文章编号:1001-9014(2004)06-0423-04

碲镉汞 p^+ -on-n 长波异质结探测器的研究

叶振华, 吴 俊, 胡晓宁, 巫 艳, 王建新, 李言谨, 何 力 (中国科学院上海技术物理研究所材料器件中心,上海 200083)

摘要:报道了 HgCdTe p*-on-n 长波异质结焦平面器件的研究结果、采用由分子束外延(MBE) 和原位掺杂技术生长的 p*-on-n 异质结材料、通过湿法腐蚀、台面钝化、台面金属化、铟柱制备和互连等工艺,得到了 HgCdTe p*-on-n 长波异质结焦平面器件.根据 I-V 实验结果和暗电流理论,拟合计算和分析了各种暗电流机制对器件性能的影响、且获得了器件的响应光谱和探测率.

关 键 词:HgCdTe; p⁺-on-n; 异质结; R₀A 中图分类号:TN4, 文献标识码: A

STUDY OF HgCdTe p⁺ -on-n LONG-WAVELENGTH HETERO-JUNCTION DETECTOR

YE Zhen-Hua, WU Jun, HU Xiao-Ning, WU Yan, WANG Jian-Xin, LI Yan-Jin, HE Li (Center of Materials and Devices, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)

Abstract: The results of the HgCdTe p^+ -on-n long-wavelength hetero-junction infrared focal plane arrays were presented. HgCdTe p^+ -on-n hetero-junction material was grown by molecular beam epitaxy(MBE) and in-situ doping, and HgCdTe p^+ -on-n hetero-junction infrared focal plane arrays were fabricated by the process of wet-etching, side-wall-passivation, side-wall-matelization, indium-bump-fabrication and hybridization etc. According to the *I-V* experiments and the dark current mechanism, the effect of all kinds of dark current was calculated and analyzed. The spectral response and detectivity of the device were also measured.

Key words: HgCdTe; p^+ -on-n; hetero-junction; R_0A

引言

HgCdTe 光伏探测器具有响应速度快、探测率高、功耗低、对光电流直接耦合和适于大阵列和较高的工作温度等优点.近年来,HgCdTe 光伏的焦平面器件得到了快速发展,主要出现了以 B⁺注入 n⁺-on-p 平面结和原位掺杂 p⁺-on-n 台面异质结为代表的两类器件.

B*注入形成 n^{*}-on-p 平面结是一种制备长波 光伏探测器的通常方法. 但是, B^{*}注入形成 n^{*}-on-p 平面结的器件存在一些不可避免的缺点. 首先, 离子 注入会带来的材料损伤, 致使 p-n 结耗尽区有较大 的产生-复合电流和缺陷辅助隧道电流; 且同质结的 窄禁带器件,其能带结构决定了有较大的直接隧穿 几率,于是有较大的直接隧道电流^{-1.2}.其次,由于 n^{*}-on-p离子注入的平面结器件,它的p型吸收层 是汞空位缺陷掺杂的,其浓度很难控制在 10¹⁵ cm⁻³ 以下,且汞空位自身又是产生-复合缺陷中心,所以, 由汞空位掺杂的 p型 HgCdTe 材料,通过离子注入 得到的 n^{*}-on-p 平面结器件较难得到高的 R₀A 值. 最后,离子注入平面结,很难控制 n 区的多数载流子 浓度.

p^{*}-on-n 型双层异质结(DLHJ)器件是高 R₀A 值和高性能的探测器代表,自 20 世纪 90 年代以来 得到了很快的发展^[3,4].首先,因为原位掺杂的 p^{*}on-n 异质结器件,能避免离子注入引起的材料损 伤,可以减少 p-n 结耗尽区以及表面的产生-复合电 流,和缺陷辅助隧穿中心密度;通过能带结构的剪

收稿日期:2003 - 06 - 16,修回日期:2004 - 02 - 20

Received date: 2003 - 06 - 16, revised date: 2004 - 02 - 20

基金项目:中国科学院知识创新工程资助项目(KGCX2-SWJG-06)

