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GPU accelerated level set model solving by lattice boltzmann method with
application to image segmentation
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Abstract: A novel Graphics Processing Units (GPU) accelerated level set model which organically combines the
global fitting energy and the local fitting energy from different models and the weighting coefficient of the global
fitting term can be adaptively adjusted, is proposed to image segmentation. The proposed model can efficiently
segment images with intensity inhomogeneity regardless of where the initial contour lies in the image. In its nu-
merical implementation, an efficient numerical scheme called Lattice Boltzmann Method (LBM) is used to break
the restrictions on time step. In addition, the proposed LBM is implemented by using a NVIDIA GPU to fully uti-
lize the characteristics of LBM method with high parallelism. The extensive and promising experimental results
from synthetic and real images demonstrate the effectiveness and efficiency of the proposed method. In addition,
the factors that can have a key impact on segmentation performance are also analyzed in depth.
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Introduction image processing and computer vision applications. Due

o ) to the presence of noise, low contrast, and intensity inho-
Image segmentation is a fundamental task in many
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mogeneity, it is still a difficult problem in majority of ap-
plications. Image segmentation techniques have been ex-
tensively studied over the past few decades. A well-estab-
lished class of methods is active contour models' ,
which are based on the theory of surface evolution and
geometric flows, have been deeply studied and success-
fully used in image processing. The level set method
(LSM) proposed by Osher and Sethian* is widely used
in solving the problems of surface evolution. Later, geo-
metric flows were unified into the classic energy minimi-
zation formulations for image segmentation™. Generally
speaking, the existing active contour models can be cate-
gorized into two types: edge-based models”"" and region-
based models'""*. The edge-based models use the gradi-
ent information of the image to construct the driving force
required for the evolution process. When the input image
has a sharp gradient, such models can indeed output
high-quality segmentation results. However, they may
suffer from some terrible problems such as poor robust-
ness o noise interference, highly sensitive to initializa-
tion, edge leakage, and easy to fall into local minimum.
Contrary to the edge-based models, the region-based ac-
tive contour models use the regional statistical informa-
tion from inside and outside of the evolution contour to
construct the driving force to guide the whole level set
evolution process. Compared with the edge-based mod-
els, region-based models have the following obvious ad-
vantages: First, region-based models have more freedom
in terms of the contour initialization, i. e., the initial
contour can be located anywhere in the image coordinate
system, and the exterior and interior contours can be de-
tected simultaneously. Second, they are very insensitive
to noise and can efficiently segment the images with weak
edges or even without edges. One of the most successful
region-based models is the Chan-Vese (C-V) model ",
which has been widely used in binary phase segmentation
with the assumption that each image region is statistically
homogeneous. However, the C-V models fail to segment
the images with intensity inhomogeneity.

In order to overcome the segmentation difficulty
caused by the intensity inhomogeneity, some local re-
gion-based segmentation models'*"* had been proposed.
These methods generally believe that the images with in-
tensity inhomogeneity satisfy the assumption of homoge-
neity within a very small local region, that is, within a
sufficiently small local image region, we can assume that
the intensity of the image is approximately statistically
uniform. Thus, by fitting the given image in the sense of
local region rather than global region, they can segment
the images with intensity inhomogeneity. For example,
in Ref. [13], the entire target boundary is obtained by
minimizing the local binary fitting (LBF) energy. Since
the LBF model makes full use of the local region informa-
tion, it achieves good segmentation performance in seg-
ment inhomogeneous images. However, like most exist-
ing active contour models, the LBFmodel is also very
sensitive to contour initialization, which restricts its ap-
plication range to some extent.

In addition, over the past few years, the GPU has
been proposed as a general-purpose computing architec-
ture. As the simple increase in the clock speed will push
the transistors to thermal limits, the multi-core technolo-
gy has become an obvious solution to enhance the com-
puting performance. In this context, The GPU has been
recognized as one of the most promising techniques to ac-
celerate scientific computations. The GPU architecture
favors dense data and local computations because the
communications between microprocessor is time consum-
ing.

In order to overcome the problems mentioned above
and take into account the promotion role of GPU in terms
of computation, in this paper, we propose a new GPU ac-
celerated region-based active contour model under varia-
tional level set framework. Firstly, based on the two
models of C-V and LBF, we construct a hybrid level set
model, which integrates the global fitting energy used in
C-V model and the local fitting energy used in LBF mod-
el and the weighting coefficient of the global fitting term
can be adaptively adjusted. The proposed model can not
only segment inhomogeneous and weak-edge targets, but
also make evolution process insensitive to contour initial-
ization, i. e., our model inherits the advantages of the
two models of C-V and LBF, while overcoming their re-
spective shortcomings. Secondly, in its numerical imple-
mentation, we adopt the LBM method, which can break
the restrictions of the traditional implementation methods
on time step. Compared with the traditional schemes,
the LBM strategy can further shorten the time consump-
tion of the evolution process, thus allows the level set to
quickly reach the true target location. Thirdly, the pro-
posed level set model is computed by using a NVIDIA
GPU to fully utilize the characteristics of LBM method of
high parallelism.

The remainder of this paper is organized as follows:
Section 2 is a brief description of the classical C-V and
LBF models which are background knowledge directly re-
lated to the proposed model. Section 3 presents the for-
mulation and implementation of the proposed model. Sec-
tion 4 validates the proposed model by extensive experi-
ments and discussions on synthetic and real images.
Last, conclusions are drawn in section 5.

