )I - Min

2 +

)λCV2 ( )I - Mout

2 -
δε (ϕ) (λLBF1 e1 - λLBF2 e2) +
μ ⋅ Δϕ
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force F，we take the following function call format：
|

|

|

|

|

|

|

|

|

|

|

|
|||
|

|

|

|

|

( )1 imageGPU = gpuArray ( )image ;
( )2 ModelParameterStructureGPU = gpuArray
( )ModelParameterStructure ;
( )3 FGPU = arrayfun
( )@body_force,imageGPU,ModelParameterStructure ;
( )4 F = gather ( )FGPU .
The first and the second lines are used to convertthe input image and associated model parameters fromCPU to GPU，the third line computes the body force onGPU using the kernel function“body_force.m” pro⁃

grammed by Table 1，and the last line transfers the com⁃puted body force from GPU to CPU.
3 Experimental results and discussions

In this section，we evaluate the efficiency of our fasthybrid level set algorithm for inhomogeneous image seg⁃mentation. The experiments are implemented using theparallel computing toolbox of Matlab R2012a installed ona computer with 2. 3G Intel Core i7 CPU，8G RAM andpossessing NVIDIA GPU GeForce GT 720M. For the fol⁃lowing parameters，we use the same values for all experi⁃ments，i. e.，λCV1 = 1，λCV2 = 1，λLBF1 = 1，λLBF2 = 1，ε =1，Δt = 0.1（time step），μ = 1，κ = 2. In addition，theparameter ν will change from image to image，i. e.，itsvalue with a certain degree of image dependency. Whatneeds to be specifically stated here is that the methods in⁃volved in the comparison and the proposed method all be⁃long to the pure data-driven type，and do not adopt anyform of shape priors.Next，we will carry out our experiments from the fol⁃lowing three aspects：accuracy of segmentation result，insensitivity to contour initialization，rapidity of evolu⁃tion process.
3. 1 Experimental results
3. 1. 1 Accuracy of segmentation resultFig. 4 shows the comparison segmentation resultsfor five laser radar range images［23］. All ofthem are typi⁃cal images with intensity inhomogeneity. To demonstratethe superiority of our method in terms of accuracy of seg⁃mentation result，we compare it with several other classi⁃cal segmentation models［11］，［24-25］，in which the C-V mod⁃

el［11］ is a segmentation method of level set type，and thetraditional non-level-set segmentation methods include K-means algorithm［24］ and pulse coupled neural networks
（PCNN）algorithm［25］. The first row of Fig. 4is the inputimages and the initial contours required for the level set-based segmentation methods， and the second to thefourth rows are the segmentation results by using the C-V，OTSU，PCNN and our models respectively. To beconsistent with the expression form of level set segmenta⁃tion methods，the results of traditional segmentation meth⁃ods are presented in the form of contour. Visually，wecan easily distinguish that the traditional segmentationmethods are powerless for the inhomogeneous imagesshown in Fig. 4，and they all have different degrees ofsegmentation errors. On the contrary，our method out⁃puts satisfactory segmentation results on all of these chal⁃lenging images，all of this is attributed to the effectivecombination of local and global image energies. To quan⁃titatively evaluate the performance of this set of compari⁃son experiments，we use two popular region overlap met⁃rics called Jaccard Similarity（JS）［26］ and Dice SimilarityCoefficient（DSC）［27］with the definitions as follows：