作者简介:叶振华(1977-),男,江西玉山人,博士生,主要从事红外焦平面器件的研究。

substrate

Fig. 1 The structure of p^+ -on-n hetero-junction detector mesa formed by molecular beam epitaxy and in-situ doping

图 2 R₀-T 实验曲线和拟合结果

Fig. 2 The experimental and fitted curves of R_0 -T

裁,可以大大减少直接隧穿几率,相应地减少了直接 隧道电流的不利影响^[1,2].其次,由于 p⁺-on-n 异质 结台面器件的 n 型吸收层多数载流子浓度低,少子 寿命长,所以有较大的 R_0A 值^[5].再次,p⁺-on-n 异 质结器件的突变结浓度高的一侧 p 层是宽禁带的材 料,它能够抑制光和热噪声,提高了器件的性 能^[6,7].

本文主要介绍 HgCdTe p⁺-on-n 长波异质结焦 平面器件的初步研究结果.采用由 MBE 和原位掺杂 技术生长的 p⁺-on-n 异质结材料,经过湿法腐蚀、台 面钝化、台面金属化、铟柱制备和互连等一系列工 艺,得到了 HgCdTe p⁺-on-n 长波异质结焦平面器 件.采用变温 *I-V* 实验,给出了 R_0 -T 和 R-V 特性曲 线,再根据暗电流理论,拟合计算了各种电流机制对 器件性能的影响,得到了材料和器件的一些性能参 数.最后,测试了器件的响应光谱和探测率等,并评 价了器件的性能.

1 实验

1.1 材料生长和器件制备

图 1 是 p⁺-on-n 长波异质结焦平面器件的单元 结构示意图.采用 MBE 和原位掺杂技术在 GaAs 衬 底上,先生长组分为 x = 0.236、ln 掺杂浓度为 3 × 10¹⁵ cm⁻³和厚度为 10.42µm 的 n 型 Hg_{1-x}Cd_xTe 材 料;然后再生长组分为 x = 0.3、As 重掺杂的和厚度 为 4.43µm 的 p⁺型 Hg_{1-x}Cd_xTe 材料^{-9.10]}. 经过腐蚀 台面、生长钝化膜、镀金属电极和制备铟柱等工艺, 获得了 p⁺-on-n 台面异质结的光伏器件.

1.2 测试

变温 *I-V* 测试使用的制冷机是 Air product Model REC - 4x14, 温度测量的误差小于 1K. *I-V* 特性测试采用 Keithley 2316, 测量用电压触发, 电流测量的灵敏度为 1fA. 待测样品用低温胶贴在制冷机冷头上.测量时, 样品处于暗场下(零度视场角), 去除了背景辐射产生的光电流对测量结果的影响, 变温测量的范围为 30~200K.

响应光谱是由伯乐公司(BIO-RAD)的 FTS175 型傅里叶光谱仪以及改装附件测得的,该响应光谱 是以热电器件响应为基准的等功率光谱.

2 实验结果和分析

2.1 R。与温度T的关系

图 2 是 p^{*}-on-n 长波异质结焦平面器件的 R_0 -T 实验曲线及拟合结果.由图 2 实验曲线可知,当温度 较高时, R_0 对数与 1000/T 基本上成线性变化,这是 因为受到扩散电流和产生复合电流为主的热电流机 制的影响;当温度小于一定值时, R_0 变化不明显,这 是因为受到了与温度关系不大的隧道电流机制或表 面漏电流的影响.

在热电流是主要暗电流的高温范围内,我们对 R_0 -1000/T半对数实验曲线进行线性拟合,得到了 p⁺-on-n台面异质结器件的理想因子 n 为1.226.其 理想因子 n 比相同组分的 B⁺注入 n⁺-on-p 平面结 器件的要小^[11],这说明原位异质结器件确实避免了 注入损伤,减少了产生-复合电流对器件性能的影响,

扩散电流公式^[12-14]和产生-复合电流公式^[7,11-14]分别为

$$\frac{I_{duff}}{A_j} = q \frac{n_i^2}{N_D} \left(\frac{kT}{q} \cdot \frac{\mu_{hole}}{\tau_{hole}}\right)^{1/2} \left(e^{qV/kT} - 1\right), \qquad (1)$$

$$\frac{I_{gr}}{A_{j}} = \frac{A_{j}n_{i}W_{0}kT}{V_{bi}}(\frac{1}{\tau_{0}} + \frac{p_{j}S_{0}}{A_{j}}) \frac{2sh(qV/2kT)}{(abs(V_{bi} - V)V_{bi})^{1/2}}f(b).$$
(2)

其中,f(b),b, τ_{hole} 和 μ_{hole} 物理意义同文献^[12].

