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Wet etching for InAs-based InAs/Ga( As)Sb superlattice long wavelength
infrared detectors
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Abstract: Wet chemical etching of InAs-based InAs/Ga(As)Sb superlattice long wavelength infrared photodiodes
was studied in this paper. The etching experiments using citric acid, orthophosphoric acid and hydrogen peroxide
were carried out on InAs, GaSb bulk materials and InAs/Ga ( As) Sb superlattices with different solution ratios.
An optimized etching solution for the InAs-based superlattices has been obtained. The etched surface roughness is
only 1 nm. InAs-based superlattice LWIR detectors with 50 % cut-off wavelength of 12 wm were fabricated. The
photodetectors etched with optimized solution ratio show low surface leakage characteristic. At 81 K temperature,

the surface resistivity pg,q.. of the detector is 4. 4 X 10* Qcm.
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Introduction (SLs) have showed excellent opto-electrical properties
for infrared detection and high performance focal plane

Long wavelength infrared (LWIR) photo-detectors arrays based on this novel material have been demonstrat-
have important applications in the fields of geoex- ed "' Up to now, InAs/GaSh superlattice materials
ploration, marine and environmental monitoring, meteo- are mainly grown on GaSb substrates. There exists strain

rological forecast, etc. InAs/GaSb Type-Il superlattices in the GaSh-based InAs/GaSbh superlattice since the lat-
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tice constant of InAs is smaller than that of GaSh.
Though the strain, in one hand, can enhance the opto-
electrical properties of the superlattice, such as helping
to split off the heavy and light hole bands, in the other
hand, it put challenges on epitaxial growth. The chal-
lenge turns bigger when the cutoff wavelength of the SLs
extends to long wavelength regions since the InAs layers
in the superlattice are getting thicker “**'. Therefore, the
lattice matched InAs/Ga (As) Sb superlattices on InAs
substrates as an alternative to the conventional GaSh-
based InAs/GaSbh superlattices for LWIR photodetectors
was proposed by our laboratory. Then, the high material
quality and promising optical-electrical properties of the
InAs-based InAs/Ga (As) Sb superlattices was demon-
strated by our laboratory * *. Due to the ability to pat-
tern semiconductors in an anisotropic and uniform way,
dry etching is suitable for small-size mesa preparation,
while wet etching is simple, fast, and no crystallographic
damage to the etched surface, which is suitable for large-
size mesa preparation """\, Therefore, the wet chemi-
cal etching was studied for this novel superlattice in this
paper.

Numerous wet chemical etchants have been investi-
gated on GaSb-based InAs/GaSh type-Il superlattice ma-
terials """, Best results were obtained by using citric ac-
id (C,H,0,) , orthophosphoric acid (H,PO,) and hydro-
gen peroxide (H,0,) with an appropriate solution ratio
%%, An optimized solution ratio for GaSh-based SL etch-
ing cannot be directly applied to InAs-based SL materials
since the InAs and GaSb binaries present very different
physical — chemistry properties and the etching process
for the two compounds are very different . Moreover,
slight changes in etchant component ratios can result in
large changes in etch rate and mesa sidewall roughness of
the superlattice materials """, Therefore, the InAs-based
SL wet etching process has to be studied systematically to
achieve high performance photodetectors.

1 Experiment

Wet chemical etching experiments were first carried
out on InAs and GaSb bulk materials, all samples were
processed into mesas using standard optical lithography
and wet chemical etching with the chemical solution
based on citric acid (C,H0,, 100 % ) , orthophosphoric
acid (H,PO,, 85 % ) and hydrogen peroxide (H,0,,
30 %). The wet etching rate and roughness of mesa side-
walls were measured by step profiler and atomic force mi-
croscope (AFM), respectively. Then the optimized etch-
ing solution was applied to fabricate single pixel InAs-
based SL. detectors. The InAs-based superlattices were
grown by molecular beam epitaxy. The layered structure
of the InAs-based T2SLs long wavelength infrared detec-
tor was shown in Figure 1, consisted of a 1 pm Si-doped
InAs buffer layer, followed by a 50 period Si-doped 22
ML InAs/9 ML Ga(As)Sb n-type superlattice, a 200 pe-
riod lightly Be-doped 22 ML InAs/9 ML Ga(As)Sb ab-
sorber region, a 50 period Be-doped 22 ML InAs/9 ML
Ga (As) Sb p-type superlattice, and finally a 50 nm Be-
doped GaSb cap layer. The detectors are designed to re-

ceive the irradiance from the front sides. The architec-
ture of the single-pixel detectors can be found in our pre-
vious paper.

