文章编号:1001-9014(2007)03-0213-04

脉冲激光测距系统中高精度时间间隔测量模块的研究

吴 刚, 李春来, 刘银年, 戴 宁, 王建宇 (中科院上海技术物理研究所,上海 200083)

摘要:时间间隔的测量精度对脉冲激光测距系统的测量精度起决定作用.为此研制了一高精度时间间隔测量模块, 该模块基于专用时间数字转换芯片开发,采用延迟线插入法技术,最大测量时间可高达 200ms,测时分辨率最高可 达 125ps,对应测距分辨率 18.75mm,适用于远距离的测量.给出了硬件和软件设计方法以及模块的测试结果. 关键: 词:脉冲激光测距;时间间隔测量;时间数字转换;延迟线插入法 中图分类号:TN249 文献标识码:A

STUDY ON HIGH RESOLUTION TIME INTERVAL MEASUREMENT MODULE IN PULSED LASER RANGING SYSTEM

WU Gang, LI Chun-Lai, LIU Yin-Nian, DAI Ning, WANG Jian-Yu (Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)

Abstract: The precision of the pulsed laser ranging system was decided by the precision of the time interval measurement. Therefore, a high resolution time interval measurement module was developed. The module is based on the special time-todigital conversion chip which adopts the delay line interpolation method. The maximum measuring time of the module is 200ms, and the maximum time resolution is 125ps, of which the corresponding distance resolution is 18.75mm. The module is especially suit for the large distance measurement. The hardware and the software of the module as well as the testing results are also presented.

Key words: pulsed laser ranging; time interval measurement; time-to-digital conversion; delay line interpolation method

引言

脉冲激光测距以其峰值功率高、探测距离远、测 距精度高、对光源相干性要求低等优点,在工业、航 空航天、大地测量、建筑测量和机器人等领域获得了 广泛应用.不同的应用对测量范围与精度有不同的 要求,在军事上,测量范围从几百米到几十千米,相 应的精度要求从几十厘米到几百米;而在航空航天 方面,从航天器间的对接到飞船的着陆,精度则要求 在毫米量级.测量系统的测量精度主要依赖于接收 通道的带宽、激光脉冲的上升沿、信噪比和脉冲激光 传输的时间间隔测量精度,其中时间间隔的测量精 度对测距精度起决定作用^[1-4].

到目前为止,时间间隔的测量方法主要有3种: 模拟法、数字法和数字插入法^[5].其中数字插入法 是脉冲激光测距中精度最高的,主要有延迟线插入法、模拟插入法和差频测相插入法3种.由德国ACAM公司设计的一种高精度时间数字转换芯片TDC-GP1采用的就是延迟线插入法技术.

利用 TDC-GP1 芯片,设计和开发了一套基于 PCI 总线的时间间隔测量模块.实验结果证明,该模 块具有测量范围大、线性好、测量精度高的优点.此 模块的开发和利用将有利于提高脉冲激光测距的测 量精度.

1 脉冲激光测距系统结构

图 1 为脉冲激光测距系统的方框图.其工作过 程是:首先,使整机复原,准备进行测量;同时触发脉 冲激光发生器,产生激光脉冲.该激光脉冲有一小部 分能量透过分束片,直接送到接收系统,作为计时的

收稿日期:2006-10-28,修回日期:2007-03-05

基金项目:中国科学院创新三期项目(11100404K221JW19)

Received date: 2006 - 10 - 28, revised date: 2007 - 03 - 05 -

作者简介:吴刚(1981-),男,湖北武汉人,中科院上海技术物理研究所硕士研究生,电路与系统专业,现主要从事卫星定位系统中的时钟同步研究.

图 1 脉冲激光测距系统主要组成 Fig. 1 Main configuration of a pulsed laser ranging system

起始点;大部分光脉冲能量被分束片反射后经过折 转棱镜射向待测目标.由目标反射回测距系统处的 光脉冲能量,被接收系统接收,这就是回波信号.参 考信号(主波信号)和回波信号先后由光电探测器 转换为电脉冲,并加以放大和整形.整形后的参考信 号开启时间间隔测量模块,使其开始计时;整形后的 回波信号关闭时间间隔测量模块,使其停止计时.这 样,根据时间间隔测量模块的输出t即可计算出待 测目标的距离 L 为

$$L = ct/2 \quad , \tag{1}$$

式中 c 为光速.图1中,干涉滤光片和小孔光阑的作 用是减少背景光及杂闪光的影响,降低探测器输出 信号中的背景噪声.