由式(1)和式(2)可得扩散电流的零偏动态阻 抗(R_0)_{diff}和产生-复合电流的零偏动态阻抗(R_0)_{gr} 与温度 T 的关系: $(R_0)_{diff} = \frac{kT}{A_j q^2} \frac{N_a \tau_{hole}}{n_i^2} \pi(R_0)_{gr} = \frac{V_{bi} \tau_{SCR}}{A_j q n_i W}$,其中 $\frac{1}{\tau_{SCR}} = \frac{1}{\tau_0} + \frac{P_j S_0}{A_j}$, τ_{SCR} 是唯象地引入了表 面产生-复合电流影响的耗尽区载流子寿命.

在高温、低温范围内, 拟合分别采用式 $\frac{1}{R_0}$ = $\frac{1}{(R_0)_{thermal}} = \frac{1}{(R_0)_{diff}} + \frac{1}{(R_0)_{gr}}$ 和式 $R_0 = (R_0)_{bbi}$ = $\frac{4(2\pi^3)^{1/2}(\hbar/q)(P/q)}{A_j q(3qN_a/\varepsilon_0\varepsilon_s)^{1/2}E_g^{3/2}} \exp\left[\frac{(3\pi\varepsilon_0\varepsilon_s/qN_a)^{1/2}E_g^{3/2}}{4\cdot 2^{1/2}(P/q)}\right],$ 符号的意义同文献^[13]. 计算时, 使用了 Hansen 公 式^[11]来计算材料的禁带宽度 E_g 和本征载流子浓度 n_i . 静态介电常数计算公式为^[11,12] ε_s = 20.5 – 15.6x +8.2x², x 是 Hg_{1-x}Cd_xTe 材料的组分. 载流子有效 质量用 Kinch^[12]等人的公式, $m_c^* = m_i^* = 0.071$ m_0E_g, E_g 的单位为 eV, 假设 $V_{bi} = E_g$.

如图 2 所示,在 T < 87K 时, R_0 受到与温度关系 不大的隧道电流或表示漏电流为主的暗电流影响. 且在 T < 65K 时, R_0 较大,这与异质结器件的能带结 构减少了直接隧道效应发生的几率有关^[1].

2.2 在液氛温度下的 I-V 特性

对液氮温度下 p⁺-on-n 台面异质结器件的 *R-V* 实验曲线(由 *I-V* 实验曲线微分得到),进行了各种 暗电流机理的动态阻抗拟合计算.在拟合过程中,调 整 材料和器件的一些不确定参量,使 *R_{theory}*和 *R_{esperiment}*在不同偏压下尽量接近,即尽量满足式<u>1</u> *R_{theory}* =<u>1</u>*R_{diff}*+<u>1</u>*R_{gr}*+<u>1</u>*R_{bbi}*+<u>1</u>*R_{tat}*+<u>1</u>*R_{shunt}*.式中*R_{dyf}*、*R_{gr}*分别由 公式(1)和(2)计算的电流微分得到,*R_{shunt}*是并联欧 姆 电 阻^[15]. *R_{tat}* 由 公 式^[11-13,16,17] <u>*I_{tat} A¹*(*E_g*-*E_t*)</sub> exp[$-\frac{\sqrt{3}E_g^2F(a)}{8\sqrt{2}PE}$]计算的电 流微分得到,其中*F*(*a*)、*a*、*P*、和*M*与文献^[11]相同.</u>

图 3 在液氮温度下 *R-V* 实验曲线和拟合结果 Fig. 3 The experimental and fitted curves of *R-V* under liquid nitrogen temperature

