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Abstract A complete set of Zernike moment correlation functions iS used to capture spatial structure of a color texture． 

The set of moment correlation functions iS grouped into moment correlation matrices to be used in illumination invariant rec． 

ognition of color texture．For any change in the illumination．the moment correlation matrices are related by a linear trailS· 

formation．Comparisons between suggested color covariance functions with circular and non．circular correlations have been 

carried out using about 600 textured images in different illuminations and rotations conditions．Our suggested method Can 

promise in high computation efficiency as well as recogn ition accuracy． 

Key words color texture，texture recogn ition，color correlations，Zernike moments，Euclidian invariants． 

采用 自相关和协方差 函数在光照一欧氏 

变化条件下识别彩色纹理 

阿拉威 杨 杰 叶晨洲 
(上海交通大学图像处理模式识别研究所 ，上海，200030) 

摘要 采用完整的Zernike矩 自相关函数集合提取彩色纹理的空间结构信息．该 函数集合生成基于 自相关矩的矩 

阵，并在此基础上获得彩色纹理的光照不变因子．对于不同的光照变化，所获矩阵间存在着线性变化关系．6OO幅不 

同光照和旋转条件下的彩色纹理图像将先前提 出的彩色协方差函数与循环和非循环 自相关函数进行比较，该方法 

在计算效率和识别准确奏方面表现 出优越性． 

关键词 彩色纹理 ，纹理识别，彩色 自相关函数，Zernike矩，欧氏变换不变因子． 

Early image recognition algorithms were based on 

computing(geometric)invariant features for gray-level 

intensity images．The goal was to detect an object or 

classify a textured image from an image database．De- 

spite of the increase in dimensionality，the use of col- 

ors is unavoidable in recent recognition applications． 

In fact，using color images may give a better recogni- 

tion performance than gray-·level images due to the ca·- 

pability of capturing local and global image features 

within and between color 1)ands． Moreover．it iS not 
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possible to perform  illumination invariant recognition 

without using color propeflies of aIl image． 

Many techniques had been suggested to investigate 

the use ofmulti·-bands of a color image to achieve ge·- 

ometry，illumination，or illumination—geometry invari· 

ant recogn ition．First，the work of Swain and Ballard 

[ ]in which thev showed that color distributions can be 

used directly for recogn ition without even paying atten- 

tion to the spatial structure of the imag e．Their meth- 

od， however， fails if the illumination spectral is 

changed or the spatial structure of the image is high(it 

is possible for regions with sign ificantly different spatial 
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ILLUMINATION-EUCLIDEAN INVARIANT 
RECOGNITION OF COLOR TEXTURE USING 

CORRELATION AND COVARIANCE FUNCTIONS 

Mohammed AI-Rawi YANG Jie YE Chen-Zhou 

(Image Processing and Pattern Recognition Istitute, Shanghai Jiao Tong University, Shanghai 200030, China) 

Abstract A complete set of Zernike moment correlation functions is used to capture spatial structure of a color texture. 

The set of moment correlation functions is grouped into moment correlation matrices to be used in illumination invariant rec­

ognition of color texture. For any change in the illumination, the moment correlation matrices are related by a linear trans­

formation. Comparisons between suggested color covariance functions with circular and non-circular correlations have been 

carried out using about 600 !textured images in different illuminations and rotations conditions. Our suggested method can 

promise in high computation efficiency as well as recognition accuracy. 

Key words color texture, texture recognition, color correlations, Zemike moments, Euclidian invariants. 
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Introduction 

Early image recognition algorithms were based on 

computing (geometric) invariant features for gray-level 

intensity images. The goal was to detect an object or 

classify a textured image from an image database. De­

spite of the increase in dimensionality, the use of col­

ors is unavoidable in recent recognition applications. 

In fact, using color images may give a better recogni­

tion performance than gray-level images due to the ca­

pability of capturing local and global image features 

within and between color bands. Moreover, it is not 
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possible to perform illumination invariant recognition 

without using color properties of an image. 