Cap layer

P-doped SLs

Absorption layer

Fig. 1
wavelength infrared detector.
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The layered structure of the InAs-based T2SLs long

2 Result and discussion

2.1 Etching of InAs and GaSb bulk materials

The chemical reactions of InAs and GaSb etching
with citric acid (C,H 0,) , orthophosphoric acid (H,PO,)
and hydrogen peroxide (H,0,) are as follows,

2GaSh + 6H,0,— Ga,0,+ Sb,0,+ 6H,0 . (D)
2InAs + 6H,0,— In,0,+ As,0,+ 6H,0 . (2)
InAs + 4H,0,— InAsO,+ 4H,0 . (3)

2M,0,+ 7TH,PO,— M(H,PO,),+ M,(HPO,),+ MPO,+ 6H,0
. (4

(M =Ga or As or Sb or In)
Sh,0,+ 2C,H,0,— 2(Sh(C,H,0,) (H,0)) + H,0 + ZF{')
5

Among the above chemical reactions, H,0, is the ox-
idizing agent. InAs and GaSb oxidized with H,0, firstly,
then the products are dissolved in water or reacted with
H,PO,. Sb,0, is poorly soluble in water or H,PO, while it
can react with C;H,0, to form a water-soluble complex.
Therefore etchants containing CH,O, is necessary for
GaSbh, while etchants without C,H,0, is feasible for InAs.

The etching rate and surface roughness with differ-
ent etchants for InAs bulk materials were shown in Table
1. When H,PO,:H,0,=1:1 and without C,H,0,, the sur-
face is the smoothest and the roughness is only 0.4 nm,
which was shown in Figure 2 (a). While maintaining the
ratio of H,PO,: H,0,=1:1, the surface roughness is in-
creased with increasing the proportion of CH;0O,. The
presence of C;H 0, does not improve the InAs mesa side-
walls morphology, similar to reports in the literature ™.
When the proportion of H,0, is slightly more than that of
H,PO,, it has little effect on the surface roughness, while
the surface roughness is increased with increasing H,PO,
content. That is because if H,PO, content is increased,
the dihydrogen phosphate will further react with H,PO,,
which lead to form a poorly soluble salt (monohydrogen
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Table 1 Etching rate and surface roughness with different
etchants for InAs bulk materials.

R1 InAs 3R T JE f 5 2 F0 A0 HE BE T S i itk 48 & FO AL

Pq: kNt

Table 2 Etching rate and surface roughness with differ-
ent etchants for GaSb bulk materials.

R 2 GaSb it 5% E S o i3 220 #1848 FEE I S o i 46 49 A

Pq: kNl

Etching rate
C¢H,0,:H,PO,:H,0,

Surface roughness (nm)

Etching rate
Surface roughness (nm)

C¢H;0,:H,PO,:H,0,

(pm/min) (pwm/min)

0:0.1:1 0.26 1.4 10:1:1 0.32 0.7
0:0.5:1 0.35 0.5 3:1:1 0.45 1.5
0:1:1 0.45 0.4 1:1:1 0. 86 2.4
0:5:1 0.35 10.9 10:1.5:1 1.2 6.8
0:10:1 0.25 15.6 10:1:3 0.26 1.1
0.2:1:1 0.33 1.1

1:1:1 0.32 2.7

phosphate or normal phosphate). The presence of these
complexes will adsorb on the mesa sidewalls to form a
dense film and prevent the etching reaction to continue

and strongly deteriorate the mesa surface sidewalls mor-
15]

phology'
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(@ (b) (c)
Fig. 2 AFM pictures of the etching surface of (a) InAs bulk

. 10 nm

). -10 nm

material, (b) GaSb bulk material and (c) InAs-based superlattic-
es with the optimized etchants, respectively.
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The etching rate and surface roughness with differ-
ent etchants for GaSb bulk materials were shown in Table
2. For the wet etching of GaSb, CH O, have to be con-
tained as a complexing agent to react with Sh,0, to form a
soluble product. When CH,0,: H,PO,: H,0,=10:1:1,
the smoothest surface was obtained and the roughness is
only 0. 7 nm, which was shown in Figure 2 (b). The sur-
face roughness is gradually increased with reducing the
proportion of C;H,O,. And the surface roughness is grad-
ually increased with increasing the proportion of H,PO,,
while when the proportion of H,0, is more than that of
H.,PO,, the surface roughness change slightly. This is
similar to the results of InAs bulk materials.

2.2 Etching of InAs—based superlattices

Through the above experiments, it was found that
for InAs-based SL materials, H,0, was used as an oxi-
dant, H,PO, was used to react with the oxide products
and C;HyO,was used as a complexing agent. The opti-
mized proportion of H,0, and H,PO, is around 1: 1 and
the proportion of H,0, can be slightly more than that of
H,PO,. The C;H O, content in the etching etchants is re-
lated to the Ga(As)Sb thickness ratio in InAs-based su-

perlattice. Keeping H,0,: H,PO, = 1: 1 and adding
C¢H;0,, the etching rate and surface roughness with dif-
ferent etchants for InAs-based superlattices were investi-
gated, as shown in Table 3. When CH,0,: H,PO,:
H,0,=3:1:1, the surface roughness is the smallest, on-
ly 1 nm. The AFM picture was shown in Figure 2 (c).