图 4 在液氮温度下的光谱响应曲线 Fig. 4 The curve of spectral response under liquid nitrogen temperature

 R_{bbi} 是由采用抛物线势垒近似的直接隧穿电流公 式^[11,12,16,17] $\frac{I_{bbi}}{A_j} = \int^{\kappa} x_L G_i [F(x)] \Delta f_{FD}(x) dx$ 计算的 电流微分得到的. 直接隧穿电流 I_{bbi} , 是由采用 Kane's 抛物线势垒近似求出空间电荷区内每一点 的电场强度,再通过上式积分得到的. 计算时,我们 假设 $E_i = E_g/2$,空间电荷区的电子、空穴寿命 $\tau_{s0} = \tau_{b0} = \tau_0$.

图 3 是器件在液氮温度下的 R-V 曲线和各种暗 电流机理的动态阻抗拟合结果. 如图 3 所示,在液氮 温度下,p⁺-on-n 台面异质结器件的 $R_{experiment}$ 的最大 值和 R_0 都较小,由拟合结果可知,主要是受到并联 欧姆电阻的影响,其大小为 4.2 × 10⁵ Ω ,这可能是 p⁺-on-n 台面异质结器件的侧向钝化不好,导致较 大的欧姆漏电流。

在拟合直接隧道电流的动态阻抗 R_{bbt} 时,p⁺-onn 台面异质结器件采用抛物线势垒近似,拟合的 R_{bbt} 与实验曲线都吻合得很好. 拟合计算得到了 p⁺-onn 台面异质结器件的 τ_{hole} 为 4. 78 × 10⁻⁷ s、 τ_{sCR} 为 4. 12 × 10⁻⁷ s 和缺陷辅助隧穿中心密度 N_{c} 为 5. 377 × 10¹¹ cm⁻³. 并且由 R-V和 $R_{0}-T$ 实验曲线的理论拟 合,得到的少数载流子寿命和空间电荷区载流子寿 命比较接近.

在液氮温度下, p⁺-on-n 台面异质结器件的 R_0 的平均值为 2.1 × 10⁵ Ω , 与相同组分的 B⁺ 注入 n⁺on-p 平面结器件相近^[10]. 但若能提高 p⁺-on-n 台面 异质器件侧向钝化膜的质量和减少其材料的原位异 质结耗尽区的缺陷辅助隧穿中心密度, 异质结器件 的性能将会大大改善.

2.3 器件的光谱响应特性

图 4 是 p⁺-on-n 台面异质结器件的光谱响应曲 线,其形状是正常的,响应的截止波长为 8.7µm.由 公式 $g = \frac{G(\lambda_p) \int_0^{\infty} \phi_\lambda d\lambda}{\int_0^{\infty} G(\lambda) \phi_\lambda d\lambda}$,式中符号的物理意义与文 献^[12]相同,根据光谱响应的实验曲线,可得到器件 的 g 因子为 2.735.在 500K 的黑体调制辐照下,测 得器件的黑体探测率 D_{bb}^* 为 5.0×10⁹ cmHz^{1/2}/W,再 根据公式 $D_{\lambda p}^* = g \cdot D_{bb}^*$,可得到器件的峰值响应率 $D_{\lambda p}^*$ 在 77K 时为 1.37×10¹⁰ cmHz^{1/2}/W.

4 结语

我们制备、测试和分析了 p⁺-on-n 台面异质结 器件 HgCdTe 焦平面器件. 根据变温的 *I-V* 实验和理 论计算,得到在液氮工作温度下和零偏压附近,器件 的动态阻抗很大程度上受到并联欧姆漏电流的影 响. 在计算 p⁺-on-n 台面异质结器件的直接隧道电 流时,采用抛物线势垒近似,拟合结果与实验吻合较 好. 在温度小于 50K 时,长波光伏器件的 R_0 主要是 受到隧道电流的影响,尤其是直接隧道电流,由于 p⁺-on-n 台面异质结器件的能带恰好减少了直接隧 道效应发生的几率. 所以它有较大的 R_0 . 在液氮温 度下,我们得到了比较正常的光谱响应曲线.

