文章编号:1001-9014(2020)01-0092-07

铜锌锡硫带边电子结构及缺陷态的光学表征

马骕驭¹, 马传贺¹, 卢小双¹, 李国帅¹, 孙 琳¹, 陈 晔^{1*}, 越方禹^{1*}, 褚君浩^{1,2} (1. 华东师范大学物理与电子科学学院极化材料与器件教育部重点实验室,上海 200241; 2. 中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083)

摘要:利用吸收、光电流和光致发光等光谱表征并结合理论报道,分析了缺陷态丰富的铜锌锡硫半导体材料的光学带隙、带尾态和深浅杂质能级,揭示了Sn_{2n}相关的缺陷态是影响铜锌锡硫带边电子结构的关键因素,其中高浓度的中性缺陷簇[2Cu_{2n} + Sn_{2n}]能导致带隙明显窄化,而离子性缺陷簇[Cu_{2n} + Sn_{2n}]是主要的深施主缺陷态,同时存在的大量带尾态引起带边相关的光致发光峰明显红移。贫铜富锌条件下,适当减少锡含量,可有效抑制与Sn_{2n}相关的缺陷簇,并避免带隙的窄化。

关 键 词:禁带宽度;半导体缺陷;光谱表征;铜锌锡硫 中图分类号:0474 **文献标识码**: A

Optical characterization of bandedge electronic structure and defect states in Cu₂ZnSnS₄

MA Su-Yu¹, MA Chuan-He¹, LU Xiao-Shuang¹, LI Guo-Shuai¹, SUN Lin¹, CHEN Ye^{1*}, YUE Fang-Yu^{1*}, CHU Jun-Hao^{1,2}

(1. Key Laboratory of Polar Materials and Devices, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;

2. National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)

Abstract: The bandedge electronic structure including the optical bandgap, band-tail states, and deep/ shallow donor and acceptor levels in Cu_2ZnSnS_4 semiconductor was analyzed by absorption, photocurrent and photoluminescence spectroscopy, and the theoretical reports. It is revealed that the Sn_{Zn} -related defect in Cu_2ZnSnS_4 with abundant defect states is one of the key factors affecting the band-edge electronic structure. High concentration of the neutral defect cluster $[2Cu_{Zn} + Sn_{Zn}]$ can narrow the band gap substantially, while the partially-passivated (ionic) defect cluster $[Cu_{Zn} + Sn_{Zn}]$ is the main deep donor defect. A large number of band-tail states are responsible for the obvious red-shift of the bandedge-related photoluminescence transition energy. These detrimental defects related to Sn_{Zn} can be effectively suppressed by properly reducing the Sn content in the copper-poor and zinc-rich growth condition, which also avoids the narrowing of the optical bandgap of the Cu_2ZnSnS_4 absorption layer. **Key words**: bandgap, semiconductor defects, spectroscopy characterization, Cu_2ZnSnS_4 **PACS**:71. 20. Nr, 71. 55. -i, 78. 20. -e, 78. 55. -m

收稿日期:2019-09-16,**修回日期**:2019-12-10 **Received date**:2019-09-16,**Revised date**:2019-12-10 **基金项目**:国家自然科学基金(61790583, 61874043, 61874045, 61574057; 61574059);航空科学基金(201824X8001);国家重点研发计划 (2016YFB0501604)

Foundation items: Supported by National Natural Science Foundation of China (61790583, 61874043, 61874045, 61574057, 61574059); Aeronautical Science Foundation of China(201824X8001); National Key R&D Program of China (2016YFB0501604)

作者简介(Biography):马骕驭(1993-),男,安徽合肥人,硕士生,主要研究领域为半导体光谱学,E-mail: 51161213022@stu.ecnu.edu.cn *通讯作者(Corresponding author): ychen@ee.ecnu.edu.cn;fyyue@ee.ecnu.edu.cn

