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A NEW GEOMETRIC ACTIVE CONTOUR FOR
MEDICAL IMAGE SEGMENTATION"
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Abstract Generally, the segmentation of a medical image is difficult, because the medical image is often corrupted by
norrupted by noise, and the anatomical shape in the medical image is complicated. In this paper presents a new geometric
active contour scheme for medical image segmentation. First, we regularize the attraction force field in the geometric active
contour model to extend the capture range of the object boundaries, and improve the ability of convergence to the concavi-
ties. Then, using a multi-scale scheme improve the boundary detection accuracy. In addition, combining the regularization
and the multi-scale method, the proposed scheme can effectively suppress and eliminate the noise and the spurious edges in
the medical images. Furthermore, the topology of the deforming curve can naturally change without and special topolygy
handing procedures added to the scheme. This permits synchronously extracting several anatomical struetures. The experi-
ments on some medical images obtained from different medical imaging methods demonstrate that the proposed approach is
competent for medical image segmeniation.
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Introduction

Computerized image segmentation has played an
increasingly important role in medical image analysis,
and has widely used in surgical planning, navigation,
simulation etc. Segmenting anatomical structure from
medical images such as CT, MR, PET etc. is difficult
due to the complexity and variability of the anatomic
shape of interest and corraption of the image caused by
noise and sampling artifacts.

(4]

Active contour'*’ is a promising and vigorously re-

searched boundary finding segmentation approach.

* The project supported by National Natrual Science Foundation of China
( No. 60072029)

Received 2003 - 01 - 14, revised 2003 - 04 - 14

This method has been widely used in medical image
segmentation with promising result, since it offers ro-
bustness to both image noise and boundary gaps. How-
ever, traditional active contour is difficult to adapt the
model topology such as splitting or emerging without
any additional topology-controlling scheme.

Geometric active contours moel, introduced in [ 1-
3] as a geometric alternative for traditional active con-
tour or ‘snake’ to naturally handle the topological
changes of the evolving contour, extensively studied re-

[4.6,16~12]

cently . This model based on curve evolution

theory and level set method, involves solving the ener-
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gy-based minimization problem by the computation of
geodesic or minimal distance curves. In this approach,
a curve is represented implicitly as a level set of a
higher dimensional scalar function.

Although the geometric active contour model has
such advantages over the snake, it has many draw-
backs. This method is sensitive to the starting position
of the contour and the noise and difficult to deform a
contour into the boundary concavities, and allows the
contour leaking through the gaps of the concept contour
and the weak edges as well. These drawbacks cause
diffculties when using the geometric active contour to
segment the complicated medical image segmentation.

To solve these problems, we extend the geometric
active contours by regularizing the edge attraction force
field and using a multi-scale segmentation scheme.
These extensions are able to increase the boundary cap-
ture range, and encourage the robustness to the noise

and the spurious edges.
1 Geometric Active Contours Medel

Geometric active contour was proposed independ-
ently by Caselles et al. '""*) and Kichenassamy et al'*’.
The formulation of Geometric Active Contours is based
on curve evolution theory and Level Set method. The
topological changes of the curve are naturally handled,
which allows detection of allows detection of all objects
that appear in the image plane without knowing their
exact number.

1.1 Dynamic Models

Let 1:[0,a] x[0,b]—R" be a given image in
which we want to detect the objects houndaries. As an
energy minimizing ap;')roach, the Geometric Active
contours evolve the curve C to minimize an objective
curve energy function. To minimize the curve energy is
equivalent to searching for steady state solution of the
following Euler-Lagrange equation!'! .

aC

3 = 8Dk +VON - (Vg(D NN, (1)

Where « denotes the Euclidean curvature, N de-
notes the unit inward normal, V, is a constant, g(l) is
a positive edge indicator function that depends on the
image, and gets small value along the edges and higher

value elsewhere. In this paper, we use the following

form of g([1),

g(h(D) =™, (2)
Where 1 is a positive real constant, A (I) is the edge
detecor, which is defined by:
h(I(x.9)) = {1 v [Ca'(x,y) *I(x,y)] izs.tep edges

| G, (x,y) *I(x,y)|. line edges
(3)
Where G, denotes a 2-D Gaussian function with stand-

ard deviationo.