根据式(1),关于脉冲测距精度 ΔL,可以表示 为:

 $\Delta L = c \Delta t/2 \quad . \tag{2}$

由式(2)可知,时间间隔测量模块的测时精度 Δ*t* 直接决定了脉冲激光测距系统的测距精度 Δ*L*. 因 此,要想得到高精度的测距值,研制高精度的时间间 隔测量模块便成为了必要^[6,7].

2 高精度时间间隔测量模块的设计与实现

2.1 高精度时间间隔测量技术

在目前几种主要的时间间隔测量方法中,数字插入法是通过采用数字法结合各种不同的插入方法 来实现精确测量的,可以同时得到高单脉冲测量精 度和高线性,具有测量范围大、线性好、测量精度高 的优点,因此其综合性能是最佳的.

数字插入是基于数字测量的方法,它继承了数 字法的测量范围大和线性好的优点,同时通过插入 法提高测量精度.数字法的时间间隔测量误差如图 2 所示,主要来源于时钟脉冲的上升沿与测量开始 和终止脉冲的上升沿之间的时间差 t_a和 t_b,所导致 的误差大小为 $\Delta T = nT - t_m = t_b - t_a$.其中 T 为时钟 脉冲周期, nT 为测得时间间隔, t_m 为实际时间间隔. 运用插入法的目的就是通过在信号开始处与信号结 束处使用各种插入法高精度测量 $t_a = t_b$, 从而求出 ΔT , 对测量结果进行修正: $t_m = nT - \Delta T = nT - t_b + t_a$ ^[5].

2.2 TDC-GP1 芯片工作原理

TDC-GP1 是由德国 ACAM 公司设计的一种高 精度时间数字转换芯片.芯片内部一方面通过锁相 环提高计数频率,即减小图 2 所示 t_a 和 t_b 的值,从 而提高计数精度;另一方面采用如图 3 所示的门延 时技术,即芯片内部通过门延迟来精确测量图 2 所 示 t_a和 t_b的值,从而得到高精度的时间间隔测量值, 测量精度依赖于单个门延迟的延迟时间(可达百皮 秒量级).

该芯片有控制寄存器、结果寄存器和状态寄存 器,控制寄存器用于控制 TDC-GP1 的测量模式,结 果寄存器用来存储测量结果,状态寄存器指示 TDC-GP1 的状态.其具有一个共用的 Start 通道和 2 个测 量通道(Stop1 和 Stop2),当两个通道同时使用时, 双通道分辨率为 250ps;当只使用一个通道时(即只 使用 Start 和 Stop1),单通道分辨率为 125ps. TDC-GP1 具有两种测量范围:测量范围1 是 3ns ~ 7.6μs; 测量范围 2 是 60ns ~ 200ms(此时只能使用单通 道).可通过改变写入芯片控制寄存器的值,选择使

图 2 数字法时间间隔测量误差

Fig. 2 Time interval measurement error of digital method

图 3 TDC-GP1 芯片测量单元 Fig. 3 Measurement unit of TDC-GP1 chip

芯片工作于测量范围1或者是测量范围2^[8].

2.3 模块硬件结构

图 4 为利用该芯片开发的时间间隔测量模块的 体系结构.模块以 TDC 芯片为核心,利用单片机 (MCU)进行控制和数据传输.MCU 通过内置程序与 TDC 芯片的寄存器之间进行通信.MCU 程序通过设 置 TDC-GP1 中相应的控制寄存器来确定 TDC 的工 作模式.考虑到实际应用情况,模块采用了 TDC-GP1 的单通道测量,芯片工作于测量范围 2,测时分 辨率 125ps,测量范围 60ns~200ms.