引言

四元合金化合物铜锌锡硫(Cu₂ZnSnS₄, CZTS) 属于直接带隙半导体,禁带宽度约1.50 eV,吸收系 数很高(>10⁴ cm⁻¹),作为太阳能电池吸收层厚度仅 需1~2μm,相比于硅太阳能电池,制备所需原材 料少,成本低;同时,相比于铜铟镓硒和碲化镉等薄 膜太阳能电池,铜锌锡硫半导体组成元素环保无 毒、地球储量丰富,是理想的太阳能电池吸收层材 料^[1]。制备 CZTS 太阳能电池的工艺方法主要有真 空镀膜法和非真空镀膜法,前者包括溅射法和共蒸 发法,制备的薄膜致密性好,环境污染小,但是成本 较高;后者如溶胶凝胶、电化学沉积等,制备成本 低,但薄膜质量较差且易对环境造成污染[2]。到目 前为止,铜锌锡硫系太阳能电池的最高转换效率仅 12.6%[3],远低于32%的理论转换效率[4-5]。除了材 料生长工艺、器件制造限制因素外, Chen 等人通过 第一性原理计算表明铜锌锡硫半导体存在大量的 本征点缺陷态和缺陷簇⁶⁶,会形成大量乌尔巴赫 (Urbach)带尾态和浅/深缺陷能级,使得带边电子结 构变得复杂,一方面会影响光生载流子的输运,同 时加速光生载流子的复合,另一方面也会导致铜锌 锡硫的带隙窄化,吸收边红移,这些都限制了铜锌 锡硫太阳能电池光电转换效率的提高。Rev 等人认 为铜-锌的无序化不是造成铜锌锡硫半导体带尾态 的主要原因,而减少与 Snzn 替位缺陷相关的 $[2Cu_{z_n} + Sn_{z_n}]$ 缺陷簇将会减少带尾态浓度,优化铜 锌锡硫能带结构^[7]。大量文献报道铜锌锡硫半导体 的光致发光谱主峰位分布在1.15~1.30 eV之间, 远低于铜锌锡硫禁带宽度且认为辐射复合是来自 于缺陷态的施主-受主对复合,或者是势能起伏引 起的带尾态辐射复合[8-10]。而对于铜锌锡硫光学带 隙的测量也出现了许多不同的值,分布在1.15~ 1.50 eV之间^[8,11]。因此,系统地研究铜锌锡硫半导 体的光学带隙及其窄化的原因、以及准确地分析其 中的缺陷态能级及其物理来源,对于研制高效率的 铜锌锡硫基薄膜太阳能电池十分关键。

利用磁控溅射金属前驱体后硫化的方法制备 CZTS太阳能电池,工艺可控性好,薄膜质量高。基 于傅里叶变换红外光谱仪,利用吸收谱、光电流谱 和光致发光谱等光学表征手段对铜锌锡硫薄膜/器 件进行了带边电子结构的研究。结果表明:i)高浓 度的缺陷簇[2Cu_{zn} + Sn_{zn}]会使得铜锌锡硫半导体 禁带宽度减小,导致其吸收边发生明显红移,从而 使得其电池输出电压减小;ii)常规测试条件下(如 稳态激发、室温环境)难以直接观测到带边电子相 关的跃迁辐射,深低温下可获得源于带尾态的辐射 复合,而室温下仅能观测到与缺陷态、特别是深能 级缺陷态相关的发光信号;iii)在贫铜富锌组分范围 内,适当降低锡组分,可以有效抑制与锡相关的缺 陷簇,优化带边电子结构,提高光电转换效率。上 述结果在完善铜锌锡硫半导体能带结构图的同时, 有望为制备高效率的铜锌锡硫太阳能电池材料提 供实验指导。