. c =~ .
According to curve evolution theory, %; =k Nis

the Euclidean shortening flow, which will smooth a

e . .. aC
curve, eventually shrinking it to a circular point; i

V, Nis the gradient flow, which will locally minimize
the area enclosed by C, where V, is a coefficient deter-
mining the speed and direction of deformation. Among
the first term at the right of equation(1), g(/J) is a
multiplicative stopping term. Hf objects have good con-
trast, the curve evolution will stop at the boundary of
objects, since g {( I) approximates zero along the
boundary. However, when the object boundary is weak
or indistinct, g(7) does not vanish along the bounda-
ry, and the curve continues its propagation and may
ship its desired location. The second term at the right
of equation (1) may partially remedy this problem. In
this term, V g(J) is an edge atiraction force, which
points towards the middle of the boundaries. When the

curve pass the boundary, — ( Vg(7) - ﬁ)l_{’ pulls it
back, and finally stops the curve at the desired posi-
tion, where the residual force corresponding to the first
term at the right of equation (1) can be counteracted.

The evolution of the curve is implemented by level

set method proposed by Osher Sethian. [
1.2 Level Set Method

The Osher Sethian'”? level set method provides the
numerical scheme for geometric deformable models. A
useful property of this approach is that the level set
function remains a valid function while the embedded
curve can change its topology.

Now, Let #(x,7,t) : R°>>R be a level set func-
tion with the cure C(t) as its zero level set. We have
C(t) =1{(x,y):¢(x,y,t) =0}. A common choice of
Yistosety(x,y,t) =d(x,y), where d(x,y) is a
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signed distance from the grid point (x,y) to the surve
C, with negative sign in the interior and poéitive in the
exterior of the closed curve.

According to level set method, the corresponding
geometric active contour model written in its level set

formulation is given by,

W gD+ V)1 Tyl s Tg(D) - Vg, (4

where the curvature x is given by,

_ U 2,
(d‘xz +¢’y2)3/2

2
Y K
where ¢, denotes 2a’ ., denotes 2a9b"

, (5

2 Edge Attraction Field Regularization

In order to increase the capture range of an active
contour for the ftraditional active contour models,
Chengyand Xu et al. ©*®) proposed a new external
force, GVF ( Gradient Vector Flow} , which is compu-
ted as the regularization of image force. Similarly, in
geometric active contour models, we regularize the
edge attraction field to smoothly increase the capture
range of the object boundaries.

Assuming that the regularized edge attraction field
is Q(x,y) =(p(x,y) ,9(x,y5)),Q(x,y) is given by
minimizing the following energy functional

ezﬂp(l Vgl)l VOIZ +(1 -u(l Vgl))I Q+
V g | *dxdy. (6)

The first term within the integrand is referred to as
the smoothing term, since this term alone will produce
a smoothly varying field. The second term is referred to
as the data term, since it encourages ( to be close to
~ Vg. The parameter u( | Vgl) with the variable of
— Vg is a regularization parameter governing the
trade-off between the first term and the second term.

Since we want Q to be slowly varying at the loca-
tion far from the edges, but to conform to - V g near
the edges, p ( [] ) should grow larger away from the
edges, whereas, p( [1) should become smaller near
the edges. Therefore, we use the following weighting
function

u(l Vgl) =exp(-kl Vgl?). (71
Where k is a positive real constant.

According to ref. [9], the regularized edge at-

traction force field can be found by treating p and q as
functions of time, and searching the equilibrium sl-

oution of following diffusion equations

53:#(] vg) Vip-(1-u(1Vg))(p+g,)

@—#(l vgl) vig-(1 —@(' Vgl))(q+g,)-

at
(8)
Where g, and g, denote the component of V g in the di-
rection of x coordinate and y coordinate, respectively.