JS = N ( )Sreference ∩ Stest
N ( )Sreference ∪ Stest

,（28）

DSC = 2N ( )Sreference ∩ Stest
N ( )Sreference + N ( )Stest

,（29）
where“∩”and“∪”represent the intersection and unionof two regions，respectively，Stest and Sreference are the out⁃put region of segmentation algorithm and the ground-truth，respectively，N ( ⋅ ) represents the number of pix⁃
els in the enclosed set. Obviously，the closer the JS and
DSC values to 1，the better the segmentation results. Ta⁃ble 2 records the above two region overlap metrics，bycomprehensively comparing these data，we can clearlyfind out that our method does obtain the optimal segmen⁃tation performance.In order to fully test the proposed method，it is nec⁃essary to carry out our comparison experiments on a larg⁃er data set. The dataset used here is PASCAL VOC2012，which is a dataset with an extremely high usagefrequency in the field of image segmentation，especiallyin the field of deep learning-driven semantic segmenta⁃tion in recent years. The test dataset consists of 1449 nat⁃ural images covering a total of 20 categories，such as air⁃plane，human，bird，and so on. Fig. 5 shows the seg⁃mentation results on several sampleimagesof the PAS⁃CAL VOC 2012 dataset. The first column of Fig. 5showsthe input sample images and the initial contours requiredfor the level set evolution process，and the second to fifth⁃columnsof Fig. 5are the segmented contours of C-V，K-means，PCNNand our models respectively. By visuallyobserving the segmentation results shown in Fig. 5，wecan intuitively find that the three methods involved in thecomparison are more or less affected by the backgroundclutter and the distribution of the target itself. On thecontrary，the proposed model adaptively combines local
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Fig. 3 The flowchart the proposed GPU accelerated segmenta‐
tion model
图3 基于GPU加速的分割模型流程图

114



1期

SHI Wen-Jun et al：GPU accelerated level set model solving by lattice boltzmann method with application to
image segmentation

energy and global energy into an integrated functional ex⁃pression，thus it shows strong ability in the backgroundinterference suppression and foreground target extrac⁃tion，which can be clearly verified from the fully correct⁃ed results shown in the fifth column of Fig. 5. In order toobjectively measure the comprehensive quality of the seg⁃mentation results，we apply the aforementioned threecomparison methods and the proposed model to the PAS⁃CAL VOC 2012 dataset，and calculate the distributionsof JSandDSCin the form of boxplot，and the final descrip⁃tion results are shown in Fig. 6. By analyzing the two dis⁃tributions in Fig. 6，it is easy to find that our algorithmachieves the best performance in the statistical averagesense among the family of comparison methods in this pa⁃per. In summary，our model has indeed achieved thebest performance at both subjective and objective levels.
3. 1. 2 Insensitivity to contour initializationThe insensitivity to contour initialization con⁃cerns the problem that the iterative process steadily con⁃verges to the same ultimate state regardless of the posi⁃tion and shape of the initial contour. Fig. 7 shows thefirst set of validation tests for insensitivity to contour ini⁃tialization. We will give the comparison results of LBFmodel synchronously. The first row of Fig. 7 is an inho⁃

mogeneous infrared human body image and three differ⁃ent initialization schemes. The second row is the segmen⁃tation results of LBF model. As expected，they are high⁃ly sensitive to contour initializations. It outputs correct
（as shown in the third column of the second row）segmen⁃tation result only when the initial curve intersects withboth targets. Under other initializations，it only segmentsone of the targets（as shown in the first to second col⁃umns of the second row）. On the contrary，our modeloutputs almost the same correct segmentation results un⁃der three initializations. All of this is due to the fact thatour method perfectly inherits the insensitivity of C-Vmodel against initialization.Fig. 8 shows another set of our validation tests，itspurpose is similar to Fig. 7. From this set of experi⁃ments，we find that the LBF model outputs correct（asshown in the third column of the second row of Fig. 8）segmentation result only when the initial contour is com⁃pletely located inside the target. Under the other two ini⁃tializations（as shown in the first to second columns ofthe second row of Fig. 8），its outputs are strongly inter⁃fered by background clutter and wrong segmentation re⁃sults are obtained. In sharp contrast to this，our modelyields the same correct segmentation results（as shown in

Fig. 4 Segmentation comparisons of C-V model，K-means model，PCNN model and our method on five laser radar range images. The
first row：Input images along with initial contours，the second row：C-V model，the third row：K-means model，the fourth row：PCNN
model；the fifth row：our model.
图 4 C-V模型、K均值、PCNN以及文中方法对五张激光雷达距离像进行分割得到的结果比较。第一行：带有初始轮廓的输入图
像；第二到第五行分别是：C-V模型、K均值、PCNN以及文中方法
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the sixth row of Fig. 8）under all initialization styles.This further proves that our model has strong insensitivity