如图4 所示,Start 为起始信号,接参考信号取样 经光电接收转换电路并整形后的输出信号;Stop 为 停止信号,接回波经光电接收转换电路并放大,整形 后的输出信号;复位信号 Reset 用于每次测量的复 位,与脉冲激光触发是同步的.恒温控制晶体振荡器 (OCXO)为整个模块提供时序.MCU 从 TDC 中将测 量结果读出并写入 FIFO1 中缓存,DSP 将 FIFO1 中 的数据进行处理,并将处理后的结果写入 FIFO2. PLX9052 将 FIFO2 的数据读出并通过 PCI 总线传送 给应用程序,以供显示、记录、分析处理.

2.4 模块的应用程序设计

模块的工作模式,数据传输都是通过 MCU 的内 置程序进行控制的.图5为程序主要流程.系统通电 复位后,MCU 依照内置指令完成对 TDC-GP1 芯片 的初始化,主要是对芯片的控制寄存器写控制字,确

图 5 时间间隔测量模块的程序流程 Fig. 5 Programme flow chart of time interval measurement module

定芯片的测量范围,数据校准方式等参数.当初始化 完成后,系统处于待命状态,一旦有起始脉冲输入, 则开始测量时间间隔并计算出结果,然后通过应用 程序将结果显示在 PC 上.一次测量后系统判断是 否测量结束,若没有结束,则返回到待命状态,等待 下一次的测量开始;若测量结束,则退出程序.

操作平台采用 PC/Windows XP 计算机平台, MCU 的内置程序是在 Keil uVision2 环境下用汇编 语言编写的,应用程序采用 Visual C++6.0 编写.

3 测试结果及分析

利用复杂可编程逻辑器件(CPLD)产生起始脉 冲和停止脉冲对时间间隔测量模块进行测试.通过 对 CPLD 编程,产生预设的时间间隔作为标准时基 信号输入.将起始计数脉冲送入时间间隔模块的 Start 端口,将停止脉冲送入 Stop 端口.测试结果在

图 4 时间间隔测量模块的体系结构 Fig. 4 Configuration of time interval measurement module

计算机上显示并对结果进行分析.

实验中,在时间间隔测量模块的量程范围内,抽 取了15个标准时基信号输入值并分别对每个输入 值进行1000次测量,以下列出测试结果,并对其进 行分析.

表 1 模块对 15 个标准时基信号输入的测试结果 Table 1 Testing and statistical results for 15 standard time interval inputs

Standard time Minimum		Maximum	Average	Standard
interval inputsresults		results	results	errors
T(ns)	$T_{\min}(ns)$	$T_{\rm max}(\rm ns)$	$T_{\rm avg}(\rm ns)$	$\sigma(ns)$
1000	999.257	999. 561	999.525	0.0186
2000	1999.652	1999.802	1999.718	0.0170
4000	3999.828	3999.935	3999.880	0.0140
6000	5999.879	5999.961	5999.917	0.0116
8000	7999.871	7999 . 977	7999.933	0.0092
10000	9999 . 910	9999.983	9999.945	0.0108
50000	50000.251	50000.313	50000.286	0.0101
100000	100000.738	100000.849	100000.795	0.0115
500000	500004.648	500004.752	500004.699	0.0186
1000000	1000009.460	1000009.651	1000009.568	0.0326
5000000	5000048.933	5000050.497	5000049.857	0.4593
1000000	10000089.595	10000093.360	10000091.887	1.0201
5000000	50000463.252	50000473.985	50000468.787	3.0858
100000000	100001092.523	100001113.058	100001102.581	5.6352
200000000	200001933.748	200001981.238	200001967.471	9.3516

由表1可知,在1ms范围内,测量的标准误差基本都在40ps以内,随着测量时间的增大,模块测量的标准误差也随着增大,测量时间200ms对应的测量标准误差为9.3516ns.结果证明,模块在量程范围内的测量稳定性以及利用测量值来预测实际值的可靠性都非常高.

