文章编号:1001-9014(2005)01-0045-04

类矩形保偏光纤应力双折射分析

关荣锋^{1,2,3}, 李占涛⁴, 侯 斌¹, 甘志银¹, 黄德修², 刘 胜¹ (1. 华中科技大学 微系统研究中心, 武汉 430074; 2. 华中科技大学 光电子工程系,武汉 430074; 3. 河南理工大学,焦作 454000; 4. 广东同望科技股份有限公司,珠海 519080)

摘要:采用有限元方法对"类矩形"保偏光纤的应力双折射进行了分析,给出了保偏光纤横截面上的应力分布图形 及应力双折射分布曲线;应用全矢量电磁场有限元方法,计算了保偏光纤的两个偏振模场的分布、传输常数及模式 双折射.在给定模拟条件下,纤芯的应力双折射约为3.33×10⁻⁴,其模式双折射约为3.72×10⁻⁴.计算结果表明,这 种"类矩形"保偏光纤与其它保偏光纤相比,有几个明显的优点,即有更佳的应力传递效果、均匀的应力场分布、更 大的应力双折射.

关键 词:光电子;双折射;有限元方法;保偏光纤;应力;模式分析 中图分类号:TN253;TN919.11 文献标识码:A

ANALYSIS ON STRESS-INDUCING BIREFRINGENCE OF "PSEUDO-RECTANGLE" POLARIZATION-MAINTAINING OPTICAL FIBER

GUAN Rong-Feng^{1,2,3}, LI Zhan-Tao⁴, HOU Bing¹, GAN Zhi-Yin¹, LIU Sheng¹, HUANG De-Xiu² (1. Institute of Microsystems, Huazhong University of Science and Technology, Wuhan 430074, China;

2. Department of Opto-electronics Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;

3. Henan Polytechnic University Jiaozuo 454000, China;

4. Guangdong Toone Technologies Incorporation, Zhuhai 519080, China)

Abstract: The stress-inducing birefringence of the "pseudo-rectangle" polarization-maintaining optical fiber (PMF) was analyzed by finite element method, and its stress distributions curve and stress birefringence distributions were presented. This fiber's polarization modes, transmitting constants and modal birefringence were computed by the full vector finite element method. The stress and modal birefringence is about 3.33×10^{-4} and 3.72×10^{-4} in simulation conditions, respectively. The results of computation demonstrate that the "pseudo-rectangle" polarization-maintaining optical fiber has a number of obvious advantages with comparisons of the panda shaped fiber or the bow-tie shaped fiber; it is better in the stress transmitting effect, more uniform in the stress field distribution in fiber core and bigger in the stress-inducing birefringence. **Key words**; optoelectron; birefringence; finite element method; polarization-maintaining optical fiber (PMF); stress; modal analysis

引言

应力致偏型保偏光纤的理论分析与模拟计算有 多种方法,最常用的有两类:一类是解析法,比如热 弹性势能法,微元算法等,这类方法对一些相对简单 的情况可得到问题的精确解,但计算复杂,推导繁 琐^[1,2].另一类是数值法,如微扰法、有限差分法、有 限时域差分法和有限元方法^[3]等,其中,有限元方 法因具有计算简单、实用、精度高,且能够处理复杂的几何形状和分析不均匀的各向异性介质等而得到 广泛的应用.本文针对一种新型的"类矩形"保偏光 纤^[4],采用一大型有限元分析软件,应用应力有限 元方法,计算出光纤截面上的应力分布,再应用光弹 性原理求出保偏光纤的应力双折射分布.最后,使用 全矢量的电磁场有限元方法,计算了保偏光纤的传 输常数及模式双折射.