to contour initialization. At the same time，we also givethree intermediate results of our model，which are placedin the third to fifth rows of Fig. 8. In addition to the evo⁃lution results shown in Fig. 8，we also give a series ofstatistical results（as shown in Fig. 9 and each column inits layout corresponds to the same column of Fig. 8）re⁃lated to the evolution process，which include：the globalmean image at convergence state，and the internal andexternal means of the regions separated by the target con⁃tour are marked at the upper left corner of the imageplane；the numerical distribution images of e1and e2（de⁃fined by Eq.（7））at convergence state；the energy varia⁃tion curves with respect to the evolution time；the evolu⁃tion process of three-dimensional stacking form. Throughthis set of statistics，we can better feel this group of veri⁃fication experiments.
3. 1. 3 Rapidity of evolution processIn this section，we will evaluate the improvement ef⁃fect of the two schemes named LBM and GPU used inthis paper on the rapidity of evolution process. The testdata used here are three synthetic images with obvious in⁃homogeneity and varying degrees of noise interferenceshown in Fig. 10. The methods used for comparison in⁃clude：hybrid fitting energy（HFE）model with local andglobal terms，hybrid fitting energy（HFE）model with lo⁃cal and global terms solving by LBM strategy under CPUenvironment（HFE+LBM+CPU），hybrid fitting energy
（HFE） model with local and global terms solving byLBM strategy under GPU environment （HFE+LBM+CPU）. For the input images shown in the first row ofFig. 10，the segmentation results（as shown in the fifthrow of Fig. 10）of the above three methods on each im⁃

Fig. 5 The segmentation results on several sampleimagesof the PASCAL VOC 2012 dataset. The first column shows the input images
along with initial contours，and the second to fifth columns is the segmentation results by using C-V，K-means，PCNNand our models re‐
spectively
图 5 对PASCAL VOC 2012数据集随机抽样图像的分割结果比较 . 第一列：带有初始轮廓的输入图像；第二到第五列分别是：C-V
模型、K均值、PCNN以及文中提出方法

Table 2 Segmentation metrics for the five images in
Fig. 4numberedin order from left to right

表2 四种分割方法对图4五张图像的分割结果度量
Image No.

image #1

image #2

image #3

image #4

image #5

Algorithm

CV
K-means
PCNN

Our method
CV

K-means
PCNN

Our method
CV

K-means
PCNN

Our method
CV

K-means
PCNN

Our method
CV

K-means
PCNN

Our method

Metrics（（JS-DSC））

0. 6533 0. 7903
0. 5172 0. 6818
0. 5625 0. 7200
0. 9757 0. 9877
0. 7285 0. 8429
0. 7340 0. 8466
0. 7290 0. 8432
0. 9598 0. 9795
0. 5026 0. 6690
0. 6124 0. 7596
0. 6676 0. 8007
0. 9897 0. 9948
0. 6713 0. 8033
0. 7292 0. 8434
0. 7043 0. 8265
0. 9807 0. 9903
0. 4389 0. 6100
0. 2642 0. 4180
0. 5068 0. 6726
0. 9726 0. 9861
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age are the same，and the only differences are the timecost and the number of iterations of the evolution pro⁃cess，which are recorded in detail inTable 3. In addi⁃tion，the image sizes are also listed in Table 3. At thesame time，we also give three intermediate results of theevolution process，which are placed in the second tofourth rows of Fig. 10. By carefully comparing the quanti⁃tative values in Table 3，we can summarize the followingconclusions：Firstly，the LBM can decrease the numberof iterations of the evolution process and reduce the totaltime cost by several times. Secondly，the accelerationrate of the GPU strategy is even more than one hundredtimes. For real-time applications，such acceleration per⁃formance is very attractive and valuable.In addition to the experimental results with timingpatterns shown in Fig. 10，we also give a series of statis⁃tical results（as shown in Fig. 11 and each column in itslayout corresponds to the same column of Fig. 10）relat⁃ed to the evolution process，which include：the global

mean image at convergence state，and the internal andexternal means of the regions separated by the target con⁃tour are marked at the upper left corner of the imageplane；the numerical distribution images of e1and e2（de⁃fined by Eq.（7））at convergence state；the energy varia⁃tion curves with respect to the evolution time；the evolu⁃tion process of three-dimensional stacking form. Throughthis set of statistics，we can better feel this group of veri⁃fication experiments.
3. 2 Discussions
3. 2. 1 A simple method to initialize the level set
functionUnder our combinatorial regularization strategy，thereinitialization required by the traditional level set meth⁃od is cancelled，at the same time，the pre-constraint re⁃