1 实验及样品

实验样品采用成熟的磁控溅射工艺制备,选用 钠钙玻璃(SLG)作为衬底,磁控溅射钼(Mo)背电极, 再使用纯度为4N的金属靶材,按照锡/锌/铜的顺序 自下至上依次溅射,其溅射气压分别为1.20 Pa、 1.60 Pa、1.60 Pa,溅射时间分别为750 s、450 s 和 240 s。选用硫粉作为硫源对分层金属前驱体进行 快速热退火处理,硫化气压为10 Torr,加热速率为 16 ℃/min,加热到570 ℃,硫化20分钟后形成铜锌 锡硫薄膜。再通过化学水浴法制备硫化镉(CdS)缓 冲层,然后磁控溅射本征氧化锌(i-ZnO)和掺铝低 阻氧化锌(AZO)作为前窗口层,最后热蒸发Ag-Cr 上电极,得到Ag/AZO/i-ZnO/CdS/CZTS/Mo/SLG 结构 的铜锌锡硫太阳能电池。

图1 CZTS 薄膜(S1)X 射线衍射谱, 插图为 EDX 确定的样 品中元素比例

Fig. 1 X-ray diffraction pattern of a CZTS thin film (S1). The inset gives the proportion of elements in the sample by energy dispersive X-ray (EDX) spectroscopy

采用 Bruker D8 Advance X 射线衍射仪对实验 样品进行结构表征。图1为S1薄膜样品的X射线衍 射谱,样品的(101)、(112)、(200)、(220)以及(312) 衍射峰均与锌黄锡矿结构的 CZTS 标准卡片(JCPDS 26-0575)匹配良好,且(112)衍射峰峰强最大,说明 实验样品沿(112)晶面方向择优生长,精细的谱峰 结构说明样品结晶度良好,且在 S1样品中出现了微 小浓度的 SnS (JCPDS 39-0354)杂相。插图为能量 色散 X 射线光谱(EDX)测出的 S1样品元素的原子 数比例(At),可计算出 Cu/(Zn+Sn) \approx 0.80, Zn/Sn \approx 1.00。对于锡含量相对较少的样品 S2,其元素组分 比为 Cu/(Zn+Sn) \approx 0.80, Zn/Sn \approx 1.25。

所有光谱实验均基于真空型傅里叶变换红外 光谱仪(Bruker 80v),内置近红外和中红外光源,配 备了液氮冷却的锗和硅探测器,波长覆盖范围从~ 500 nm 到 1700 nm。低噪声前置放大器(Stanford-SR560)用于对光电流信号进行放大。光致发光谱 激发源为氩离子激光器,输出波长514.50 nm,最大 输出功率~2 W。测试过程中,样品置于低温制冷 系统(Sumitomo HC-4E2),温度可在4~300 K范围 内连续可调。

2 结果与讨论

图 2 为 S1 薄膜样品在不同温度下的吸收谱,可 以看到温度变化对铜锌锡硫薄膜吸收谱的影响较 小,其吸收可分为三个部分,其中A区对应于铜锌锡 硫半导体价带到导带的吸收,本征吸收边以下的B 区对应于价带尾到导带尾的吸收,C区吸收较弱,可 能与薄膜中存在的深能级缺陷有关。Tauc, Davis 和Mott 等人提出公式^[12]:

$$(\alpha h\nu)^n = A(h\nu - E_x) \qquad , \qquad (1)$$

其中, α 为吸收系数,h为普朗克常数, ν 为频率,A为 常数, E_g 为半导体禁带宽度,铜锌锡硫半导体为直 接带隙半导体,n取2^[12]。利用($\alpha h\nu$)²对能量 $h\nu$ 作 图,将高吸收区域的直线段外推到横坐标,如图2插 图所示,可获得其光学带隙约为1.33 eV。