Table 3 Etching rate and surface roughness with different
etchants for InAs—based superlattices

R3 InAsE B RGWRLR E S I ZE AR E U ik A

SANEEE R IL

Etching rate
C¢H,0,:H,PO,:H,0,

Surface roughness (nm)

(pm/min)
10:1:1 0.32 8.3
3:1:1 0.45 1.0
1:1:1 1.2 3.5

The InAs-based superlattice LWIR detector was fab-
ricated by the optimized etchants of CH;0,: H,PO,:
H,0,=3:1:1 (Sample 311). At the same time, another
sample was used for comparison that etched by the
etchants of C,H,0,: H,PO,: H,0, = 10: 1: 1 (Sample
1011). The SEM pictures of the InAs-based superlattice
mesa sidewalls of (a) sample 1011 and (b) sample 311
were shown in Fig. 3. The etching surface of sample 311
is smoother than that of sample 1011.

@ (®)
SEM pictures of the InAs-based SL photodetectors
etched with (a) C,H,0,: H,PO,:H,0,= 10:1:1 and (b) CH,O,:
H,PO,:H,0,=3:1:1 at room temperature.
B3 R 23 8 i (a) CH,0,: H,PO,: H,0,= 10:
1:1 #1(b)CH,0,: H,PO,: H,0,=3:1: 1 1l % InAs K S k& BT
FAFIRE , AR AT B0 21 JE5 e 2 TR VU BE 114y SEM ]

Fig. 3
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Figure 4 (a) shows the current responsivity spec-
trum of the InAs-based SL detector measured at 81 K.
The 50 % cut-off wavelength of the detectors reaches 12
pm. The fabricated photodiodes have a similar peak re-
sponsivity of 1.6 A/W at 81 K, corresponding to quan-
tum efficiency (QE) of 38 %. Figure 4 (b) shows the
dark current density and dynamic differential resistance-
area product values (RA) of sample 311 (red dots) and
sample 1011 (black dots) with mesa area of 200 x 200
wm® . The dark current density of sample 311 and sam-
ple 1011 are 5.7 x 10° A/em® and 9.2 X 10 A/em®, re-
spectively, under a bias of -20 mV at 81 K. The surface
resistivity pg,p. of two samples were calculated by a lin-
ear least squares fitting (see Figure 4 c¢) between the
R,A" (R,A denotes the differential-resistance-area-prod-
uct at zero bias) of diodes and P/A ratio based on the fol-
lowing equation :

L L2 e

RoA  RoA,, P surface A

Where RyA,,. 1s the bulk differential-resistance-area-
product, P is the perimeter of the diode mesa, and A is
the cross-sectional area of the detector. pq,,. of sample
3111is 4.4 x 10° Qcm, which is almost eight times larger
than that (5.1 X 10* Qcm) of sample 1011, indicating a
good surface quality obtained by the optimized etchants
and an InAs-based SL. LWIR detector with enough low
surface leakage currents has been fabricated.

3 Conclusion

Wet chemical etching of InAs-based InAs/Ga (As)
Sb superlattice long wavelength infrared photodiodes was
studied in this paper. The etching experiments using cit-
ric acid, orthophosphoric acid and hydrogen peroxide
were carried out on InAs, GaSb bulk materials and InAs-
based superlattices with different solution ratios. H,0,
was used as an oxidant, H,PO, was used to react with the
oxide products and C¢HyO,was used as a complexing
agent. The optimized proportion of H,0, and H,PO, is
around 1: 1 and the proportion of H,0, can be slightly
more than that of H,PO,. The C;H O, content in the etch-
ing etchants is related to the Ga(As)Sb thickness ratio in
InAs-based superlattice. An optimized etching solution
for the InAs-based superlattices has been obtained. The
etched surface roughness is only 1 nm. The InAs-based
LWIR detectors with 50 % cut-off wavelength of 12 um
were fabricated. The photodetectors etched with opti-
mized solution ratio show low surface leakage characteris-
tic. At 81 K, the surface resistivity pq,.. of the detector
is4.4x10° Qem.
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Fig. 4 (a) Current responsivity spectrum of detectors etched
with C,H,O,: H,PO,:H,0,= 3:1:1 at 81 K (b) I-V characteristic
for devices etched with C,;H,0,:H,PO,:H,0,= 10:1:1 (black dots)
and C,H,0,:H,PO,:H,0,= 3:1:1 (red dots) (c) The dependence
of R,A™ at zero bias on P/A ratio for the two detectors at 81 K.
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