文章编号:1001-9014(2006)03-0213-04

基于 PWC 方法的折衍混合红外物镜设计

曾吉勇^{1,2}, 金国藩¹, 王民强¹, 严瑛白¹
(1. 清华大学 精密仪器系,北京 100084;
2. 清华大学 清华-富士康纳米科技研究中心,北京 100084)

摘要:折衍混合设计为选用廉价材料设计像质优良的红外物镜提供了新的途径.基于衍射结构的高折射率模型和 传统的 PWC 方法,分析了折衍混合红外单透镜的光焦度分配和二级光谱;在 8~12µm 波段,采用 GASIR2 和 AMTIR1 红外玻璃,分别设计了可模压生产的折衍混合单片型和 Petzval 型红外物镜.结果表明:采用新型红外玻璃 的折衍混合设计可以代替锗材料设计出具有大相对孔径,且像质优良而廉价的红外物镜.

关键 词:光学设计;红外物镜;折-衍混合系统;PWC方法

中图分类号:0435.2 文献标识码:A

DESIGN OF HYBRID DIFFRACTIVE-REFRACTIVE INFRARED OBJECTIVES BASED ON PWC METHOD

ZENG Ji-Yong^{1,2}, JIN Guo-Fan¹, WANG Min-Qiang¹, YAN Ying-Bai¹

(1. Department of Precision Instruments, Tsinghua University, Beijing 100084, China;

2. Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China)

Abstract: Hybrid diffractive-refractive (HDR) design offers a new approach to design infrared objectives having excellent image quality and low cost. Based on the ultra-high index model of diffractive structure and the conventional PWC method, the power assigning and the secondary spectrum in the HDR infrared singlet were analyzed, and the HDR singlet-type and Petzval-type infrared objectives that could be molded were designed by using GASIR2 and AMTIR1 infrared glass in 8 ~ 12μ m waveband, respectively. The result shows that the low cost far-infrared objectives having large relative aperture and excellent image quality can be obtained by using new infrared glass to replace of Germanium and HDR design. Key words: optical design; infrared objective; hybrid refractive-diffractive system; PWC method

引言

具有良好光学性能和机械性能的红外材料较 少,给红外物镜的设计带来了一定的困难.而随着非 致冷红外相机的广泛应用,又提出了具有大相对孔 径廉价的8~12µm 波段红外物镜的要求. 锗为8~ 12µm 波段内广泛采用的材料^[1],由于该材料色散 较小,折射率很高,吸收很小,可以采用较为简单的 结构形式达到优良的成像质量. 但锗的价格昂贵,对 温度较敏感,且不能模压生产,很难应用于诸如非致 冷红外相机等低价位的相机中. 目前新型红外玻璃 (AMTIR 和 GASIR 系列)的光学性能和机械性能都 得到了很大改善,与锗材料相比较,这类玻璃材料价 格低廉,对温度较不敏感,透镜可模压生产,因此较 适合于低价位的非致冷相机应用.虽然这类红外玻 璃材料色散较大,折射率较低,但采用折衍混合设 计^[2,3],仍可以设计出具有优良像质的红外物镜^[4].

本文采用 PWC 表示的折衍混合光学系统初级 像差理论和衍射透镜高折射率设计方法,研究了折 衍混合红外单透镜的光焦度分配和二级光谱;在 8 ~12μm 波段,采用 GASIR2 和 AMTIR1 红外玻璃, 分别设计了折衍混合单片型和 Petzval 型红外物镜.

1 基本理论

衍射结构可以视为折射率无限大的薄透镜(衍射透镜)^[5],因此可以建立折衍混合单透镜的衍射透镜与折射透镜的双胶合模型^[6].