Fig. 6 Quantitative evaluation results of four different compari‐
son algorithms on VOC 2012 dataset. The sub-graphs（a）and
（b） are the statistical distributions of the two metrics JS and
DSC，respectively. Any single boxplot corresponds to the com‐
prehensive response results of an algorithm participating in the
comparison on the VOC 2012 dataset.
图 6 四种算法在 PASCAL VOC 2012数据集中的定量评估结
果 .（a）和（b）分别是在 JS和DSC评价指标下的统计分布

Fig. 7 Segmentation comparisons of our model with LBF mod‐
el on an infrared human body image under three different initial‐
izations. The first row：Input images along with initial contours；
the second row：Final segmentation results of LBF model；the
third row：Final segmentation results of our model
图 7 LBF模型与文中方法对红外人体图像取三个不同初始位
置的分割结果比较 . 第一行：带有初始轮廓的输入图像；第二
行：LBF模型分割结果；第三行：文中方法分割结果

Fig. 8 Segmentation comparisons of our model with LBF mod‐
el on an infrared pig image under three different initializations.
The first row：Input images along with initial contours；the sec‐
ond row：Final segmentation results of LBF model；the third to
fifth rows：Three intermediate results of our model；the sixth
row：Final segmentation results of our model
图 8 LBF模型与文中方法对红外猪图像取三个不同初始位置
的分割结果比较 . 第一行：带有初始轮廓的输入图像；第二行：
LBF模型分割结果；第三至第五行：文中方法分割过程的中间
结果；第六行：文中方法最终分割结果
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quirement of initializing the level set function asasigneddistance function no longer exists，therefore，we can ini⁃tialize the level set function as the following simple form：

ϕinitial (x,y) =
ì

í

î

ïï
ïï

-c, ( )x,y ∈ Ω initial - ∂Ω initial

0, ( )x,y ∈ ∂Ω initial

c, ( )x,y ∈ Ω - Ω initial

,（30）

where ∂Ω initial is a set of pixels on the boundary of re⁃gionΩ initial enclosed by the initial contour（manually set orgenerated by some automatic segmentation algorithms），
c is a positive constant and its selection rule isc > 2ε，
where ε is the attribute parameter inEq.（9）.

Obviously，the initial level set function generated
by the proposed initialization strategy shown in Eq.（18）

is not a signed distance functionin a strict sense. In theevolution process，although the level set function maynot be able to maintain an approximate signed distancefunction at all pixel positions，the task flow can ensurethat the evolution function remains an approximatesigned distance function near the zero level set under theregularization force generated by the second term of Eq.

Fig. 9 The statistical results corresponding to the evolution pro‐
cess shown in Fig. 8. The first row is the global mean image at
convergence state，the second to third rows are the numerical dis‐
tribution images of e1 and e2at convergence state，the fourth row
is the energy variation curve with respect to the evolution time，
and the fifth row is the evolution process of three-dimensional
stacking form.
图 9 对应图 8显示的演化过程的统计结果 . 第一行：收敛状态
下全局均值图像；第二行和第三行：收敛状态下 、数值分布图
像；第四行：能量变化曲线；第五行：演化过程的三维堆叠形式

Table 3 Comparisons of speed metrics of evolution pro⁃
cess for the three images in Fig. 10 numbered
in order from left to right

表3 三种算法对图10三张图像分割的运行速度指标比较

Input No.