Many techniques had been suggested to investigate 

the use of multi - bands of a color image to achieve ge­

ometry, illumination, or illumination-geometry invari­

ant recognition. First, the work of Swain and Ballard 

[I] in which they showed that color distributions can be 

used directly for recognition without even paying atten­

tion to the spatial structure of the image. Their meth­

od, however, fails if the illumination spectral is 

changed or the spatial structure of the image is high (it 

is possible for regions with significantly different spatial 
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structure to have similar color distributions)．A Color 

Indexing color constancy algorithm E 2 3 was developed to 

remove the dependency of color distributions on illumi— 

nation changes．The algorithm performs well for an ob— 

ject recognition task but with less success when the im— 

age is highly structured as in textures．The other group 

of coloi image recognition algorithnis deals with compu。- 

ting spatial structure based features，some of the meth— 

ods are Gabor filters ．color distributions of spatially 

lteIled images[4]
。

Markov randoln field models[ · ]
， 

and spatial covariance functions ．Moment invariants 

I S]of color covariance functions within and between 

bands of a color image had been used to recognize 

three-dimensional textures．The same color covariance 

functions had been used successfully in a series of illu— 

mination recognition experiments of 2一D color texture 

[9～ 
．

Jain[ o]used color covariance functions to rec— 

ognize muhispectral satellite images．In[1 1]，Zeruike 

moment invariants were computed for color covariance 

functions， the derived Zeruike moment invariants， 

however，were not complete．In this paper a complete 

set of Zernike moment correlation and covariance matri- 

ces is derived． Different color correlations are intro- 

duced．circular and non—circular．Experimental results 

using about 600 different illumination—rotation images 

are used to compare the proposed model to previously 

suggested color covariance functions． 

1 SPATIAL TERACTIoN W ITHIN 

AND BETW EEN CoLoR BANDS 

To be able to recognize the texture of a color im— 

age，the interaction within and between its bands is 

considered in this paper．The spatial covariance family 

functions form s one of the most reliable schemes used 

to model the color texture．In this paper we will discuss 

four different measures of these covariance functions． 

1．1 Spatial Covariance Functions 

Over the image region defining the texture，each 

band li(o／， )is assumed wide—sense stationary and 

each pair of bands is assumed jointly wide—sense sta— 

tionary．The set of covariance functions within and be— 

tween sensor bands(1≤i， ≤Ⅳ)is defined as 

C ( ，Y)=Ei[， (o／，卢)一， ][ (o／+ ，卢 +Y)一 

] (1) 

Where l l and l i denote spatial means and E denotes the 

expected value．For the trichromatic case N ：3 we ob— 

serve the following properties： 

The definition given in(1)will lead to nine co— 

variance functions that include three autocovariance 

functions and six crosscovariance functions． All the 

nine spatial covariance functions have the following 

property C ( ，Y)= (一 ，一Y)in which only the 

autocovariance functions are symmetric about the ori— 

gin．Therefore，we can make use of this symmetry to 

reduce computations． 

The crosscovariance funotions are not symmetric； 

however．only three should be computed i．e．(Cl2， 

C】3，C23)，the other three(c2l，c3l，c32)can be ob— 

tained using C ( ，Y)=C (一 ，一Y)．It was shown 

in[7]that it is useful to use only the basic six covari— 

ance functions． 

Considering two surfaces S and S oriented arbi— 

trarily in space where C ( )and C ( )are the cor— 

responding covariance functions and { =[ )，] }． 

From 『7]，those covariance functions are related by a 

linear coordinate transform M as C ，( )=C (Mx)． 

Values of spatial covariance functions may be neg- 

ative，zero，or positive． 

If the illumination between the corresponding tex— 

tures changes，then the relation between their corre— 

sponding covariance functions changes．Suppose a tex— 

tured surface observed at two different orientations in 

space under different illumination conditions，also sup— 

pose that the covariance functions are arranged into a 

column vector C ( )，then we group the covariance 

functions into a covariance matrix as C( )=[C1(x) 