1.1 C-V model

When the classical active contour models perform
image segmentation tasks, their external energy terms
are usually based on the local gradient information of the
image. Such external energy terms can perform excellent-
ly when the gradient of the image is very obvious. Howev-
er, for those images whose contours are either smooth or
cannot be defined by gradient, the aforementioned ener-
gy terms will undoubtedly encounter great difficulties. In
order to solve this problem effectively, Chan and Vese'""
proposed a novel region-based active contour model (usu-
ally referred to as C-V model) based on the simplified
Mumford-Shah model. Tts energy functional definition is
as follows:
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E ()= A% (1) - M) H(d(x))dx +
/\g"’f (1 (x) - Mw)z(l - H(qb (x))) dx +

o[ 8(o )|V ()|dr +v - [ H(d(x)dx
(1)

where H( - ) and 8( - ) are one-dimensional Heaviside
and Dirac functions. This minimization problem is solved
by deducing the associatedEuler-Lagrange equations and
updating the level set function ¢ by the gradient descent
method (with ¢(0,x) =

tour) :

Ib _ :
2 0(0) i

¢, (x) defining the initial con-

Vo cv 2
|v¢|)_ v =AY (1-M,)

+A5(1 - M) (2)

where M,, and M, can be updated iteratively by

[ 1G0H @) dx
j (¢ (x))dxdy

[ 10 - H(d(x))dx
Lp—kumw

out

M, (o) =
.(3)

M, (d) =

and —)\(I‘VV(I - Mm)2 + A;’"(l - Muw)zis the global image
fitting force, which uses the global image information of
the input image to guide the evolution of level set model.
As a representative region information-based level set
segmentation model, the C-V model has an important
characteristic, i. e. , its evolution is not sensitive to the
initial position of the curve. However, when the intensity
of the image is not homogeneous, the difference between
the two means (M, and M,,) and the real image data will
be very large, this phenomenon will inevitably lead the
C-V model to be difficult to give an ideal segmentation re-
sult.

1.2 LBF MODEL

In order to extend the application range of the level
set model to the field of inhomogeneous image segmenta-
tion applications, Li et al. constructed a region-based ac-
tive contour model based on the local region statistical in-
formation of the image. It first defines a local energy
function with the following expression for each pixel x on
the image plane:

Eo= A f inside(C)
)\é’""J' Ka(x - y)’ [(y) —fz(x)2 ’dydx

where [ is the image data to be segmented, C is a closed
contour on the image plane, A" and A% are two control
constants for balancing the forces inside and outside the
contour C, K, is a Gaussian window function (the local-

Ku(x - y)‘[(y) -1 (x)z‘dydx +
.(4)

outside (C)

ization effect of the LBF model is exactly caused by this
window function) with standard deviationo, f,(x) and
f>(x) are fitting values of two sub-regions divided by the
contour C(the divided object is the local region centered
at the current pixel x).

Then, by integrating the aforementioned energy
function over the entire image region, the overall target
functional of the LBF model in form of level set formula-
tion can be generated as follows :

EY = [ E (64, (2) () d
= Mﬁr’fﬂ[fﬂ[{g(x - y)’l(y)
+A§WIQ[IQK;(x—-y”[(y)

v)) dy:| dx

H (d) (y))) dy} dx
.(5)

where ¢ ( - ) is the level set function and H( - ) is the
Heaviside function. Minimizing the energy functional
E"™" with respect to ¢ by using the calculus of variation
and the steepest descent method, we can easily deduce
the corresponding gradient descent flow as:

9% _ _5(¢)()\§B”el - /\g“’”ez) ,(6)

ot
e, and e, in Eq. (6) are defined as:

e(0)= [ K (y-x ) 1) = £(y)| dy

S AOINAC
~A[(1-

()
()= [ K, (y =) 1) =£.0)] ar
with
K[ H,(6) ()]
/(0= K,*H,(¢) (8)
K[1-H.(6)1(x)] '

fz(x): KU*[I—Hg(qb)]

In the above equations, we actually use the regular-
ized versions of Heaviside function H ( - ) and Dirac func-
tion §( - ) which are expressed as follows :

1 2 z
H,(z)= 2[1 + ’n_arctan(g)}
.(9)

1 e
88(2’):;'@,26]?

The parameter & affects the profile of &, (d)) A big-
ger & will cause a broader profile, which will expand the
capture scope but decrease the accuracy of the final con-
tour.

In actual calculation, the construction process of
the local binary image ()\fBFel - )\éBFez)is based on all

the pixels in a local Gaussian window, this localization
property is the real reason for the LBF model to be able to
segment non-homogenous images. However, when the
contour is located at a certain location whereA!* e, =
A e,, the local image fitting force will be zero, which
leads to the evolution process be trapped into certain lo-
cal minima, thus the segmentation result has a strong cor-
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relation with the initial position of the curve.
2 The proposed method

2.1 Our model and its variational level set formula-
tion

For the segmenting level set function ¢ of an image,
we define its local fitting energy as:

g () =at | | ] K=y 1()-
[ H(6()) dy} dx +
w [ K= 1) -0 (1 -
1(6(2)))dy |as

At the same time, its corresponding global fitting en-
ergy is defined as the following form:

E@ = [ (10w H@)
i (11
A n([(x) -M,,) (1- H(d(x)))dx

They come from the two models of C-V and LBF, re-
spectively. By combining these two energy terms, we pro-
pose the new energy functional as follows :

E((b) — EI"“'/(QS) + - Eg/alm/(d))

where w is a weight control parameter and its value varies
with image coordinates.