There are two advantages for using the regulariza-
tion approach. First, this approach increases the cap-
ture range of edge attraction force field. Furthermore,
regularization also could fill the gaps of the broken
boundary with the edge atiraction field pointing towards
the subjective contour. Fig. 1 shows a streamline exam-
ple depicting the regularized edge attraction force field,
in which regularization was applied to a simulated im-
age containing an object that has both gaps (indicated
by A) and ;:oncavity.

Second, regularization is able to smooth the edge
attraction force field, and reduce the effects of the
noise and the spurious edges. Note that, in image
plane, the edge attraction force associated to noises
and spurious edges is relatively small. Since u is a
monotonically non-increasing function of %, in order to
suppress noises and spurious edges through the regular-
ization approach, we could tune the parameter & in e-
quation (7) to make u become considerable larger near
the noise and the spurious edge than that near the ob-
ject boundary.

After compute Q(x,y), we replace the edge at-
traction force field in equation (1) by Q(x,y), yield-

ing

aC = N

X - (Dl +4(Q - WF, 9
and the corresponding level set formulation

a

W g(Dxl TYl-yQ - Ty (10)

Note that in equation(1),(9), we not only re-
place V gwith - Q, but also multiply the second term

- by y, which is a positive real constant, to adjust the

proportion between the elastic force and the attraction
force. Furthermore, comparing(1),(4) with (9),

(10), we also omit pressure force, because the at-
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Fig.1 Streamlines of regularization attraction field
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traction range of regularization force field is large e-
nough to capture the initial curve far from the bounda-

ries.
3 Multi-scale Model

In order to increase the robustness of the model to
the noise, we use a large o in the Gaussianfilter in our
model proposed above, for the large-scale filter can ef-
fectively smooth the noisy image data. Nonetheless,
the large-scale filter has the effect of blurring the ed-
ges, which will force the curve convergence to inac-
curate boundary, leading to an unreliable result. Fig2
(a) illustrates the position shift of the edge in one di-
mension due to large-scale edge detector. The edge po-
sition ( point B) detected by employing a large-scale
edge detector shifts away from that (point A) detected
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by employing a small-scale edge detector. Further-
more, the regularization of the attraction force field en-
larges the shift. We notice that the local minimum of |
Vg exists at the edge, while the local maximum of |
V g! is in the proximity of the edge. When the filter
scale o increases, the position of the local maximum
magnitude of the edge attraction force becomes away
from the boundary. From preceding discussion, we
know that the regularization field is computed as a dif-
fusion of the gradient vector of g, which extends the
vector from the great intensity regions to small intensity
and homogeneous regions smoothly without any change
of the vector direction. Because the gradient vectors
near the edge are all directed towards the middle of the
edge, the direction of the diffusion at different side of
the edge are opposite. In the regularizing attraction
force field, the detected edge is at the position where
the opposite diffusions can counteract each other, and
the directions of the force vectors at different side of the
detected edge are opposite. Now, if the gradient vec-
tors at both sides of the edge have same magnitude, the
opposite diffusion would counteract each other at the
edge, and the regularizing force vectors point towards
the edge. However, if the magnitudes are different,
the diffusion of V g at each side of the edge is not able
to counteract each other along the real edge. Here, we
refer the real edge to the edge detected by the edge de-
tector in the image, i. e. the edge in the attraction

force field before regularizing. Thus, the detected edge
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Fig.2 Edge shift in one dimension (a) detected edge position and intensity using different scales of edge detector (b) the
intensity of regularization attraction force field corresponding to Fig. 2(a). A and B denote the edge position with g =1 and

o =3.5, respectively
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Fig.3 Segmentation of the left ventricle of a human heart ( shori-axis section) (a)The MR image (b) The streamlines of
regularization attraction force field with o =3 { ¢) Initial ( dot curve) and intermediate contour ( white curve) with o =3 (d)

Final contour with o =1
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in the regularizing attraction force field shifts towards
the side of the real edge where the magnitude of | V gl
is lower. We see this effect in Fig.2(b). The shift of
A away from B in Fig. 2(b) is larger than that in Fig.
2(a).