C：(x)⋯C6(x)]．Following[1 1]，let C ( )be the 

covariance matrix of the surface corresponding to the il— 

lumination Z(A)and e ( )be the covariance matrix 

f0r the same surface after an orientation chan ge de— 

scribed bv M and under illumination Z( )，then C 

(Mx)=C (x)E．Where E is a 6×6 matrix with ele— 

iTtents that depend on 1( )and Z( )．Therefore，for a 

change in illumination an d orientation，the covarian ce 

matrices are related by a linear transformation E and a 

linear coordinate transformation M ． 

The above covariance functions had been used 

successfully in the recogn ition of color texture． In all 
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structure to have similar color distributions). A Color 

Indexing color constancy algorithm [2] was developed to 

remove the dependency of color distributions on illumi­

nation changes. The algorithm performs well for an ob­

ject recognition task but with less success when the im­

age is highly structured as in textures. The other group 

of color image recognition algorithms deals with compu­

ting spatial structure based features, some of the meth­

ods are Gabor filters [3J , color distributions of spatially 

filtered images [4], Markov random field models [5.6: , 

and spatial covariance functions [7. Moment invariants 

[S] of color covariance functions within and between 

bands of a color image had been used to recognize 

three-dimensional textures. The same color covariance 

functions had been used successfully in a series of illu­

mination recognition experiments of 2-D color texture 

[9-11]. Jain [to] used color covariance functions to rec­

ognize multispectral satellite images. In [11] , Zernike 

moment invariants were computed for color covariance 

functions, the derived Zernike moment invariants, 

however, were not complete. In this paper a complete 

set of Zernike moment correlation and covariance matri­

ces is derived. Different color correlations are intro­

duced, circular and non-circular. Experimental results 

using about 600 different illumination-rotation images 

are used to compare the proposed model to previously 

suggested color covariance functions. 

1 SPATIAL INTERACTION WITHIN 
AND BETWEEN COLOR BANDS 

To be able to recognize the texture of a color im­

age, the interaction within and between its bands is 

considered in this paper. The spatial covariance family 

functions forms one of the most reliable schemes used 

to model the color texture. In this paper we will discuss 

four different measures of these covariance functions. 

1. 1 Spatial Covariance Functions 

Over the image region defining the texture, each 

band Ii ( a, {3) is assumed wide-sense stationary and 

each pair of bands is assumed jointly wide-sense sta­

tionary . The set of covariance functions within and be­

tween sensor bands (1 ~i,j~N) is defined as 

= E I [I.e a ,{3) - I,J [ Ii (a + x ,{3 + y) 

(1) 

22~ 

- -
Where I and I denote spatial means and E denotes the 

I J 

expected value. For the trichromatic case N = 3 we ob-

serve the following properties: 

The definition given in (1) will lead to nine co­

variance functions that include three autocovariance 

functions and six crosscovariance functions. All the 

nine spatial covariance functions have the following 

property Cij (x, y) = Cji ( - x, - y) in which only the 

autocovariance functions are symmetric about the ori­

gin. Therefore, we can make use of this symmetry to 

reduce computations. 

The crosscovariance functions are not symmetric; 

however, only three should be computed i. e. (C12 , 

Cn ,CZ3 ) ,the other three (C21 , C31 , Cn ) can be ob­

tained using Cij(x,y) =Cji ( -x, -y). ltwasshown 

in [7] that it is useful to use only the basic six covari­

ance functions. 

Considering two surfaces 5 and 5' oriented arbi­

trarily in space where C;/ x) and C'ij ( x) are the cor­

responding covariance functions and I -; = [x y] T f . 

From [7] , those covariance functions are related by a 

linear coordinate transform M as C'ij (x) = C~ (Mx ) . 

Values of spatial covariance functions may be neg­

ative, zero, or positive. 

If the illumination between the corresponding tex­

tures changes, then the relation between their corre­

sponding covariance functions changes. Suppose a tex­

tured surface observed at two different orientations in 

space under different illumination conditions, also sup­

pose that the covariance functions are arranged into a 

column vector C i (x), then we group the covanance 

functions into a covariance matrix as C (x) = [ C j (x) 

• C~ (x) .. ,C 6 (x)]. Following [11], let Ci (x) be the 

covariance matrix of the surface corresponding to the il­

lumination I ( A) and C' (x) be the covariance matrix 

for the same surface after an orientation change de­

scribed by M and under illumination 1 ( A), then C 

( Mx) = C' (x) E. Where E is a 6 x 6 malrix with ele­

ments that depend on 1 (A) and 1 ( A). Therefore, for a 

change in illumination and orientation, the covariance 

matrices are related by a linear transformation E and a 

linear coordinate transformation M. 