To get better segmentation results, we need to make
a reasonable combination of El""“[(d)) and Egl"[”’l(d)) in
Eq. (12). The key point is how to adaptively determine
the weight coefficient w of the auxiliary global fitting en-
ergy term. In regions far from the true target boundaries,
such as point p, in Fig. 1, where the intensity distribu-

.(10)

,(12)

tion is nearly homogeneous, the fitting values fjand f, ob-
tained by local fitting process are almost identical , which
means that within this type of regions, f,and f, cannot cor-
rectly reflect real background information and foreground
targets. The reason is that the processing flow only takes
into account the local information. However, in such re-
gions, local information is not sufficient for the true back-
ground and foreground description task. In view of this,
we need to increase the weight coefficient of the global fit-
ting term so that the active contour can towards right di-
rection under the driving of global fitting energy. Con-
versely, within the regions close to the true target bound-
aries, for example, point p, in Fig. 1. At this time, the
foreground f; and background f, obtained by local fitting
process can correctly reflect the distributions of fore-
ground and background. When the image has an inhomo-
geneous intensity distribution, M, and M, obtained by
global fitting process may seriously deviate from the real
foreground and background, and the existence of global
fitting term will affect the accuracy of segmentation. As a
result, in such regions, we need to reduce the weight co-
efficient of global fitting energy to ensure the accuracy of
segmentation output.

out

Based on the above analysis, we should adaptively
generate the weighting coefficient of global fitting term ac-
cording to the image region in which the active contour is
located, i. e., in a region where intensity changes
smoothly, a smaller value needs to be taken, while in a
region where intensity changes greatly, it is necessary to
take a larger value. To match this requirement, we de-
fine the following local contrast factor corresponding to a
local window :

Vs = Vain
LCR, = ———™ ,(13)
L

where NV is used to mark the size of the local window, V.
and V. are the maximum and minimum intensity values
of the local window, respectively, L is the intensity level
of image, and for grayscale images, its value is 255. Ob-
viously, the value range of LCR, is [0, 1]. At the physi-
cal meaning level, it reflects how fast the intensity chang-
es in a local region, which have smaller values in the
smooth regions and bigger values in the regions close to
targets boundaries. In view of this, we define the weight
coeflicient as the following functional form:

w =« - mean(LCR,).(1- LCR,) ~ ,(14)

where k is a constant parameter, mean (LCR‘\) is the av-
erage value of LCR over the entire image region, which
reflects the overall contrast of the image. For images with
strong overall contrast, they must have a clear foreground
and background, so we can increase the weight coeffi-
cient on the whole. (1 - LCRN)can adaptively adjust the
weight coefficient of global term in all local regions, mak-
ing it smaller in regions with high local contrast ratio and
larger in regions with low local contrast ratio.

Fig. 1 Explanation of how to adaptively determine the weight
coefficient of global fitting term
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For more accurate computation involving the level
set function and its evolution, we need to regularize the
level set function by penalizing its deviation from a
signed distance function''®’, characterized by the follow-
ing energy functional :

P(¢)= j%(y Vo ()| - 1) dx

As in typical level set methods, we need to regular-
ize the zero level set by penalizing its length to derive a
smooth contour which is as short as possible during evolu-

.(15)
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tion:

L(¢) = [|VH (¢ (x))|da (16)

In summary, we can express the total energy func-
tional as the following:

E“=E+u-P(dp)+v-L(d)

where p and vare control parameters to balance the contri-

,(17)

bution of the corresponding energy term.
Keeping M,, and M, fixed, and minimizing the en-

tire energy functional Energy with respect to ¢, we de-
duce the associated Euler-Lagrange equation for ¢ as fol-

lows:
ad cv 2 cv 2
S o, (0) - A (- )+ e (r-m)) -
oD (B) (e, 4870 4 .
w|Ad - dw(|zjz|) + V5e(¢)di”(|2i|)

where M,,, M,,, e, and e, are formulated by expressions
(3), and (7), respectively.

The new hybrid fitting energy is a weighted linear
combination of the global image fitting force from the C-
V model and the local binary fitting force from the LBF
model. The advantages of this weighted combined form
of image fitting energy are as follows: The global image
fitting force component makes the combined model insen-
sitive to the initial position of the curve, and the local bi-
nary fitting force component makes the combined model
can segment the images with intensity inhomogeneity.
We combine these two forces together with the control pa-
rameter w so that the new hybrid model can have the ad-
vantages of the C=V model and the LBF model. There-
fore, the proposed model can effectively deal with the in-
tensity inhomogeneity, regardless of where the initial
contour lies in the image.

2.2 The implementation of the proposed model
2.2.1 The reason for the high computational com-
plexity of traditional level set methods

The traditional level set methods usually need to
spend more iterative times (corresponding to a higher
time consumption) to segment an image, which is unac-
ceptable for image data-based real time applications or
mass image data processing problems. The following rea-
son leads to this high computational complexity phenome-
non: An explicit scheme is the most popular way for solv-
ing Eq. (18), but due to the Courant-Friedreichs-Lewy
(CFL) " condition which asserts that the numerical
waves should propagate at least as fast as the physical
waves, so the curve can only move a small distance in
each iteration, it requires very small time step and if the
curve is not near the edge of interested object, the curve
may take a long time to reach the final position.