基金项目:国家 863 计划项目(2002AA312280)

收稿日期:2004 - 03 - 10,修回日期:2004 - 09 - 18

Received date: 2004 - 03 - 10, revised date: 2004 - 09 - 18

作者简介:关荣锋(1963-),男,湖北潜江人,副教授,博士研究生,主要从事光电子和微电子技术研究。

1 应力双折射原理

当光纤材料各部分之间的热膨胀系数存在差异时,在热胀冷缩过程中就会在材料中产生热应力,应 力的存在会使光纤产生应力双折射,保偏光纤就是 根据这一原理设计和制造的.

应力引起双折射的规律遵循应力 - 光弹性效应 原理. 在数值上存在如下关系^[1,2]:

$$N_x - N_0 = a\sigma_x + b(\sigma_y + \sigma_z)$$

$$N_y - N_0 = a\sigma_y + b(\sigma_z + \sigma_x) , \qquad (1)$$

$$N_z - N_0 = a\sigma_z + b(\sigma_x + \sigma_y)$$

式(1)中, N_a 为主应力为零时材料的折射率, σ_i (*i* = *x*,*y*,*z*)为材料的*x*,*y*,*z*三个方向所对应的正应力. *a*、*b*为材料的应力 – 光弹常数.将上式中两两相减, 可得到应力双折射计算关系:

$$N_{x} - N_{y} = c(\sigma_{x} - \sigma_{y})$$

$$N_{x} - N_{z} = c(\sigma_{x} - \sigma_{z}) , \qquad (2)$$

$$N_{y} - N_{z} = c(\sigma_{y} - \sigma_{z})$$

式(2)中c=a-b,称为材料的相对应力光弹常数.

2 应力双折射有限元分析

2.1 计算模型及参数

"类矩形"保偏光纤的几何模型及结构尺寸如 图 1 所示,它由纤芯、内包层、外包层以及应力区组 成. 纤芯与常规的光纤不同,它的形状是方形,应力 区为图中打斜线的二个长方块.

计算所用的光纤材料参数如下:杨氏模量为 E =76×10⁹(m²/N),泊松比为 ν =0.186,光纤芯部的 热膨胀系数为 1.54×10⁻⁶/℃,内包层和外包层热 膨胀系数为 0.54×10⁻⁶/℃,应力区域的热膨胀系 数是 2.125×10⁻⁶/℃.光纤芯部、包层、应力区在没 有应力时的折射率分别为是 N_{core} = 1.4457、 N_{clad} = N_{sap} = 1.4378.光纤材料的光弹性系数为 a = -0. 7572448×10⁻¹² m²/N,b = -4.18775×10⁻¹² m²/N, 相对光弹系数 c = a - b = 3.4305052×10⁻¹² m²/N.

2.2 应力双折射计算

这里计算热应力时考虑两种因素的影响,一种是 由于光纤结构各部分之间的热膨胀系数的差异引起 的应力,另一种是由于非均匀的温度分布即温度梯度 产生的热应力.计算采用稳态热应力模型进行分析.

稳态热应力分析的载荷为光纤拉丝温度和最终 冷却下来的温度,在此分别设为 1500 \mathbb{C} 和 20 \mathbb{C} . 计 算结果如图 2 ~ 图 5. 图 2 给出的是类矩形保偏光纤 内包层部分 x 方向的热应力 σ_x 分布,图 3 给出的是

图1 类矩形的截面几何形状

Fig. 1 The geometry shape of "pseudo-rectangle"

图 2 光纤内包层 x 方向应力分布 σ_x Fig. 2 The inner cladding stress σ_x distribution along x direction

类矩形保偏光纤的内包层部分 y 方向的热应力 σ, 分布,从应力云图上可以明显看出,光纤芯部 x 方向 的应力 σ_x 比较大,在纤芯部分的应力为 σ_x = (10.5 ~10.7) × 10⁷ N/m², 而 y 方向的应力 σ, 较小,在纤 芯部分的应力为 σ_y = (0.78 ~ 0.98) × 10⁷ N/m², 在 整个光纤芯 x 方向和 y 方向上的应力差 σ_x – σ_y 比 较大,因此,应力引起的双折射比较强.根据式(2), 可以计算出内包层截面上每一点的双折射.图 4 给 出了光纤的内包层双折射的分布,在纤芯的分布基 本均匀,其双折射为 B_x = c(σ_x – σ_y) = 3.33287 × 10⁻⁴.图 5 给出的是类矩形保偏光纤芯部沿 x 轴正 方向上 N_x , N_y 的比较图,可以看出在 X 轴上,光纤 芯部的双折射(即 N_x - N_y)是基本一样的,在整个光 纤的芯部有着较均匀的双折射.