图 3 是基于 S1 薄膜制备条件获得的电池结构 在不同温度下的光电流谱。对各温度下的光电流 谱求一阶导数谱,其最大值约位于1.33 eV,与温度 的依赖关系不明显。该值对应器件的光电响应截 止能量,可认为是器件结构中 CZTS 吸收层的禁带 宽度,其几乎独立于温度的依赖关系与吸收谱受温 度影响较小的结果一致。需要指出的是,该值明显 低于 CZTS 在室温下的理论禁带宽度~1.50 eV (0 K下为1.64 eV)^[13];同时,在1.20 eV以下的低能侧, 可以看到器件仍然存在强光电流信号,其可能由

图 2 CZTS 薄膜(S1)在不同温度下的吸收谱, 插图为基于 吸收谱获得的(αhν)²~hν 曲线

Fig. 2 Absorption spectra of CZTS thin film (S1) at different temperatures. The inset plots the curve of $(\alpha h\nu)^2 \sim h\nu$

CZTS吸收层中的深浅能级缺陷引起,这也与图2中 吸收谱在低能侧所观测到的结果一致。随着温度 升高,处于深浅缺陷态的局域态载流子得到热激 发,使得与缺陷态相关的低能侧PC信号增强。

图 3 S1 器件在不同温度下的光电流谱, 阴影部分(灰色) 表示深缺陷相关的信号

Fig. 3 Photocurrent spectra of the device S1 at different temperatures. The grey area represents the signal related to the deep defects

图4是S1薄膜在4K温度下的变激发功率光致 发光谱,连续的宽光谱是多个发光信号叠加而成, 基于高斯线型拟合可见A、B和C三个发光峰,图中 阴影给出了30mW激发功率下的光致发光谱拟合 结果,其中A峰峰位约为1.25eV,B峰峰位约为 1.17eV,C峰峰位约为0.84eV。

对各个激发功率下的光致发光谱进行拟合,得 到发光峰峰位和积分强度与激发功率的关系,如图 5所示。由图5(a)可以看到,当激发功率小于50

图4 S1薄膜样品在不同激发功率下的光致发光谱(温度为4K)

图 5 4 K 温度下 S1 薄膜(a)发光峰峰位和(b)积分强度与激 发功率的关系

Fig. 5 The relationship between (a) peak position and (b) integral intensity of luminescence and excitation power of S1 thin film at 4 K

mW时,发光峰A、B的峰位随激发功率增加分别呈现出约8meV/decade和9meV/decade的蓝移,当激发功率超过50mW时,发光峰A、B的峰位呈现出明显红移,我们认为这是温度效应所致。发光峰C的峰位基本不随激发功率的增加而移动,表现出深能

级发光峰的特点。由图 5(b)可以看到,当激发功率 超过 50 mW时,发光峰A、B的积分强度出现饱和。 对 50 mW激发功率以下的发光峰积分强度与激发 功率进行幂函数拟合:

$$I \propto P^m$$
, (2)

其中:I为积分强度,P为激发功率,得到发光峰A、B和C的m值分别为0.77、0.78和0.65,均小于1,结合其峰位随激光功率变化的关系,说明这些发光峰都与缺陷态相关^[14]。

图 6 20 mW 激发功率下 S1 薄膜样品在不同温度下的光致 发光谱

Fig. 6 Photoluminescence spectra of S1 thin film at different temperatures at the excitation power of 20 mW

为了进一步确定发光峰的发光类型,我们研究 了光致发光的温度特性,为避免因激发功率过高而 导致的温度效应,激发功率设置在20mW(远小于 图5中的50mW临界值)。图6是S1薄膜样品在激 发功率为20mW时不同温度下的光致发光谱。可 以看到,在不同温度下,光致发光谱依然存在很宽 的三个发光峰,其中发光峰A、B峰位随温度上升出 现红移,而发光峰C的峰位随温度的升高变化不明 显。发光峰A、B在低温下随激发功率的增大出现 蓝移,随温度的上升出现红移,这与文献报道的势 能起伏引起的带尾辐射复合发光特点相符合[15],而 发光峰C的峰位几乎不随激发功率和温度的变化而 变化,呈现出深能级发光峰的特点。稳态光激发 下,半导体产生恒定密度的非平衡载流子,会被半 导体中的各种缺陷态所俘获,当温度升高时,被缺 陷态俘获的局域态载流子会热激发,借助于复合中 心,发生非辐射复合,使得与缺陷态相关的辐射复 合的积分强度随温度升高而降低。发光峰的积分 强度与温度的关系通过阿伦尼乌斯公式拟合[16],

$$I(T) = \frac{I_0}{\left[1 + C_1 exp(-E_1/k_B T) + C_2 exp(-E_2/k_B T)\right]},$$
(3)