2.2.2 Lattice Boltzmann Method for breaking the
restrictions on time step

The CFL condition limits the time step of the tradi-
tional numerical solution of the level set equation, which
leads to the increase of the number of iterations in the

evolution process. Under the finite difference frame-
work, the process needs to approximate the continuous
PDE to a discrete form, while LBM""®derives a continu-
ous PDE which has the same form of the level set equa-
tion from a discrete form. Since the time step is not
strongly restricted and highly parallelizable, LBM is a
fast numerical solution of the level set equation.

LLBM is proposed as a computational fluid dynamics
(CFD) method for fluid modeling™. Instead of solving
the Navier-Stokes equations, the discrete boltzmann
equation is solved to simulate the flow of the Newtonian
fluid by collision models such as Bhatnagar-Gross-Krook
( BGK)DO'Z”.

In this paper, we use the D2Q9 (2D with 8 links
with its neighbors and one link for the cell itself) LBM
lattice structure. Fig. 2 shows a typical D2Q9 model.

fq. € f,.e, f..e
i

e foe fo8
X—»

Fig. 2 Spatial structure of the D2Q9 LBM lattic
K2 D2QIHE TR 25 7 ik 25 M 4544

The evolution equation of LBM can be written as
O S
ﬁ(r +e At + At) =f.(Fe) + . [ﬁ '(7t) ﬁ(r,t)]
D - -
+—0 F . e,
be?

where ¢, is the velocity vector of a given link i, f.(7,1) the

,(19)

distribution of the particle that moves along that link, ¢
the time, Atthe time step, 7 the position of the cell, F
the body force, D the grid dimension, b the link at each
grid point and ¢ the length of each link which is set to 1
in this paper. The parameter 7 represents the relaxation
time determining the kinematic viscosity in Navier-
Stokes equations, and /i is the local equilibrium particle
distribution which has the following form.

S (pai) = P(AL- +B,(e i)+ C (e i) + Di(ﬁ)z)’(m)

where the constant coefficients A; to D, are determined
based on the geometry of the lattice links, p and u are re-
spectively the macroscopic fluid density and velocity cal-
culated from the particle distributions as

p=2
g -
i= 22

,(21)
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For diffusion problems, the equilibrium function
can be simplified as'®’

[ (paii) = pA,
In the case of D2Q9 structure, the concrete form of
fiis
— — 2
[ =pa[(1 + 3(e,- . ﬁ) + f(ei . ﬁ)

i=0,1,--8 .(23)
where oy =4/9,a,,,,=1/9,054.,5=1/36, at the

same time, there is a relationship between the relaxation
time 7 and the diffusion coefficient y:

y=gc-1)

(22)

.(24)

By performing the Chapman-Enskog analysis the fol-
lowing diffusion equation can be recovered from the LBM

evolution equation ':
ap

—=yV-Vp+F
a7 p

By replacing pwith the signed distance function ¢ in

[(25)

Eq. (25), since level set function ¢ has the signed dis-
tance property |Vd> | =1, we have the following expres-
sion:

a—p=yV- Vp+F=ydiv( vé

ot ’V
where “div” is the divergence operator, and the body
forces F represents the link with the image data in the
LBM solver. Table 1 gives the corresponding forms of
zand F in D2Q9 LBM equation for the C-V model, LBF
model and our model described in subsection 3.1, the
proposed level set equation can therefore be solved using
the following lattice Boltzmann equation :

+F  (26)

ﬁ(? +e At + Az) =f.(Fe) + %[fi”"(?,z) —f,(?,t)] +

bﬂ : (w : 53(¢>)(—/\1(1 -m,) (1 - M)Z) - .(27)

8.(6) (1 = 1) (u, = ws) + o - AG)

After adopting the LBM ideology, we do not need to
explicitly calculate the curvature since it is implicitly
handled by the LBM.

2.2.3 Algorithm of the GPU accelerated level set
model for image segmentation

The aforementioned strategy can effectively over-
come the problem of high computational complexity in
traditional level set methods. Our GPU accelerated level
set algorithm for non-homogenous image segmentation is
implemented as follows :

(a) Initialize the level set function ¢ as a signed dis-
tance function;

(b) UpdateM
respectively;

(¢) Compute the input of our LBM such as zand
Faccording to Table 1 and our level set equation(18) ;

(d) Resolve the level set equation using LBM
with (27);

(e) Accumulate the values of f,(7,1) at each grid
point with Eq. (22) , which updates the values of ¢pand
locate corresponding contour;

(f) Return step (b) until the evolution process
reaches the state of convergence.

Fig. 3 shows the flowchart the proposed GPU accel-
erated level set model.

In the computer programming implementation
phase, the built-in Matlab function named “arrayfun” is
used to implement the GPU-based accelerated computa-
tion process. For example, when calculating the body

M,,, e, and e, using (3) and (7)

in?

Table 1 Corresponding forms of r and F in D2Q9 LBM equation for level set methods

®1 SE-MFED2QIEFHREEFEFEPHNMARIER

Method Level set equation zand F
9
s () o Y| - - =g mea(e)ros,
3t—£¢ﬂw‘v¢| v ,
C-V model F=68,()[-v-a"(1-m,) +
/\”(I—M)2+/\”(I—M )2 2
a
LBF model a—‘f =-8,(¢)(A1"e, - ALe,) /
9 _
Jat 9
) r=—-(v-5,(¢)-p)+05,
w -8, (¢)(—Af"(1 - Mm)2 A5 (1-m,,) )— 4 ( )
2
_ ‘ F=w-$, (—)\” 1-M,) +
5B - a2+ ool
Our model

e

| Vo
Ad - div +
(I vé ))

v- 5£(¢)dw( vé

“l

AS(1 - M)) -

8,(6)(A1e, = AL e) +
m AP
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Fig. 3 The flowchart the proposed GPU accelerated segmenta-
tion model
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force F', we take the following function call format :
(1)imagep, = gpuArray (image) ;

(2) ModelParameterStructure ., = gpuArray
(ModelParameterStructure) ;

(3) Fpy = arrayfun

(@body _force,image GPU,ModelParameterStructure) ;

(4)F = gather(FG,,U).