3 模场及模式双折射分析

3.1 模式分析理论基础

根据麦克斯韦方程组可以得到下列方程^[6]: $\nabla \times [\varepsilon^{-1} \nabla \times H] - \mu \omega^2 H = 0$, (3)

图 3 光纤内包层 y 方向的应力分布 Fig. 3 The inner cladding stress σ , distribution along y direction

图 4 光纤内包层 x 方向的双折射分布 B_s Fig. 4 Birefringence B_s distribution along x direction

图 5 光纤芯部沿 x 轴方向的折射率 N_x, Ny Fig. 5 Birefringence N_x, N_y distributions of fibercore.

 $\nabla \times (\varepsilon_r^{-1} \nabla \times H] - k_0^2 \mu_r H = 0 \qquad , \tag{4}$

式(4) $k_0 = \omega \sqrt{\varepsilon_0 \mu_0}$, $\varepsilon_r = n^2$, k_0 是真空中光波的 波数, ω 是光波的圆频率, ε_0 是真空中的介电常熟, n为媒质的折射率, μ_0 是真空中的磁导率, μ_r , 为材料 的相对磁导率.

在高双折射保偏光纤中,由于热应力的影响使 得光纤材料呈现出各向异性的电介特性,因此可将 介电张量设置为:

$$\varepsilon_{r} = \begin{pmatrix} N_{x}^{2} & 0 & 0\\ 0 & N_{y}^{2} & 0\\ 0 & 0 & N_{z}^{2} \end{pmatrix} , \qquad (5)$$

式(5)中 N_*, N_*, N_* 为折射率. 根据该方程组先 求出磁场矢量H,再根据旋度公式,求出电场,即使 求出的磁场中存在伪解,通过方程 $\nabla \times H = j\omega\varepsilon E$ 计 算出来的电场也将消除伪解.

3.2 模式分析的边界条件

在有限元计算中如何处理波导边界条件是一个 重要的问题.光波导一个重要的特点是其侧面没有 金属壁封闭,是开放的,在波导外一定的区域内还存 在显著的场值.因此在用有限元法分析和计算电磁 场时,所面临的实际问题就是如何确定网格划分的 边界和如何处理场在这些边界上的值.一种常用的 方法是用足够大的虚构的边界包围波导,然后在这 种虚构的边界上应用零边界条件来唯一的定义边值 问题.由于保偏光纤只能传输基模,基模的能量主要 集中在纤芯,在包层中很快就会衰减为零,因此模型 的外边界条件可以设置为:理想磁导体边界,即磁场 在边界的切向分量为零,纤芯和包层界面的边界条 件可以设置为:电场强度和磁场强度在切向上是连 续的;电通量密度和磁通量密度在法线上是连续的. 由于光纤介质为弱磁介质,可认为 $\mu_r \approx 1$, $n \approx \sqrt{\varepsilon_r}$. 在求解的每个区域里,将折射率按照式(5)进行计 算,其中 N., N., N. 应根据应力和折射率的关系式 (1)先计算出来.

3.3 求解

一般采用大型稀疏矩阵求解器,求出两个偏振 模的传播常数.根据光波导理论,导模存在的条件是 传输常数 β 必须满足: $n_1k_0 < \beta < n_0k_0$,这里 n_1 为包 层的折射率, n_0 为纤芯的折射率, k_0 为真空中波数. 计算选择的包层折射率 $n_1 = 1.4378$,纤芯的折射率 $n_0 = 1.4457$,为了节省求解时间,对波长为 1.55 μ m 的光波,将求解范围设置为:(5.828e6,5.86e6)^[5].