式(3)中*I*₀是0K下的积分强度,*k*_B是玻尔兹曼常数,*E*₁对应低温过程中非辐射复合通道的激活能, *E*₂对应高温过程中非辐射复合通道的激活能。对不同温度下的发光谱进行拟合,得到不同温度下各 发光峰的积分强度,并通过阿伦尼乌斯公式拟合, 如图7所示。拟合得到的发光峰A激活能为11 meV和68meV,发光峰B激活能为4meV和36 meV,而发光峰C只在高温过程中存在一个较高激 活能的非辐射复合通道,激活能为66meV。从图6 也可以看到,发光峰A、B在整个温度范围内都存在 不同程度的积分强度淬灭,而发光峰C属于深能级 缺陷发光峰,俘获的电子很难热激发,所以在低温 过程中积分强度淬灭不明显,在高温过程下,被俘 获的载流子获得能量,发生非辐射复合几率增大, 使得积分强度发生淬灭。

图 7 20 mW 激发功率下 S1 薄膜样品发光峰积分强度与温度的依赖关系及拟合结果

Fig. 7 Temperature dependence of the photoluminescence integral intensity of S1 thin film at the excitation power of 20 mW. The curves are fit results from equation (3)

结合 Chen 等人的第一性原理计算结果^[6]和光 谱表征结果,我们分析出较完整的铜锌锡硫半导体 的带边电子结构如图 8 所示,其中 CB 代表导带,CB tail 为导带尾,VB 代表价带,VB tail 为价带尾。四 元化合物半导体存在大量空位、替位和间隙原子点 缺陷,电离能较小的点缺陷会在接近导带边和价带 边的地方形成浅施主能级和浅受主能级,当缺陷浓 度较大时,这些浅缺陷能级会与主能带边交叠形成 带尾,而电离能较大的缺陷会在禁带中央形成深能 级。库仑相互作用会使电离的点缺陷相互吸引形 成缺陷簇,同时其形成能大大降低。理论计算表明 中性[2Cuza + Snza]缺陷簇会使导带下降 0.20 eV, 价带上升0.15 eV,使得铜锌锡硫半导体的禁带宽 度减小[17],这解释了通过吸收谱和光电流谱发现铜 锌锡硫半导体带隙约在1.33 eV 左右,而不是理论 带隙1.50 eV。靠近带边的高浓度缺陷态会形成带 尾态,使得铜锌锡硫半导体带边电子结构变得复 杂。考虑到多种光谱手段获得的铜锌锡硫带隙 (~1.33 eV)明显高于光致发光谱的最高能发光 峰 A (~1.25 eV), 可以推断, 发光峰 A 应该与带尾 态跃迁发光相关,进而获得带尾态深度约80 meV (包括导带带尾态和价带带尾态的综合贡献)。同 时,理论计算表明^[6,18],铜锌锡硫半导体内存在相较 V_{c_u} 而言浓度高得多的 Cu_{z_u} 点缺陷,其充当受主而使 得铜锌锡硫半导体表现为P型自掺杂。基于此,我 们认为上述发光峰B来自于导带尾到Cuzz受主缺陷 带的辐射复合,其相对于高能发光峰A的能量差约 为80 meV,与文献报道结果(50~120 meV^[18-19])比 较接近。计算表明离子性的[Cuza + Snza]缺陷簇会 在导带下方0.63 eV 处形成深施主缺陷能级^[17],而 发光峰C的峰位为0.84 eV,铜锌锡硫理论禁带宽度 约为1.50 eV,所以我们认为发光峰C来自于此深施 主缺陷能级到价带尾的辐射复合。受探测器限制, $[Cu_{z_n} + Sn_{z_n}]$ 深施主缺陷到 Cu_{z_n} 受主缺陷带之间可 能存在的辐射复合未能被有效探测到。