在检验时间间隔测量模块在量程范围内的线性 度时,考虑到由于测量范围跨度很大,故在 0~1ms 范围内,每间隔 50µs 选取一个观测点;在 1~200ms 范围内,每间隔 10ms 选取一个观测点.以这总共 40 个取样点值作为标准时基输人,并分别对每个输入 值进行 1000 次测量,计算其平均值 T_{avg} 与对应标准 时基输入 T 的差值 ΔT ,即 $\Delta T = T_{avg} - T$.测量及分析 结果如图 6 所示.图中横坐标代表标准时基信号输 入 T,纵坐标代表测量平均值与其对应标准时基信 号输入 T 的差值 ΔT .

由图 6 可以看出,模块在整个量程范围内都保 持很好的线性度,相关系数达到 0.9976. 拟合曲线 方程为 $y = 9.9 \times 10^{-6} x - 1.5455$,其中曲线斜率为 9.9×10^{-6} ,即在整个量程内,对于 1000 次测量结果 的平均值,测量相对误差达到 10^{-5} 量级. 在实际测

图 6 量程内的测量误差拟合曲线 Fig. 6 Curve fitting of measurement error within range

量中,可依据此方程来对测量值进行修正.

另外,由表 1 可知,在测量时间间隔小于 4 μ s 时,测量相对误差达不到 10⁻⁵量级.在 0~4 μ s 这一 相对整个量程来说非常小的局部范围内,测量相对 误差应该修正为 10⁻⁴量级.

4 结论

研制的时间间隔测量模块利用的是 TDC-GP1 的测量范围 2,虽然减少了一个可用通道,但使最大 测量时间由 7.6μs 提高到 200ms,大大增加了脉冲 激光测距系统的测距范围,非常适合不需要多路回 波的远距离测量系统.实验证明,采用 TDC-GP1 专 用芯片研制的时间间隔测量模块,不仅测量范围大、 精度高,控制和使用起来也非常方便,利用计算机 PCI 总线,便于集成,并已经成功应用于脉冲激光测 距系统中.该模块也可应用于其他需要高精度时间 间隔测量的系统中.

REFERENCES

- [1] HU Yi-Hua, FANG Kang-Mei, SHU Rong, et al. Sounding effect of laser scanning imaging in earth observation[J]. J. Infrared Millim. Waves(胡以华,方抗美,舒嵘,等. 对地观 测激光扫描成像探测效果研究. 红外与毫米波学报), 2001,20(5):335—339.
- [2] JIN Guo-Fan, LI Jing-Zhen. Laser Measurement[M]. Beijing: Science Press(金国藩,李景镇. 激光测量学. 北京: 科学出版社),1998:719-725.
- [3] CHEN Yu-Wei, ZHANG Li, HU Yi-Hua, et al. Array detection technology of echo on earth observation laser imager
 [J]. J. Infrared Millim. Waves(陈育伟,张立,胡以华,等.对地观测激光成像的回波阵列探测技术. 红外与毫米波学报),2004,23(3):169—171.
- [4] XU Dai-Sheng, WANG Jian-Yu. Interactional effect between laser cheating jammer and laser guidance system[J].
 J. Infrared Millim. Waves(徐代升,王建宇.激光欺骗式干 扰与激光制导系统相互作用效应研究. 红外与毫米波学报),2006,25(1):77-80.
- [5] HOU Yu-Jing, CHEN Qian-Song, PAN Zhi-Wen. Review on time-of-flight measurement of pulsed laser radar[J]. Laser & Infrared(霍玉晶, 陈千颂, 潘志文. 脉冲激光雷达的 (下转 221页)

同时每一个子图像均需要 10 次 IPCNN 网路迭代融 合处理.

因此,无论是从视觉效果方面,还是从客观评价 方面,本文提出的融合算法显著优于其他两种融合 算法,具有更好的融合效果.