image #1
（320×240 pixels）

image #2
（320×240 pixels）

image #3
（320×240 pixels）

Algorithm

HFE
HFE +LBM+CPU
HFE +LBM+GPU

HFE
HFE +LBM+CPU
HFE +LBM+GPU

HFE
HFE +LBM+CPU
HFE +LBM+GPU

Iterations

272
113
113
182
58
58
399
137
137

Time

cost

（（s））

23. 167
9. 653
0. 209
13. 195
4. 256
0. 110
34. 517
11. 902
0. 293

Accelerated

rate

1. 0
2. 4
110. 7
1. 0
3. 1
120. 5
1. 0
2. 9
117. 9

Fig. 10 A set of experiments to test the rapidity of evolution
process. The first row is the input images along with initial
curves，the second to fourth rows are three intermediate results of
the evolution process，and the fifth row is the final segmentation
results.
图 10 一组测试算法运行速度的系列实验。第一行：带有初始
轮廓的输入图像；第二行至第四行：三种方法分割过程的中间
结果；第五行：最终分割结果
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（17）. Through a series of verification experiments，wefind that the stability of the evolution process can be guar⁃anteed as long as the aforementioned broad constraintsare satisfied.
3. 2. 2 The distribution form of adaptive weighting
coefficient and its influence on segmentation resultsIn Eq. （12），we configure a weighting coefficientwith adaptive change characteristics for the global energyterm，and its value will vary with the change of the pixelcoordinates. Fig. 12（a）shows a typical example imagewith blurred edges. According to the calculation rules de⁃fined in equations（13）and（14），we obtain the image
（as shown in Fig. 12（b））and 3D surface（as shown inFig. 12（c））representations of the adaptive weighting co⁃efficient matrix corresponding to Fig. 12（a）. The coeffi⁃cients at the two typical sampling points A and B in theexample image are shown in Fig. 12（b），where point A

comes from the smooth image region and B from the adja⁃cent region of the edge segment. According to the descrip⁃tion of section 2. 1，we know that in the smooth image re⁃gion，the value of the coefficient is small，on the con⁃trary，in the adjacent region of the edge，the value of thecoefficient is relatively large，which is well confirmed bythe sampling data-cursor in Fig. 12（b）.Next，we use the above two sampling coefficients asthe global constant coefficients of the evolution process tosegment the example image shown in Fig. 12（a）. Ac⁃cording to the description of section 2. 1 and the composi⁃tion structure of Eq.（12），it is easy to draw the follow⁃ing analytical conclusions：when we take the coefficientat the smooth region（relatively large）as the global con⁃stant coefficient of the evolution process，the region term

（a）

（b）

（c）

Fig. 12 The test image used to verify the effect of adaptive
weighting coefficient on segmentation results and the different ex‐
pressions of adaptive weighting coefficients. (a) Example image
with two sampling points A and B; (b) The image representation
form of the adaptive weighting matrix and the coefficient values
corresponding to the two sampling points in (a); (c) The 3D sur‐
face representation of adaptive weighting coefficient matrix.
图 12 自适应加权系数在图像分割结果中的有效性验证实验
及其不同表示 .(a) 抽样点A和B的示例图像；(b) 对应图像(a)中
两个抽样点的自适应加权矩阵和系数的图像表示形式；(c) 自
适应加权系数矩阵的三维表示

Fig. 11 The statistical results corresponding to the experimental
process shown in Fig. 10. The first row is the global mean image
at convergence state，the second to third rows are the numerical
distribution images of e1 and e2at convergence state，the fourth
row is the energy variation curve with respect to the evolution
time，and the fifth row is the evolution process of three-dimen‐
sional stacking form.
图 11 对应图 10显示的实验过程的统计结果 . 第一行：收敛状
态下全局均值图像；第二行和第三行：收敛状态下 、数值分布
图像；第四行：能量变化曲线；第五行：演化过程的三维堆叠形
式