1.1 含衍射透镜的薄透镜系统的初级像差^[6]

Received date: 2005 - 12 - 20, revised date: 2006 - 03 - 20

收稿日期:2005-12-20,修回日期:2006-03-20

作者简介:曾吉勇(1964-),男,江西永丰人,副教授,清华大学精密测量技术与仪器国家重点实验室博士后,研究方向为折衍混合光学系统和体 全息存储物镜。

光栏与透镜组非密接的情况,含非球面衍射透 镜的初级像差和数为

球差
$$S_1 = \sum h(P + \Delta P)$$
 , (1)

像散
$$S_3 = \sum \frac{h_z^2}{h} (P + \Delta P) - 2J \sum \frac{h_z}{h} W + J^2 \sum \varphi$$
 , (3)

弧矢场曲 $S_4 = J^2 \sum \mu_r \varphi_r$, (4)

畸变
$$S_5 = \sum \frac{h_z^2}{h^2} (P + \Delta P) - 3J \sum \frac{h_z^2}{h^2} W + J^2 \sum \frac{h_z}{h} (3\varphi + \mu_z \varphi_z)$$
, (5)

 $\mu, \varphi,)$,

轴向色差 $S_{1c} = \sum h^2 C$ (6)

垂轴色差
$$S_{2c} = \sum hh_z C$$
 , (7)

其中 P、W 为光学系统内部参数. h 为轴上点发出经 过孔径边缘的第一辅助光线在各透镜组上的投射 高,h,为视场边缘发出经过孔径光阑中心的第二辅 助光线在各透镜组上的投射高. φ 为各透镜组的光 焦度,J为拉格朗日不变量,在本文中下标为r对应 于折射透镜的量,下标为 d 对应于衍射透镜的量. $\Delta P = (n-1)(c^3k + 8A_4)h^3$ 为衍射透镜非球面项附 加光程差产生的 Seidel 和数增量.

1.2 折衍混合单透镜的光焦度分配和二级光谱

衍射透镜的等效折射率可以写为^[6] $n(\lambda) = \lambda \times$ $10^{s} + 1$, 设 λ_{c} 、 λ_{s} 和 λ_{L} 分别为设计的闪耀波长、光 诸区的短波长和长波长,对应的折射率分别为 n_c 、 ns和nL,则阿贝数和相对部分色散分别为

$$v = \frac{n_c - 1}{n_s - n_L} = \frac{\lambda_c}{\lambda_s - \lambda_L} \quad P = \frac{n_s - n_c}{n_s - n_L} = \frac{\lambda_s - \lambda_c}{\lambda_s - \lambda_L} \quad . \tag{8}$$

令 S = 7,在 ZEMAX 软件的玻璃库中建立了名 为 DOE 的材料,在 8~12 μ m 光谱区内,对应的 n_c = 100001、 $n_s = 80001$ 、 $n_L = 120001$, 阿贝数 $v_d = -2.5$, 相对部分色散为 $P_{d} = 0.5$.

设折衍混合单透镜中折射透镜的光焦度为 φ_{r} 、 阿贝数为 v,、相对部分色散为 P,, 衍射透镜的光焦 度为 φ_{a} 、阿贝数为 v_{a} 、相对部分色散为 P_{a} . 折衍混合 单透镜的焦距规一化,在8~12µm 波段内,折射透 镜和衍射透镜的消色差光焦度分配和二级光谱详见 表1.计算二级光谱时,物在无穷远,折衍混合透镜 的焦距为 f.

1.3 $\overline{P}_{a}, \overline{W}_{a}$ 与折衍混合单透镜结构参量的函数关 系

折衍混合单透镜结构参量包括衍射透镜和折射 透镜的折射率 n_a和 n_a,透镜曲率半径 r₁, r₂和 r₃, 令 $C_2 = 1/r_2$,则透镜弯曲系数 $Q = C_2 - \varphi_1$,已知 $n_d n_r$ 、 φ_1 、Q,就能计算 r_1 、 r_2 、 r_3 .

表1 消色差折衍混合单透镜的光焦度分配和二级光谱 Table 1 The power assigning and secondary spctrum of HDR achromatic infrared singlet

$v_d = -2.5 P_d = 0.5$						
Material	n _c	v,	Ρ,	ϕ_d	φ,	Δ_L
AMTIR1	2.49749	113.58	0.461	0.022	0.978	0.00033 f
GASIR2	2.58416	100.51	0.448	0.024	0.976	0.00051 f
GE	4.00438	783.21	0.618	0.003	0.997	-0.00015 f
ZNSE	2.40644	57.47	0.443	0.042	0.958	0.00095 f
ZNS	2, 19991	22.76	0.432	0.099	0.901	0.00270 f

$$\overline{P}_{\infty} = a(Q - Q_0)^2 + P_0 \quad , \tag{9}$$

$$\overline{W}_{\infty} = -\frac{a+1}{2}(Q - Q_0) + W_0 \quad , \tag{10}$$

其中 $Q_0 = -\frac{b}{2a}$, $P_0 = c - \frac{b^2}{4a}$, $W_0 = \frac{1-\varphi_1}{3} - \frac{3-a}{6}Q_0$. 当 衍射面在透镜的前表面时, $a = 1 + 2 \frac{\varphi_r}{n_c}$, $b = -\frac{3}{n_c - 1}$ $\varphi_r^2 - 2\varphi_r, c = \frac{n_r}{(n_r - 1)^2} \varphi_r^3 + \frac{n_r}{(n_r - 1)^2} \varphi_r^2.$