The first and the second lines are used to convert
the input image and associated model parameters from
CPU to GPU, the third line computes the body force on
GPU using the kernel function “body_force.m” pro-
grammed by Table 1, and the last line transfers the com-

puted body force from GPU to CPU.
3 Experimental results and discussions

In this section, we evaluate the efficiency of our fast
hybrid level set algorithm for inhomogeneous image seg-
mentation. The experiments are implemented using the
parallel computing toolbox of Matlab R2012a installed on
a computer with 2. 3G Intel Core i7 CPU, 8G RAM and
possessing NVIDIA GPU GeForce GT 720M. For the fol-
lowing parameters, we use the same values for all experi-
ments, i.e. , AV =1, A =1, A =1,A =1, &=
1, At = 0.1 (time step) , w = 1, k = 2. In addition, the
parameter v will change from image to image, i. e. , its
value with a certain degree of image dependency. What
needs to be specifically stated here is that the methods in-
volved in the comparison and the proposed method all be-
long to the pure data-driven type, and do not adopt any
form of shape priors.

Next, we will carry out our experiments from the fol-
lowing three aspects: accuracy of segmentation result,
insensitivity to contour initialization, rapidity of evolu-
tion process.

3.1 Experimental results
3.1.1 Accuracy of segmentation result

Fig. 4 shows the comparison segmentation results
for five laser radar range images'™. All ofthem are typi-
cal images with intensity inhomogeneity. To demonstrate
the superiority of our method in terms of accuracy of seg-
mentation result, we compare it with several other classi-
cal segmentation models' 2> in which the C=V mod-

el is a segmentation method of level set type, and the
traditional non-level-set segmentation methods include K-
means algorithm™ and pulse coupled neural networks
(PCNN) algorithm™'. The first row of Fig. 4is the input
images and the initial contours required for the level set-
based segmentation methods, and the second to the
fourth rows are the segmentation results by using the C-
V, OTSU, PCNN and our models respectively. To be
consistent with the expression form of level set segmenta-
tion methods, the results of traditional segmentation meth-
ods are presented in the form of contour. Visually, we
can easily distinguish that the traditional segmentation
methods are powerless for the inhomogeneous images
shown in Fig. 4, and they all have different degrees of
segmentation errors. On the contrary, our method out-
puts satisfactory segmentation results on all of these chal-
lenging images, all of this is attributed to the effective
combination of local and global image energies. To quan-
titatively evaluate the performance of this set of compari-
son experiments, we use two popular region overlap met-
rics called Jaccard Similarity (JS)" and Dice Similarity
Coefficient (DSC )" with the definitions as follows :

152 VB N15.) (28)
N (Srpﬁremrk U St"-‘”)
e N S,

DSe 2N (S, S) ,(29)

N (S ) + N (S.)

where “” and “U” represent the intersection and union
of two regions, respectively, S,, and S, are the out-
put region of segmentation algorithm and the ground-
truth, respectively, N ( - ) represents the number of pix-

test

els in the enclosed set. Obviously, the closer the JS and
DSC values to 1, the better the segmentation results. Ta-
ble 2 records the above two region overlap metrics, by
comprehensively comparing these data, we can clearly
find out that our method does obtain the optimal segmen-
tation performance.

In order to fully test the proposed method, it is nec-
essary to carry out our comparison experiments on a larg-
er data set. The dataset used here is PASCAL VOC
2012, which is a dataset with an extremely high usage
frequency in the field of image segmentation, especially
in the field of deep learning-driven semantic segmenta-
tion in recent years. The test dataset consists of 1449 nat-
ural images covering a total of 20 categories, such as air-
plane, human, bird, and so on. Fig. 5 shows the seg-
mentation results on several sampleimagesof the PAS-
CAL VOC 2012 dataset. The first column of Fig. Sshows
the input sample images and the initial contours required
for the level set evolution process, and the second to fifth-
columnsof Fig. Sare the segmented contours of C-V, K-
means, PCNNand our models respectively. By visually
observing the segmentation results shown in Fig. 5, we
can intuitively find that the three methods involved in the
comparison are more or less affected by the background
clutter and the distribution of the target itself. On the
contrary, the proposed model adaptively combines local
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Fig. 4 Segmentation comparisons of C-V model, K-means model, PCNN model and our method on five laser radar range images. The
first row: Input images along with initial contours, the second row: C-V model, the third row: K-means model, the fourth row: PCNN

model;the fifth row: our model.