To solve this problem, we introduce the multi-
scale technique. The multi-scale technique can effec-
tively reduce the sensitive to the noise and the spurious
edge, and improve the accuracy of boundary detection.
First, we regularize the gradient vector of g which is
derived from emplying large-scale 0. Because the reg-
ularizing attraction force field that is dervied from using
large-scale ¢ is insensitive to the noise data and has
larger capture range, the initializing curve could be far
away from the object boundary. In the large-scale, the
curve evolution may stop in the proximity of the bound-
ary rather that accurately along the boundary, so we
need reduce the scale of o to improve the contour ac-
curacy. Second, we reduce the scale of ¢ gradually,
and regularize the attraction force field associated to the
small o again. Using the result of last step as the ini-
tializing curve, we evolve the curve. Then we reduce
the scale of o again, and repeat the second step until
o is equal to the smallest scale. After the first step,
the purpose of regularization is reducing the noises near
the boundary and improving the accuracy of boundary
detection. It means that the extension of the attraction
range is unnecessary and the convergence of equation
(8) need not be achieved. Thus, We only iterate the
enough constant times in equation (8) so that the nose

near the object boundary can be suppressed.

4 Experimental Result

We have tested our algorithm on several real med-
ical images, including CT, MRI, and physical cross-
sectional data. All experiments start at the large-scale
o =3, and gradually decrease ¢ with a step Ag =0.5,
then obtain the final results at o =1.

Fig. 3 shows the exiraction of the inner wall of the
left ventricle from a noisy MR image. The original im-
age and the streamlines of the regularizing attraction
force field with ¢ =3 are shown in Fig. 3(a) and 3
(b), respectively. We initialized the contour across
the inner wall of ventricle, as the dot rectangle shown
in Fig. 3(c), an intermediate extraction result with
large-scale edge detector, o =3, is also shown. The
result shows that the contour finds the boundary of in-
ner wall approximately in the presence of both bounda-
ry concavities and convexities. The final result using
the multi-scale scheme is shown in Fig. 3(d). Compa-
ring Fig. 3(c) with Fig. 3(d), we note that the result
obtained through the multi-scale scheme at small-scale
is more accurate than that obtained at large-scale.
Therefore , the multi-scale scheme can improve the seg-
mentation accuracy.

We also applied the proposed contour model on the
CT image of leg to segment two object, fibula and tibia,
synchronously as shown in Fig. 4. Note that, in Fig. 4
(a), the initial curve (the dot rectangle) is far from
the object boundary and the CT image is noisy and con-
tains many spurious edges of the muscle between the in-

itial curve and the fibula and tibia. However, the regu-
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Fig.4 Segmentation of the {ibula and the tibia on CT image of human leg ( a)Searching procedure with o =3 (b)Final con-

tour with o =1
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larization method effectively reduces the effects of these
spurious edges and extends the attraction range of the
object boundary. Eventually, the regularizing attraction
force field deforms the contour into the proximity of the
bone boundary. In Fig. 4 (a), the white solid curve
shows the intermediate result with o =3. Then we grad-
ually decreased the scale and obtained the final accurate
result in Fig.4(b) with o =1.

5 Conclusion

We have introduced new extensions to the geomet-
ric active contour. These extensions include regulari-
zing the attraction force field and the multi-scale
scheme. The regularization of the attraction force field,
suppressing the noise and spurious edges and extending
the capture range of the boundary, allows for flexible
initialization of the contour and encourages to conver-
Furthermore, the

scheme not only reduces the noise, but also improves

gence concavities.

multi-scale
the accuracy of the segmentation. The experimenis on
different medical images demonstrate that the propdsed
method is a competent approach for medical image seg-
mentation.

To improve the performance and automation of
segmentation, further investigation into optimal selec-
tion of some parameters such as y, k is desirable. In
addition, since the level set implementation is compu-
tationally expensive, finding a fast algorithm is also the

work direction.
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