图 8 铜锌锡硫半导体带边电子结构示意图 Fig. 8 Scheme of the bandedge electronic structure of Cu₂Zn-SnS₄ semiconductor

上述实验观测到的铜锌锡硫吸收层光学带隙 窄化、以及带隙中存在的大量带尾态和缺陷态,会 俘获光生载流子,同时破坏了晶格的三维周期性势

场,使得载流子的迁移率下降,特别是其中的深能 级缺陷,作为有效的载流子捕获中心,大大降低了 带边光生载流子的寿命,从而对电池的光电转换效 率产生不利影响。考虑到上述缺陷态均与点缺陷 Snza有关,在贫铜富锌的生长条件下,不难理解,改 变锡含量有望调控Snza缺陷态的浓度,从而抑制与 Snza有关的缺陷簇。图9(a)为贫铜富锌少锡条件下 制备的电池结构(S2)光致发光谱,与S1样品结果相 比较,可以看到锡相对较少的S2器件中,在光致发 光最高峰出现了少许蓝移的情况下,与深能级缺陷 相关的低能侧发光峰明显减小,说明[Cuza + Snza] 深施主缺陷簇浓度得到了很好控制。图9(b)给出 了S2的光电流谱,其一阶导数谱的最大值约位于 1.50 eV处,这一数值对应于器件的响应截止波长 (或光学带隙)。其相比于多锡的S1器件而言,该值 出现了明显蓝移,而更接近铜锌锡硫理论禁带宽 度,表明[2Cuzn + Snzn]缺陷簇浓度也得到了较好地 抑制,进而避免了其带隙的收缩。同时需要说明的

图9 (a)50 K下S2器件的光致发光谱(b)室温下S2器件的 光电流谱及其一阶导数谱

Fig. 9 (a) Photoluminescence spectrum of S2 device at 50 K (b) Photocurrent spectrum and its first derivative result of S2 device at room temperature

是,在1.20 eV 以下、与深缺陷簇有关的极弱光电流 信号与光致发光谱中几乎未见相应的深能级发光 基本一致,这也进一步证实了减少锡含量有效降低 了与 *Sn_{Zn}* 相关的缺陷簇(包括离子性和中性的 团簇)。

3 结论

根据吸收谱、光致发光谱以及光电流谱测试结 果,并对比理论计算报道,实验上观测并确定了标 准锡组分制备条件下,磁控溅射铜锌锡硫半导体材 料的大量带尾态、浅受主缺陷和[*Cu_{zn}* + *Sn_{zn}*]深施 主缺陷,其中,带尾态深度接近 80 meV、*Cu_{zn}* 受主缺 陷位于价带尾上约 80 meV 处、[*Cu_{zn}* + *Sn_{zn}*]深施主 缺陷位于导带尾下约 410 meV。同时,高浓度的 [2*Cu_{zn}* + *Sn_{zn}*]中性团簇会使铜锌锡硫半导体带隙 窄化,而导致所测样品光学带隙约为1.33 eV。在 合理组分范围内,适当的减小锡组分,能够有效抑 制与*Sn_{zn}*有关的缺陷簇,同时避免缺陷簇引起的带 隙窄化,从而优化铜锌锡硫半导体带边电子结构, 为研制高效率的铜锌锡硫太阳能电池提供研究 基础。