图 6 给出的是类矩形保偏光纤的偏振模 HE_{11}^{x} 的 横向电场矢量图,图 7 给出的是偏振模 HE_{11}^{x} 的电场分 量 E_x 沿 x 方向分布曲线,可以看出电场 E_x 在距离纤 芯大约 12µm 的地方衰减为零.图 8 给出了偏振模 HE_{11}^{y} 的横向电场矢量图,图 9 给出的是偏振模 HE_{11}^{y} 的 电场分量 E_y 沿 x 轴的分布曲线.同样可以看出电场 E_y 在距离纤芯大约 12µm 的地方衰减为零.

通过模式分析,计算出来的两个偏振模式的传

图 6 偏振模 HE_{u}^{x} 的横向电场矢量

Fig. 6 Transverse electric field vector of HE_{11}^{χ} polarization mode

图 7 偏振模 HE_1^x 的电场 E_x 分布曲线

Fig. 7 Electric field E_x distribution curve of HE_{11}^{χ} polarization mode

图 8 偏振模 HE₁₁的横向电场矢量

Fig. 8 Transverse electric field vector of HE_{11}^{Y} polarization mode

播常数分别为:

 $\beta_x = 5.8578051859 \times 10^6 / \text{m}, \beta_y = 5.856396136 \times 10^6 / \text{m}.$

模式双折射:
$$B_m = \frac{\beta_x - \beta_y}{k_0} = 3.720759 \times 10^{-4}$$

图 9 偏振模 HE_{11}^{r} 的电场的 Y 分量沿 x 轴分布 Fig. 9 Electric field E_{1} , distribution curve of HE_{11}^{r} polarization mode

4 结语

分析结果表明:"类矩形"保偏光纤是一种优良 的保偏光纤,具有3个重要的特点:(a)有更佳的应 力传递效果,即应力元产生的应力通过应力元与纤 芯之间的包层区能更有效的传递到纤芯部分;(b) 在纤芯有更均匀的应力场分布;(c)有更大的双折 射效应."类矩型"保偏光纤作为一种全新结构的保 偏光纤已用于制作各种具有保偏特性的光纤无源器 件上,如保偏光纤传感环圈、光纤偏振器、保偏光纤 耦合器、光纤去偏器等光纤无源器件,并已达到或 接近实用水平.

REFERENCES

- [1] Chu P L, Sammut R A. Analytical method for calculation of stresses and material birefringence in polarization-maintaining optical fiber [J]. Journal of Lightwave Technology, 1984,2(5): 650-662.
- [2] Tsai Kun-Hsieh, Kim Kyung-Suk, Morse T F. General solutions for stress-induced polarization in optical fibers [J]. Journal Lightwave Technology, 1991,9(1): 7-16.
- [3] Koshiba M, Hayata K, Suzuki M. Finite-element formulation in terms of the electric-field vector for electromagnetic waveguide problems [J]. *IEEE Transactions on Microwave Theory and Techniques.* 1985, 33(10):900-905.
- [4] XIAO Tian-Peng, HE Yao-Ji, HUANG Jian-Ping, et al. A novel structure of polarization maintaining optical fiber and its devices[J]. Optical Fiber & Electric Cable(萧天鹏,何耀基,黄剑平,等.一种全新结构的保偏光纤及其器件. 光纤与电缆及其应用技术), 1997, (1):33-39.
- [5] WANG Zeng-He, WANG Pei-Zhang, LU Cun-Lan. Electromagnetic Fields and Electromagnetic Wave [M], Bejing: Electronic Industry Press(王增和,王培章,卢春兰. 电磁 场与电磁波. 北京:电子工业出版社,2001;271~348), 2001;271-348.