119



红 外 与 毫 米 波 学 报 40卷

will become the main driving force of the evolution pro⁃cess，while the edge term will only play a supplementaryrole；on the contrary，when we take the coefficient at theadjacent region of the target boundary（relatively small）as the global constant coefficient of the evolution pro⁃cess，the edge term will become the protagonist of thepower game，and the region term will retreat to the auxil⁃iary role.Fig. 13 shows the verification experiment used inthis section. Fig. 13（a）is the input image and the ini⁃tial curve required for the evolution process. Fig. 13（b）and（c）are the segmentation results after taking the val⁃ues of points B and A in Fig. 12（a）as global constantcoefficients. After a simple observation and analysis，wecan easily find that the segmentation results shown in Fig⁃ure（b）show the effect of the pure region-based model，while the segmentation result shown in Figure（c）showsthe typical effect of the pure edge class model. There⁃fore，it is difficult to output the ideal segmentation resultwith the weighting coefficient of the global constant prop⁃erty，which further confirms the superiority of the modelproposed in this paper from the dimension of quantitativeanalysis.After simple observation and analysis，it is easy tofind that the segmentation result shown in Fig. 13（b）shows the effect of pure region-based level set model，while the segmentation result shown in Fig. 13（c）shows the typical effect of pure edge-based level set mod⁃el. Therefore，it is difficult to output ideal segmentationresult like that of Fig. 13（d）（returned by the proposedalgorithm）with weighting coefficient of global constanttype，which further confirms the superiority of the pro⁃posed model from quantitative analysis dimension.
3. 2. 3 The influence of control parameter ε on seg⁃
mentation accuracyThe parameter ε in Eq.（18）has a direct influenceon the capture range and segmentation accuracy of theevolution process. The influence details are as follows：the profile shape of function δε (ϕ) will change with thechange of parameter ε，the larger the value of ε，the wid⁃er the profile of δε (ϕ)，the wider the coverage of the evo⁃lution process，but the subsequent cost is that the overallaccuracy of the segmentation results is reduced. The rela⁃tionship curve between function δε (x) and its indepen⁃dent variable x shown in Fig. 14 further confirms theaforementioned influence law graphically， i. e.， the

span（directly related to the coverage of the evolution pro⁃cess）of function δε (x) in the direction of horizontal axis
x will widen with the increase of parameter ε，on the con⁃trary，the steepness（directly affects the target position⁃ing accuracy of the evolution curve）and peak value ofthe curve will decrease with the increase of parameter ε.
3. 2. 4 The selection principles ofμandΔtIn the process of level set evolution，we can set thetime step Δtto be much larger than the traditional levelset methods. As long as a good compromise between posi⁃tioning accuracy and evolution speed can be achieved，we can choose Δt within a relatively wide range. For ex⁃ample， from 0. 15 to 120. Although we get a macrorange，in fact，we do not address the following question，i. e.，what is the reasonable range of Δt that keeps theevolution process from oscillating？Through a large num⁃ber of validation experiments，we find that as long as theproduct of μ and Δt satisfies condition μΔt < 0.25，theevolution process can be guaranteed to be stable. By in⁃creasing the time stepΔt，we can indeed speed up theevolution process. However，when its value is too large，there is a great possibility that serious positioning errorsand oscillations will occur. Therefore，we need to makea reasonable compromise between the time step，the posi⁃tioning accuracy and the stability of evolution process.For most test images，our selection range for Δtis Δt ≤12.5.
4 Conclusions

This paper presents a GPU accelerated level setmethod for inhomogeneous image segmentation. Ourmodel combines the local and global image energies adap⁃tively，and use the force formed by these two energies topromote the evolution of the active contour. The use ofLBM to solve the level set equation enables the algorithmto be highly parallelizable and fast when implemented us⁃ing a NVIDIA GPU architecture. A large number of ex⁃perimental results show that our model can quickly andaccurately segment the images with inhomogeneous prop⁃erty，and the final segmentation results are insensitive tocontour initializations.

Fig. 13 A verification experiment used to test the effect of adaptive weighting coefficients on segmentation results（a）Input image
along with initial contour；（b）Segmentation result when regional term plays a dominant role；（c）Segmentation result when edge term
plays a dominant role；（d）Segmentation result returned by the proposed model.
图13 自适应加权系数在图像分割结果中的有效性验证实验 .（a）带有初始轮廓的输入图像；（b）区域项占主导作用时的分割结果；
（c）边缘项占主导作用时的分割结果；（d）文中方法的分割结果
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Fig. 14 The relationship between function δnewε (x) and its inde‐
pendent variable x under different parameter ε
图14 函数 δnewε (x)与自变量 x在不同参数ε下的关系曲线
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