折衍混合单片型红外物镜设计 2

设计要求为焦距f=80mm,相对孔径为 F/2,视 场角为 ±2°.

2.1 初始结构确定

由于相对孔径和视场均较小,采用折射混合单 透镜结构,可以校正球差、慧差和色差以满足设计要 求.由1.1节的初级像差公式得到校正初级球差、慧 差和色差的条件分别为 $P + \Delta P = 0, \overline{W}_{a} = 0, \overline{C} = 0.$ 设计以 GASIR2 玻璃材料为基底, 衍射结构置于透 镜前表面.由1.3节的公式计算得到 a = 1.7552, Po $=0.5019, Q_0 = -1.0695, W_0 = 0.1033, \varphi_d = 0.9757.$

由式(10)得到透镜弯曲系数,由此计算透镜的 曲率半径.由式(9)得到 \overline{P}_{o} =0.5118,衍射透镜的 非球面系数 $A_4 = \frac{-\overline{P}_{\infty}(h\varphi)^3}{8(n-1)h^3}$. 表 2 为折衍混合单片 型物镜的初始结构,初级像差和数为 S₁ = 0.000252, $S_2 = -0.000055$, $S_{1C} = 0.000067$, $S_{2C} =$

表2 折衍混合单片型物镜的初始结构 Original design of HDR singlet-type objective

Table 2	Original design of	IIDK singi	er-type objective
Surf	r(mm)	d(mm)	Glass
1STOP *	67,44710456	0	DOE
2	68.4471188	0.1	GASIR2
3	144.6980	79.86	

* Coefficients of EVENASPH: $A_4 = -1.2494 \times 10^{-12}$

-0.000001,可见初始结构的初级球差、慧差、色差均已良好校正.

2.2 与常规单片型锗红外物镜像质比较

图 1 为优化设计的折衍混合单片型玻璃物镜的 传递函数曲线.图 2 为常规单片型锗物镜的传递函 数曲线,该物镜结构取自文献[1],做了进一步非球 面优化.可见在 0.75 视场内折衍混合设计达到了衍 射受限成像质量,而常规设计接近衍射受限成像质 量.常规设计较折衍混合设计成像质量差的原因在 于前者色差没有校正,而后者色差已良好校正.

3 折衍混合 Petzval 红外物镜设计

光学特性要求焦距 f = 25mm,相对孔径为 F/1, 视场角为 ±5°. Petzval 物镜要求校正球差、慧差、像 散和色差.在常规设计中,Petzval 物镜由间隔一定距 离的前后二透镜组组成(图3),每一透镜组至少由 二片透镜组成以实现每一透镜组单独消色差.本文 设计中前后透镜组均采用单片折衍混合玻璃透镜.

图 2 常规锗单片型物镜的传递函数曲线

图 3 Petzval 物镜 Fig. 3 Petzval objective

根据设计要求,物镜总偏角 $\Delta u = 0.5$,偏角分配 为前组 0.2,后组 0.3. 取前后透镜组间距 d = 0.7f, 设光栏与前组密接,表 3 为物镜的外部参量:前后组 偏角分配 Δu ,光焦度 φ 和焦距 f;第一辅助光线的入 射高 h 和入射角 u;第二辅助光线的入射高 h_i 和入 射角 u_i .根据像差校正要求和物镜的外部参量得到 初级像差方程

$$\begin{split} \overline{P}_{1\infty t} + 2.43 \overline{P}_{2\infty t} + 6.4803 \overline{W}_{2\infty} + 2.48434 = 0 \quad , (11) \\ \overline{P}_{2\infty t} + 0.2858 \overline{W}_{2\infty} - 1.0582 \overline{W}_{1\infty} - 2.78724 = 0 \quad , \end{split}$$

(12)

$$\overline{P}_{2\infty_{l}} - 2.0953 \overline{W}_{2\infty} + 1.793 = 0 \quad , \tag{13}$$

后组满足方程(13)以校正像散,令 $\overline{W}_{2\infty}$ =0.6,则 $\overline{P}_{2\infty_{1}}$ = -0.5358.由方程(11)、(12),前组提供 $\overline{P}_{1\infty_{1}}$ = -5.0705、 $\overline{W}_{1\infty}$ = -2.9782 以校正球差和慧差.