K4 C-VAR KM PCNN LI SC R I 3500 1Ok OE T A B B R AT 0 BIAF B A AE R EUBE . 26 —A47 A A W0 e 1) A AL T2

8558 BB AT )R C-V B K BI{EL PCNN DA R SO J7 ik

energy and global energy into an integrated functional ex-
pression, thus it shows strong ability in the background
interference suppression and foreground target extrac-
tion, which can be clearly verified from the fully correct-
ed results shown in the fifth column of Fig. 5. In order to
objectively measure the comprehensive quality of the seg-
mentation results, we apply the aforementioned three
comparison methods and the proposed model to the PAS-
CAL VOC 2012 dataset, and calculate the distributions
of JSandDSCin the form of boxplot, and the final descrip-
tion results are shown in Fig. 6. By analyzing the two dis-
tributions in Fig. 6, it is easy to find that our algorithm
achieves the best performance in the statistical average
sense among the family of comparison methods in this pa-
per. In summary, our model has indeed achieved the
best performance at both subjective and objective levels.
3. 1.2 Insensitivity to contour initialization

The insensitivity to contour initialization con-
cerns the problem that the iterative process steadily con-
verges to the same ultimate state regardless of the posi-
tion and shape of the initial contour. Fig. 7 shows the
first set of validation tests for insensitivity to contour ini-
tialization. We will give the comparison results of LBF
model synchronously. The first row of Fig. 7 is an inho-

mogeneous infrared human body image and three differ-
ent initialization schemes. The second row is the segmen-
tation results of LBF model. As expected, they are high-
ly sensitive to contour initializations. It outputs correct
(as shown in the third column of the second row) segmen-
tation result only when the initial curve intersects with
both targets. Under other initializations, it only segments
one of the targets (as shown in the first to second col-
umns of the second row). On the contrary, our model
outputs almost the same correct segmentation results un-
der three initializations. All of this is due to the fact that
our method perfectly inherits the insensitivity of C-V
model against initialization.

Fig. 8 shows another set of our validation tests, its
purpose is similar to Fig. 7. From this set of experi-
ments, we find that the LBF model outputs correct (as
shown in the third column of the second row of Fig. 8)
segmentation result only when the initial contour is com-
pletely located inside the target. Under the other two ini-
tializations (as shown in the first to second columns of
the second row of Fig. 8), its outputs are strongly inter-
fered by background clutter and wrong segmentation re-
sults are obtained. In sharp contrast to this, our model
yields the same correct segmentation results (as shown in
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Table 2 Segmentation metrics for the five images in
Fig. 4numberedin order from left to right

x2 MEHASRFEMNE4FKEGHIBNERES

Image No. Algorithm Metrics (JS-DSC)
CV 0. 6533 0. 7903
K-means 0.5172 0. 6818
image #1
PCNN 0. 5625 0.7200
Our method 0.9757 0.9877
(% 0.7285 0. 8429
K-means 0.7340 0. 8466
image #2
PCNN 0.7290 0. 8432
Our method 0.9598 0.9795
CvV 0. 5026 0. 6690
K-means 0.6124 0.7596
image #3
PCNN 0. 6676 0.8007
Our method 0.9897 0.9948
CV 0.6713 0. 8033
K-means 0.7292 0. 8434
image #4
PCNN 0.7043 0. 8265
Our method 0.9807 0.9903
(Y% 0. 4389 0.6100
K-means 0.2642 0.4180
image #5
PCNN 0.5068 0.6726
Our method 0.9726 0.9861

the sixth row of Fig. 8) under all initialization styles.
This further proves that our model has strong insensitivity

Fig. 5 The segmentation results on several sampleimagesof the PASCAL VOC 2012 dataset. The first column shows the input images
along with initial contours, and the second to fifth columns is the segmentation results by using C-V, K-means, PCNNand our models re-
spectively
K15 % PASCAL VOC 2012 #Hfa 4 BEHLATRE K R 10 20 RIS SR LS . 5 — 4] AP A WD AR S0 0 A0 i A TR 18 58 — 3058 s o Bl 2. C-1
BER K 35{H PCNN PR SO 5 vk

to contour initialization. At the same time, we also give
three intermediate results of our model, which are placed
in the third to fifth rows of Fig. 8. In addition to the evo-
lution results shown in Fig. 8, we also give a series of
statistical results (as shown in Fig. 9 and each column in
its layout corresponds to the same column of Fig. 8) re-
lated to the evolution process, which include: the global
mean image al convergence state, and the internal and
external means of the regions separated by the target con-
tour are marked at the upper left corner of the image
plane; the numerical distribution images of e ,and e, (de-
fined by Eq. (7)) at convergence state; the energy varia-
tion curves with respect to the evolution time; the evolu-
tion process of three-dimensional stacking form. Through
this set of statistics, we can better feel this group of veri-
fication experiments.
3.1.3 Rapidity of evolution process

In this section, we will evaluate the improvement ef-
fect of the two schemes named LBM and GPU used in
this paper on the rapidity of evolution process. The test
data used here are three synthetic images with obvious in-
homogeneity and varying degrees of noise interference
shown in Fig. 10. The methods used for comparison in-
clude: hybrid fitting energy (HFE) model with local and
global terms, hybrid fitting energy (HFE) model with lo-
cal and global terms solving by LBM strategy under CPU
environment (HFE+LBM+CPU) , hybrid fitting energy
(HFE) model with local and global terms solving by
LBM strategy under GPU environment (HFE+LBM+
CPU). For the input images shown in the first row of
Fig. 10, the segmentation results (as shown in the fifth
row of Fig. 10) of the above three methods on each im-
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Fig. 6 Quantitative evaluation results of four different compari-
son algorithms on VOC 2012 dataset. The sub-graphs (a) and
(b) are the statistical distributions of the two metrics JS and
DSC, respectively. Any single boxplot corresponds to the com-
prehensive response results of an algorithm participating in the
comparison on the VOC 2012 dataset.
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Fig. 7 Segmentation comparisons of our model with LBF mod-
el on an infrared human body image under three different initial-
izations. The first row: Input images along with initial contours;
the second row: Final segmentation results of LBF model; the
third row : Final segmentation results of our model
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age are the same, and the only differences are the time
cost and the number of iterations of the evolution pro-
cess, which are recorded in detail inTable 3. In addi-
tion, the image sizes are also listed in Table 3. At the
same time, we also give three intermediate results of the
evolution process, which are placed in the second to
fourth rows of Fig. 10. By carefully comparing the quanti-
tative values in Table 3, we can summarize the following
conclusions: Firstly, the LBM can decrease the number
of iterations of the evolution process and reduce the total
time cost by several times. Secondly, the acceleration
rate of the GPU strategy is even more than one hundred
times. For real-time applications, such acceleration per-
formance is very attractive and valuable.

