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Abstract; The terrain model based on fractal character can sufficiently represent the statistical texture features of the ter-
rain. Better model and higher resolution DEM ( Digital Elevation Model) data can be obtained from the lower resolution
data by using fractal interpolation. The determination of fractal scaleless range is very important for computing the fractal
characleristic parameters and modeling the digital elevation. The traditional method for determining the fractal scaleless
range usually adopts the mutual test between people and compute. However, this method tends to be too subjective.
Hence, we offer an auto — determining method, which has been proved to be concise, effective and efficient by experi-
mental results.
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Introduction

Modeling the digital elevation based on computer
vision is impossible to obtain the elevation data at every
spot because of the problems of sheltering and error
matching during the image processing. Therefore, in-
terpolation computing of surface data is needed in order
to gain high-resolution elevation data.

The  theoretic

analysis and experimental

results’'*** have already indicated clearly that the surf
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interpolation technology based on fractal geometry can
reflect the statistic texture character about terrain and
obtain a better model, while the traditional interpola-
tion arithmetic based on smoothness-restricted can not
reflect the coarse terrain.

Fractal character parameter, which only exists in
a certain section, must be obtained during the process
of DEM fractal interpolation. In this paper, a new
method for determining fractal scaleless range has been

researched. The experimental results show that this
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Fig. 1 Fractal features fit
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method is concise, effective and efficient.

1 Modelling digital elevation based on FBM

FBM ( Fractional Brownian Motion) proposed by

Mandelbrot and Ness**
with zero mean. The FBM function f{ x)

" is a Gaussian random function
is real-valued
random function. According to FBM statistical similari-
tv, for all x and Ax,
E[l f(x +ax) - f(x) 1]+ | ax ]
=20/ 2m, (1
where x represents a point in the E-dimensional
Euclidean space, H is a Hurst constant(0 < H <1) for
3D terrain surfaces. Equation (1) is equivalent to
E[1 fGi+Aij+4A) =fG )11 ax] ™
= 20/ /2. (2)
Taking logarithm at both sides of the equation, we get
logE[ | f(i +Ai,j+4)) - f(i,j) 1]
- Hlog || Ax | = logC. (3)
According to the least square method, H and C (or o) can
be computed by fitting method in fractal scaleless range.
Provided i and j are odd numbers, the digital ele-
vation f({,j) has already been determined. First, we

can compute the digital elevation f{i,;) such that both

Fig. 2 The original DEM
H2 Fi DEM

i and j are even numbers by using the folloiwng equa-

tion ;
Fi) = i—}f(i - AL =1)

+fi-1,7+1) +f(i+1,j+1)

+vV1 =277 Ax | "o+ Gauss().  (4)
Then we can compute the digital elevation f(1,7) such

that only one of i and j is an odd numbers by equation :
.. 1 .. . .
SGg) = UG =1) + £+ 1))

G- 1)) +fj+ 1)
27U 2T Ax | - Gauss(), (5)

where, Gauss () is a Gaussian random variable with [V
(0.1) distribution. Iterating equations (4) and (5),
we can get the DEM with certain quality.

The position of f(i + Ai,j + Aj) can be chosen by
the method presented in reference [3] and [4]. In
order to simplify the calculation of practical applica-
tions, we can use Street Distance ( || Ax || = |Ail + |
Ajl) or Chessboard Distance ( || Ax || =max|Ail, |4j

|) to deterniine the value of || Ax | .

2 The method of determining scaleless range

A lower limit || Ax | ... and an upper limit || Ax

always exist in natural fractal, and can be

I e
described by scaleless range or unchanged scale range.
Fractalness only exists in scaleless range. So we can
niake fractal analysis only in scaleless range, otherwise
we cannot get the exact fractal characteristic parameters.

The traditional method to determine the scaleless
range is to draw the data points to be fitted in a plane,
and then find the certain linear sections by human eye.
Then according to the scaleless range, fractal parame-
ters can be computed. This method, which obviously

lacks objectivity, is inconvenient for the auto ~ model-
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Fig.3  The sampled DEM
[¥3 ¥ 589 DEM
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Fig.4 The hinear interpolation DEM
B4 RHEAHESR DEM

Fig.5 The fractal interpolation DEM
Bl's srfefdfElE e DEM
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Fig.6 The fractal DEM
B 6 4 DEM
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Fig.7  The (ractal fitting
M7 oSG

ing analysis of DEM, because repeated man — machine
interactiveness is needed to determine the scalelee
range. So far, few researches have concerned the
scaleless range. Currently the basic arithmetic of the
most popular method in application is presented in ref-
erence [4], |Ax || e = [|AX | e + 27" =1, where

n" =wininl [, <1 &I, >1 ;0 =4!