前后组均采用 AMTIR1 玻璃为基底, 衍射结构 置于透镜前表面, 由表 1 衍射透镜和折射透镜的光 焦度分配 $\phi_a = 0.022 \ \phi_r = 0.978$, 由 1.3 节的公式 计算得到透镜参量 $a = 1.7836 \ P_0 = 0.5354 \ Q_0 = -$ 1.0863 $\ W_0 = 0.1059$. 透镜组 1、2 各参量的计算与 上一节中折衍混合单片型红外物镜计算方法相同. 表 4 为物镜的初始结构, 其初级像差和数 $S_1 =$ 0.003104 $\ S_2 = 0.003629 \ S_3 = 0.000079 \ S_{1c} = -$ 0.000373 $\ S_{2c} = -0.000005$, 可见初始结构的初级 球差、慧差、像散和色差均已良好校正.图 4 为优化 设计的物镜的传递函数曲线, 在 0.8 视场内达到了 衍射受限的成像质量.

4 结论

采用传统 PWC 表示的折衍混合光学系统初级

表 3 外部参量 Table 3 External parameter

	hφ(∆u)	¢	f	h	u	h,	u _z
Group1	0.2	0.016	62.5	12.5	0	0	-0.0872
Group2	0.3	0,033	30	9	0.2	1.526	-0.0872

表4 折衍混合 Petzval 红外物镜初始结构 Table 4 Original design of HDR Petzval infrared objective

Surf	Radius	Thickness	Glass	A ₄
STOP	18.80433239	0	DOE	-7.35424×10^{-10}
2	18.80434456	0.1	AMTIR1	
3	23.40586	17.5		
4	39.85153179	0	DOE	-6×10^{-10}
5	39.85164561	0.1	AMTIR1	
6	301.923	17.79234		

像差理论和折衍混合光学系统设计的高折射率方 法,研究了折衍混合红外单透镜的光焦度分配和二 级光谱;在 8~12μm 波段,采用 GASIR2 和 AMTIR1 红外玻璃,分别设计了可模压生产的折衍混合单透 镜红外物镜和 Petzval 红外物镜.设计结果表明:采 用新型红外玻璃和折衍混合设计可以代替锗材料设 计出具有优良成像质量的红外物镜,从而为设计具 有大相对孔径廉价的红外物镜提供了新的途径.

REFERENCES

- [1]ZANG Xiu-Li. Design of Infrared Optical System [M]. Beijing: Mechanical Industry Publishing House,(赵秀丽. 红 外光学系统设计.北京:机械工业出版社), 1984.
- [2] Wood A P. Design of infrared hybrid refractive-diffractive lenses [J]. Appl. Opt., 1992, 31(13):2253-2258.
- [3] LIU Li-Ping, WANG Yong-Tian, LI Rong-Gang, et al. Infrared diffractive optical element fabricated on aspheric substrate [J]. J. Infrared Millim. Waves, (刘莉萍,王涌天, 李荣刚,等. 制作在非球面基底上的红外衍射光学元件. 红外与毫米波学报), 2004,23(4):308-312.
- [4] Graham A, LeBlanc R A, Hilton R. Low cost infrared glass for IR imaging applications [J]. Proc. SPIE, 2003, 5078: 216-224.
- [5] Sweat W C. Describing holographic optical elements as lenses [J], J. Opt. Soc. Am., 1977,67(6):803-808.
- [6] ZENG Ji-Yong, JIN Guo-Fan, WANG Min-Qiang, et al. PWC primary aberration expression of thin lens system including diffractive optical element [J]. Optical Acta Sinica. (曾吉勇,金国藩,王民强,等.含衍射结构薄透镜系统初 级像差的 PWC 表示.光学学报),2006,26(2):96—100.