In addition to the experimental results with timing
patterns shown in Fig. 10, we also give a series of statis-
tical results (as shown in Fig. 11 and each column in its
layout corresponds to the same column of Fig. 10) relat-
ed to the evolution process, which include: the global

Fig. 8 Segmentation comparisons of our model with LBF mod-
el on an infrared pig image under three different initializations.
The first row: Input images along with initial contours; the sec-
ond row: Final segmentation results of LBF model; the third to
fifth rows: Three intermediate results of our model; the sixth
row : Final segmentation results of our model

18 LBF BRL 5 3C 5 gk X LA NG =S AN [l ) i o
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mean image at convergence state, and the internal and
external means of the regions separated by the target con-
tour are marked at the upper left corner of the image
plane; the numerical distribution images of e,and e, (de-
fined by Eq. (7)) at convergence state; the energy varia-
tion curves with respect to the evolution time; the evolu-
tion process of three-dimensional stacking form. Through
this set of statistics, we can better feel this group of veri-
fication experiments.
3.2 Discussions
3.2.1 A simple method to initialize the level set
function

Under our combinatorial regularization strategy, the
reinitialization required by the traditional level set meth-
od is cancelled, at the same time, the pre-constraint re-
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Fig. 9 The statistical results corresponding to the evolution pro-
cess shown in Fig. 8. The first row is the global mean image at
convergence state, the second to third rows are the numerical dis-
tribution images of e, and e,at convergence state, the fourth row
is the energy variation curve with respect to the evolution time,
and the fifth row is the evolution process of three-dimensional
stacking form.
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quirement of initializing the level set function asasigned
distance function no longer exists, therefore, we can ini-
tialize the level set function as the following simple form:

—c,(x,y) € Qi — 9Q

initial

D (x,y) =40, (x,y) € 08, »(30)
c, (x,y) e Q- Q.
where 9(), ... is a set of pixels on the boundary of re-

gion{),,... enclosed by the initial contour (manually set or
generated by some automatic segmentation algorithms) ,
¢ is a positive constant and its selection rule isc > 2¢,
where ¢ is the attribute parameter inEq. (9).

Obviously, the initial level set function generated
by the proposed initialization strategy shown in Eq. (18)

Table 3 Comparisons of speed metrics of evolution pro-
cess for the three images in Fig. 10 numbered
in order from left to right

&3 =HEEXME10 = KE GRS BIMIEITEEIERILE

Time
Accelerated
Input No. Algorithm Iterations  cost
rate
(s)
HFE 272 23.167 1.0
image #1 .
HFE +LBM+CPU 113 9.653 2.4
(320x240 pixels)
HFE +LBM+GPU 113 0.209 110.7
HFE 182 13. 195 1.0
image #2 .
HFE +LBM+CPU 58 4.256 3.1
(320%240 pixels)
HFE +LBM+GPU 58 0.110 120.5
HFE 399 34.517 1.0
image #3 .
HFE +LBM+CPU 137 11.902 2.9
(320%240 pixels)

HFE +LBM+GPU 137 0.293 117.9

Fig. 10 A set of experiments to test the rapidity of evolution
process. The first row is the input images along with initial
curves, the second to fourth rows are three intermediate results of
the evolution process, and the fifth row is the final segmentation
results.
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is not a signed distance functionin a strict sense. In the
evolution process, although the level set function may
not be able to maintain an approximate signed distance
function at all pixel positions, the task flow can ensure
that the evolution function remains an approximate
signed distance function near the zero level set under the
regularization force generated by the second term of Eq.
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Fig. 11 The statistical results corresponding to the experimental
process shown in Fig. 10. The first row is the global mean image
at convergence state, the second to third rows are the numerical
distribution images of e, and e,at convergence state, the fourth
row is the energy variation curve with respect to the evolution
time, and the fifth row is the evolution process of three-dimen-
sional stacking form.
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(17). Through a series of verification experiments, we
find that the stability of the evolution process can be guar-
anteed as long as the aforementioned broad constraints
are satisfied.
3.2.2 The distribution form of adaptive weighting
coefficient and its influence on segmentation results
In Eq. (12), we configure a weighting coefficient
with adaptive change characteristics for the global energy
term, and its value will vary with the change of the pixel
coordinates. Fig. 12 (a) shows a typical example image
with blurred edges. According to the calculation rules de-
fined in equations (13) and (14) , we obtain the image
(as shown in Fig. 12(b)) and 3D surface (as shown in
Fig. 12(c) ) representations of the adaptive weighting co-
efficient matrix corresponding to Fig. 12(a). The coeffi-
cients at the two typical sampling points A and B in the
example image are shown in Fig. 12(b), where point A

comes from the smooth image region and B from the adja-
cent region of the edge segment. According to the descrip-
tion of section 2. 1, we know that in the smooth image re-
gion, the value of the coefficient is small, on the con-
trary, in the adjacent region of the edge, the value of the
coefficient is relatively large, which is well confirmed by
the sampling data-cursor in Fig. 12(b).