References

- [1] Ravindiran M, Praveenkumar C. Status review and the future prospects of CZTS based solar cell - A novel approach on the device structure and material modeling for CZTS based photovoltaic device [J]. Renewable and Sustainable Energy Reviews, 2018, 94: 317-329.
- [2] Kumar M, Dubey A, Adhikari N, et al. Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS-Se solar cells [J]. Energy & Environmental Science, 2015, 8(11): 3134-3159.
- [3] Wang W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency [J]. Advanced Energy Materials, 2014, 4 (7): 1301465.
- [4] Guo Q J, Hillhouse H W, Agrawal R. Synthesis of Cu₂Zn-SnS₄ nanocrystal ink and its use for solar cells [J]. Journal of the American Chemical Society, 2009, 131(33): 11672– 11673.
- [5] Shockley W, Queisser H J. Detailed balance limit of efficiency of p-n junction solar cells [J]. Journal of Applied Physics, 1961, 32(3): 510-519.
- [6] Chen S, Walsh A, Gong X G, et al. Classification of lattice defects in the kesterite Cu₂ZnSnS₄ and Cu₂ZnSnSe₄ earthabundant solar cell absorbers [J]. Advanced Materials, 2013, 25(11): 1522–1539.
- [7] Rey G, Larramona G, Bourdais S, et al. On the origin of band-tails in kesterite [J]. Solar Energy Materials and Solar Cells, 2018, 179: 142–151.
- [8] Lim K S, Yu S M, Seo S, et al. Incorporation of Ge in

 Cu_2ZnSnS_4 thin film in a Zn-poor composition range [J]. Materials Science in Semiconductor Processing, 2019, **89**: 194-200

- [9] Tanaka K, Miyamoto Y, Uchiki H, et al. Donor-acceptor pair recombination luminescence from Cu₂ZnSnS₄ bulk single crystals [J]. Physica Status Solidi a-Applications and Materials Science, 2006, 203(11): 2891–2896.
- [10] Halliday D P, Claridge R, Goodman M C J, et al. Luminescence of Cu_2ZnSnS_4 polycrystals described by the fluctuating potential model [J]. Journal of Applied Physics, 2013, 113(22): 223503.
- [11] Kim C, Hong S. Band gap shift of Cu₂ZnSnS₄ thin film by residual stress [J]. Journal of Alloys and Compounds, 2019,799:247-255.
- [12] Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium [J]. *Physica Status Solidi* (b), 1966, 15(2): 627–637.
- [13] Sarswat P K, Free M L. A study of energy band gap versus temperature for Cu₂ZnSnS₄ thin films [J]. *Physica B: Condensed Matter*, 2012, **407**(1): 108–111.
- [14] Schmidt T, Lischka K, Zulehner W. Excitation-power de-

pendence of the near-band-edge photoluminescence of semiconductors [J]. *Physical Review B*, 1992, **45**(16): 8989-8994.

- [15] Dirnstorfer I, Wagner M, Hofmann D M, et al. Characterization of CuIn(Ga)Se₂ thin films – II. In-rich layers [J]. Physica Status Solidi a-Applied Research, 1998, 168(1): 163-175.
- [16] Davies G. The optical properties of luminescence centres in silicon [J]. *Physics Reports*, 1989, 176(3-4): 83-188.
- [17] Chen S, Wang L-W, Walsh A, et al. Abundance of Cu_{zn} + Sn_{zn} and 2Cu_{zn} + Sn_{zn} defect clusters in kesterite solar cells
 [J]. Applied Physics Letters, 2012, 101(22): 223901.
- [18] Chen S, Yang J-H, Gong X G, et al. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu₂ZnSnS₄ [J]. Physical Review B, 2010, 81(24): 245204.
- [19] Lisunov K G, Guk M, Nateprov A, et al. Features of the acceptor band and properties of localized carriers from studies of the variable-range hopping conduction in single crystals of p-Cu₂ZnSnS₄ [J]. Solar Energy Materials and Solar Cells, 2013, **112**: 127–133.