/| = \/4#"112 + (Mo "I-Loz)2
MHap ¥ Moo
and p, (0<i,j=2;047=2) represents variances and

y

covariance, or the second-order central moments of a
set of points in a plane. The arithmetic is complicated
and the amount of computation is huge.

Reference[ 6] has put forward a three-line method
to compute the fractal dimension for CDP record, but
cannot analvze the complex terrain correctly. In the
following, we will propose a linear - polynomial meth-
od. which can perform a precise analysis to the real
terrain.

According to Equation(3) , the data points can be
fitted as (x,,v,),(i=1,2,--,
point sets (X,Y) in a plane of fractal plots, where X
=log( E1Af(x)1). These points are

always divided into two parts: linear and non-linear

n). Figure 1 shows the

parts. Based on reference [1 ] and [ 4], we let
|| A% || s =1 Cunit length) , and assume that [1,n" ]
(1<n®” =<n) is the scaleless range which we want to
determine. According to the fractal features, we can fit
these points by using linear and non - linear arithmetic
respectively.

a) Linear fitting (1=<i<<n" ) : by assuming a line
r=au + b, and fitting the line, the error square sum
is:

1=p %

s(n") = ¥ (ax, +b-y)* (6)

=1

b) Non-linear fitting (n" <i/<n); Theoretically,
we can use a high-order polynomial to fit the non-linear
part. Assume a polynomial v = ¢ (1, m), where m is
the polynomial order. By fitting it, the error square
sum is.

> (plx,,m) —y)° (7)

t=n*

8, (n",m)

The bigger m is. the smaller 8, is. If m increases,

the non-linear parts will increase. Correspondingly,
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the linear parts will decrease, in which the fractal law
is submitted very strictly. In practice, this paper limits
m to a range of [1,3].

According to equations (6) and (7), all error
square sums are ;

é(n°,m) =8 (n*) +8(n" ,m) (8)
Giving m,n” can be computed by

n' = max{n® | argmin (8(n*,m))}. (9)
n' maybe have several values different from m. The
bigger n” is, the bigger the linear parts are, and the
smaller the non-linear parts are. Choosing the maxi-
mum value from all n*, the fractal plots are the widest
fractal scaleless range. Using the computed results, we
can evaluate the statistical fractalness of the DEM with-

in a range of scaleless [1,n" ].

3 Results

Figure 2 is a real DEM in Three-Gores, China,
and | A7 || o= | 47 | e =20m, f(ir)) 0y =97.0m.,
S(i,7) wae =245. 1m. Figure 3 is the 1/2 sampled DEM
of Figure 2. Figure 4 is the result of Figure 3 by using
linear interpolation and Figure 5 is the result of Figure
3 by using fractal interpolation.

Table 1 shows the values of H and o from Figure
2 1o Figure 5 by using our method. Table 2 shows the
values of H and ¢ from Figure 2 to Figure 5 by using
paper [4].

From table 1 and table 2, the errors of H and ¢
between the original DEM and the interpolation DEM
by our method are less than those of ref. [4]% method.
And the results show that the DEM after reconstruction
by linear interpolation is much smoother than that by
fractal interpolation, which cannot reflect the natural

terrain detail character.

Table 1 The values of H and o from figure 2 to figure §
by using our method

®1 BEXFZHEDEM(ME2 HES)WHMoE
Origin DEM  Sample DEM  Fractal Interpolation DEM  Linear Interpolation DEM

(n*=13)  (n*=7) (n*=13) {n*=13)
H o079 07841 0.8034( +0.0058) 0.8285( +0.0309)
5.0945 8.9133 4.8843( -0.2102) 4.7819( ~0. 3126)

Table 2 The values of H and ¢ from figure 2 to figure 5
by using paper{2] method
£2 AX#[2]EDEM(MNE2 HES)HWHMNoE

Origin DEM  Sample DEM  Fractal Interpolation DEM  Linear Interpolation DEM

(n*=14) (n*=7) (n*=14) (n*=14)
H  0.8031 0.7841 0.8136( +0.0105) 0.8414( +0.0383)
o 5.120] 8.9133 4.8280( -0.2921) 4.N24( ~0.4077)

Figure 6 is a DEM with fractal feature. Figure 7
gives the comparisons of analyzing the fractal scaleless
range by using our and ref. [4]’ s method. The re-
sults show that ref. [4]’ s method extends the scale-
less range, while our method limits the fractal scaleless
range in the line part. In our method, the scaleless
range is [ 1,21 ], the fitting coefficient and errors are
0.9991 and 0. 0138, In ref. [4]°
scalelee range is [ 1,30], the fitting coefficient and er-

rors are 0. 9907 and 0. 1876.

s method, the

4 Conclusion

We have presented a new scheme to determine
fractal scaleless range. By using the Linear-Polynomial
method in this paper, we can more statistically analyze
the real complex terrain. Our experimental results show
that this new method can reflect the terrain texture fea-

ture, and the arithmetic is simple and efficient.
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