致谢 本项工作得到了马伟平、章莲妹、朱建妹、陈 兴国、吴云、曹菊英、胡文军、王正官、张海燕和廖清 君等的技术支持,作者在此一并表示衷心的感谢.

REFERENCES

- Hess Glenn T, Sanders Thomas J. HgCdTe double layer heterojuction detector device [J]. SPIE, 2000, 4028: 353-364.
- [2] Wenus J, Rutkowski J, Rogalski A. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes[J]. SPIE, 2001, 4288: 335-344.
- [3] Antoni Rogalski. Heterostructure HgCdTe photovoltaic detectors[J]. SPIE, 2001, 4355: 1-14.
- [4] Arias J M. Long and middle wavelength infrared photodiodes fabricated with Hg_{1-x} Cd_xTe grown by molecular-beam epitaxy[J]. J. Appl. Phys, 1989, 65: 1747.
- [5] DeWames R E, Arias J M. An Assessment of HgCdTe and GaAs/GaAlAs Technologies for LWIR Infrared Imagers [J]. Proc. Soc. Photo-opt. Instrum, 1992, 1735; 2 ---16
- [6] Rosenfeld D, Garber V, Bahir G. Quantum efficiency and spectral response of compositionally graded HgCdTe P-n heterojunction photodiodes [J]. J. Appl. Phys. 1994, 76: 4399-4406.
- [7] Antoni Rogalski. Heterostructure HgCdTe photovoltaic detectors[J]. SPIE, 2001, 4355: 1-14.
- [8] TERTERIAN S, CHU M, MESROPIAN S, et al. A Comparative Study and Performance Characteristics of Ion-Implanted and Heterojunction Short-Wave Infrared HgCdTe Focal-Plane Arrays [J]. Journal of Electronic Materials, 2002, 31(7); 720-725.
- [9] WU Yan, WANG Shan-Li, CHEN Lu, et al. In doping on MBE Grown HgCdTe[J]. J. Infrared Millim. Waves(巫艳, 王善力,陈路,等. HgCdTe 分子束外延 In 掺杂研究. 红外 与毫米波学报), 2001, 20(3): 174-178.
- [10] WU Jun, WU Yan, CHEN Lu, et al. Sticking coefficient of as in molecular beam epitaxy of HgCdTe[J]. J. InfraredMillim. Waves(吴俊,巫艳,陈路,等. As 在 HgCdTe 分 子束外延中的表面粘附系数. 红外与毫米波学报), 2002, 21(5): 347-353.
- [11] YE Zhen-Hua, HU Xiao-Ning, ZHANG Hai-Yan, et al. Study of dark current for Mercury Cadium Telluride longavelength photodide detector with the different structures
 [J]. J. Infrared Millim. Waves(叶振华,胡晓宁,张海燕, 等. 不同结构的碲镉汞长波光伏探测器的暗电流研究. 红外与毫米波学报), 2004, 23(2):86—90.
- [12] Rogalski A. Photovoltaic Detector in Infrared Photon Detectors [M]. USA: Washington, SPIE Optical Engineering Press, Bellingham, 1996:3.
- [13] Kinch M A. Metal Insulator Semiconductor Detectors in Semiconductors and Semimetals [M]. New York; Academic Press, 1981, 18.
- [14] V Dhar, R Ashokan, Z A D Khan, et al. Analysis of the R₀A product in n⁺-p and n⁺-n-p Hg₁₋, Cd, Te Photodiodes
 [J]. Semicond. Sci. Technol, 1996, 11: 1077-1084.
- [15] Rogalski A. Infrared Detectors [M]. UK: Norwich, 2000, 8.
- [16] Jakub Wenus, Jaroslaw Rutkowski, Antoni Rogalski. Surface leakage current in HgCdTe photodiodes [J]. SPIE, 4650: 250-258.
- [17] Nemirovsky Y, Rosenfeld D, Adar R, et al. Tunneling and dark currents in HgCdTe photodiodes[J]. J. Vac. Sci. Technol., 1989, A7(2): 528-535.