Next, we use the above two sampling coefficients as
the global constant coefficients of the evolution process to
segment the example image shown in Fig. 12 (a). Ac-
cording to the description of section 2. 1 and the composi-
tion structure of Eq. (12), it is easy to draw the follow-
ing analytical conclusions: when we take the coefficient
at the smooth region (relatively large) as the global con-
stant coefficient of the evolution process, the region term

(a)

[X.Y] [206 81]
Index 0.2414
[R/G,B] [0.2392 0.2392 0.2392]
. i'ﬁf & 1t
[XY] [20 162]
Index 0.9793
[R.G,B] [0.9804 0.9804 0.9804]

(b)

Fig. 12 The test image used to verify the effect of adaptive
weighting coefficient on segmentation results and the different ex-
pressions of adaptive weighting coefficients. (a) Example image
with two sampling points A and B; (b) The image representation
form of the adaptive weighting matrix and the coefficient values
corresponding to the two sampling points in (a); (¢) The 3D sur-
face representation of adaptive weighting coefficient matrix.
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will become the main driving force of the evolution pro-
cess, while the edge term will only play a supplementary
role; on the contrary, when we take the coefficient at the
adjacent region of the target boundary (relatively small)
as the global constant coefficient of the evolution pro-
cess, the edge term will become the protagonist of the
power game, and the region term will retreat to the auxil-
iary role.

Fig. 13 shows the verification experiment used in
this section. Fig. 13(a) is the input image and the ini-
tial curve required for the evolution process. Fig. 13(h)
and (c) are the segmentation results after taking the val-
ues of points B and A in Fig. 12 (a) as global constant
coefficients. After a simple observation and analysis, we
can easily find that the segmentation results shown in Fig-
ure (b) show the effect of the pure region-based model,
while the segmentation result shown in Figure (c¢) shows
the typical effect of the pure edge class model. There-
fore, it is difficult to output the ideal segmentation result
with the weighting coefficient of the global constant prop-
erty, which further confirms the superiority of the model
proposed in this paper from the dimension of quantitative
analysis.

After simple observation and analysis, it is easy to
find that the segmentation result shown in Fig. 13 (b)
shows the effect of pure region-based level set model,
while the segmentation result shown in Fig. 13 (c¢)
shows the typical effect of pure edge-based level set mod-
el. Therefore, it is difficult to output ideal segmentation
result like that of Fig. 13 (d) (returned by the proposed
algorithm) with weighting coefficient of global constant
type, which further confirms the superiority of the pro-
posed model from quantitative analysis dimension.

3.2.3 The influence of control parameter £ on seg-
mentation accuracy

The parameter £ in Eq. (18) has a direct influence
on the capture range and segmentation accuracy of the
evolution process. The influence details are as follows:
the profile shape of function 85(4)) will change with the

change of parameter &, the larger the value of &, the wid-
er the profile of 5, (d)), the wider the coverage of the evo-
lution process, but the subsequent cost is that the overall
accuracy of the segmentation results is reduced. The rela-
tionship curve between function 8, (x) and its indepen-
dent variable x shown in Fig. 14 further confirms the
aforementioned influence law graphically, i. e., the

span (directly related to the coverage of the evolution pro-
cess) of function 8,(x) in the direction of horizontal axis
x will widen with the increase of parameter £, on the con-
trary, the steepness (directly affects the target position-
ing accuracy of the evolution curve) and peak value of
the curve will decrease with the increase of parameter ¢.
3.2.4 The selection principles ofuandA¢

In the process of level set evolution, we can set the
time step Atto be much larger than the traditional level
set methods. As long as a good compromise between posi-
tioning accuracy and evolution speed can be achieved,
we can choose A7 within a relatively wide range. For ex-
ample, from 0.15 to 120. Although we get a macro
range, in fact, we do not address the following question,
i. e. , what is the reasonable range of A¢ that keeps the
evolution process from oscillating? Through a large num-
ber of validation experiments, we find that as long as the
product of u and Az satisfies condition wAr < 0.25, the
evolution process can be guaranteed to be stable. By in-
creasing the time stepAi, we can indeed speed up the
evolution process. However, when its value is too large,
there is a great possibility that serious positioning errors
and oscillations will occur. Therefore, we need to make
a reasonable compromise between the time step, the posi-
tioning accuracy and the stability of evolution process.
For most test images, our selection range for Arzis A <

12.5.
4 Conclusions

This paper presents a GPU accelerated level set
method for inhomogeneous image segmentation. Our
model combines the local and global image energies adap-
tively, and use the force formed by these two energies to
promote the evolution of the active contour. The use of
LBM to solve the level set equation enables the algorithm
to be highly parallelizable and fast when implemented us-
ing a NVIDIA GPU architecture. A large number of ex-
perimental results show that our model can quickly and
accurately segment the images with inhomogeneous prop-
erty, and the final segmentation results are insensitive to
contour initializations.

(a) (b)

© ()

Fig. 13 A verification experiment used to test the effect of adaptive weighting coefficients on segmentation results (a) Input image
along with initial contour; (b) Segmentation result when regional term plays a dominant role; (¢) Segmentation result when edge term
plays a dominant role; (d) Segmentation result returned by the proposed model.
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Fig. 14 The relationship between function 8 («x) and its inde-
pendent variable x under different parameter &
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