表1 3种算法在道路图像融合中的效果客观评价表 Table 1 Performance index of the three fusion algorithms

	相关系数	互信息	标准差	熵	UIBM
算法1	1.0946	1.9287	24.7657	4.2579	1.3801
算法2	1.3158	1.9266	38.0195	4.7765	1. 4351
本文算法	1.3726	1.9577	41.7557	4.9252	1.4596

4 结论

在研究 Contourlet 变换和 IPCNN 的基础上,提 出了一种基于 Contourlet 变换和 IPCNN 的融合方 法.该方法利用 Contourlet 变换来进行多尺度分解, 获取图像中的深度特征信息,同时充分利用 IPCNN 同步激发特性,来进行融合策略设计,以提高图像融 合质量.经过对可见光与红外线多传感器图像的融 合,仿真结果表明本文优于其他融合算法,具有很好 的融合效果.

REFERENCES

- [1] DENG Lei, CHEN Yun-Hao, LI Jing. Controllable remote sensing image fusion method based on wavelet transform
 [J]. J. Infrared Millim. Waves(邓磊,陈云浩,李京.一种 基于小波变换的可调节遥感影像融合方法. 红外与毫米 波学报). 2005,24(01):34—38.
- [2] Broussard R P, Rogers S K, Oxley M E, et al. Physiologically motivated image fusion for object detection using a

pulse coupled neural network [J]. *IEEE Neural Networks*, 1999, 10(3):554-563.

- [3] XU Bao-chang, CHEN Zhe. A multisensor image fusion algorithm based on PCNN [C], In Proc. of the Fifth World Congress on Intelligent Control and Automation, Hangzhou, China, 2004:3679-3682.
- [4] LI Wei, ZHU Xue-feng. A new image fusion algorithm based on wavelet packet analysis and PCNN[C], In Proc. of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, China, 2005: 5297-5301.
- [5] Do M, Vetterli M. The Contourlet Transform: An efficient directional multiresolution image representation [J], IEEE Transactions on Image Processing, 2003, 14 (12): 2091-2106.
- [6] GU Xiao-Dong, ZHANG Li-Ming, YU Dao-Hen. General design approach to unit-linking PCNN for image processing
 [C], In Proc. of the IEEE International Joint Conference on Neural Networks, Montreal, Canada, 2005: 1836–1841.
- [7] BI Ying-Wei, QIU Tian-Shuang. An Adaptive Image Segmentation Method Based on a Simplified PCNN [J]. ACTA ELECTRONICA SINICA(毕英伟,邱天爽. 一种基于简化 PCNN 的自适应图像分割方法. 电子学报), 2005, 33 (4): 647—650.
- [8] FANG Yong, QI Fei-Hu, PEI Bing-Zhen. PCNN implementation and appl ications in image processing [J]. J. Infrared Millim. Waves(方勇, 戚飞虎, 裴炳镇. 一种新的 PC-NN 实现方法及其在图像处理中的应用. 红外与毫米波 学报). 2005. 24(4): 291—295.
- [9] LIU Sheng-peng, WANG Min, FANG Yong. A Contourlet Transform based Fusion Algorithm for Nighttime Driving Image [C], In Proceedings of the 3rd International Conference on Fuzzy Systems and Knowledge Discovery, Lecture Notes on Computer Science, 2006: 491-500.
- [10] YI Chen, Blum R S. Experimental Tests of Image Fusion for Night Vision [C], In Proceedings of the 7th International Conference on Information Fusion, Philadelphia, USA, 2005: 491-498.

(上接216页)

时间间隔测量综述, 激光与红外), 2001, 31(3): 136—139.

- [6] HU Yi-Hua, WEI Qing-Nong, LIU Jian-Guo, et al. Using A/D converter to improve precision of time interval measurement in pulse laser range finder [J]. Laser Technology (胡以华,魏庆农,刘建国等.采用模数转换技术提高脉 冲激光测距的测时精度.激光技术),1997,21(3):189— 192.
- [7] ZHANG Li, CHEN Yu-Wei, HU Yi-Hua. A high performance time interval measurement instrument and its application in laser imaging[J]. Infrared Technology(张立,陈育 伟,胡以华. 高性能时间间隔测量装置及其在激光成像 中的应用. 红外技术),2004,26(3):71-74.
- [8] Acam-messelectronic gmbh. Am Hasenbiel 27-D-76297, Stutensee-Blankenloch-Germany [EB/OL]. http://www. acam. de/Documents/English/DB GP1_e. pdf,2001-2-12.