The above covariance functions had been used 

successfully in the recognition of color texture. In all 

http://www.cqvip.com
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previous works， however， they considered that all 

crosscovariance functions are symmetric(the fact they 

were enforced to be symmen‘ic)．One reason is the 

high degree of pixel·-to--pixel correlation between differ- 

ent bands belonging to the same image，which leads to 

a very small symmetric error． 

1．2 Spatial Correlation Functions 

Here we assume again that over the image region 

defining the texture，each band li( ， )is wide—sense 

stationary and each pair of bands is assumed jointly 

wide—sense stationary． We define a set of correlation 

functions within and between sensor bands(1≤i， ≤ 

Ⅳ、as 

R ( ，Y)=E[Ii( ，卢) ( +x,／3+Y)] (2) 

where E denotes the expected value． For the trichro— 

matic case N =3．correlation functions will have the 

same properties as those given for covariance functions 

except that correlation functions will always have posi— 

tive values．Positive values oi’correlation functions are 

necessary when used with moments since moments 

should be computed for nonnegative bounded func— 

tions．In the previous work of Kondepudy and Heal— 

ey[ ]
．
they used the absolute value of co1or covariance 

functions to eliminate the negative values．This may in 

turn destroy the color covariance functions and the 

transform between the original image and its corre— 

sponding test image may be non linear or cannot be 

predicted． 

1．3 Circular Correlation and Circular Covari． 

ante Functions 

It is important to define a third group of corre— 

lation functions that capture some circular symmet— 

ric properties when the texture region is averaged 

within and between sensor bands． One way to do 

this is by averaging or estimating color correlations 

(or covariances)inside a circular region．We de— 

fine circular correlations within and between sensor 

bands as： 

五 = 

(3) 

where is the radius of the region to compute the ex． 

pectation value at．Similarly，circular covariance func． 

tions are defined by： 

一  r [Ii( ，卢)一， ][，J( 
r — J 
／j一1 【

0 

+ ， +y)一 

+ ≤ 

elsewhere 

(4) 

Circular color correlations and co1or cov ances should 

give better results due to the ability to capture the same 

amount of inform ation as an image is rotated by an an— 

gle． Experimental results discussed later will show 

which of the four proposed covariances schemes outper． 

form  the others． Figure 1 shows cloth imag e photo— 

graphed with five different illuminations． 

It is our task to show that imag es shown in Fig．1， 

and another 25 cloth images(for each illumination)at 

different rotation angles belong to the same original 

class． The spatial correlation and spatial covariance 

functions draws a surface that is to be recognized(in— 

stead of the original multispectral image)．That surface 

may take the shape of a pyramid like shape or a cone 

like shape and may be deform ed according to the com． 

bination of geometry and illumination chan ges．For this 

recognition process and how much those shapes are 

changing，we shall use the method of moment invari． 

ants(specifically Zernike moments)． 

2 ZERNIKE MoM[ENTS oF CoRRELA． 

TION AND COVARIANCE FUNC’n oNS 

Zernike moments[ ]may be used to produce 

one of the most reliable feature set used to achieve in． 

variant pattern  recognition[ ～ 
． It is our purpose to 

compute Zernike moments of covariance functions an d 

correlation functions to obtain invariant features that 

will be used to recognize the color texture．The com． 

plex Zernike moments of 
，Y)are defined as： 

=  )Evof(，，0)3 =( (5) 

where the integration is taken inside the unit disk + 

Y ≤ 1，n=0，1，2，⋯ ，∞ is the order an d l is the repe． 

tition which takes on positive and negative integer va1． 

ues subject to the conditions n—I l I is even，an．d I 

■■■■■ 
Fig．1 The image of cloth under five different illuminations 

图 1 5种不同光照下的布纹理图像 
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previous works, however, they considered that all 

crosscovariance functions are symmetric (the fact they 

were enforced to be symmetric). One reason is the 

high degree of pixel-to-pixel correlation between differ­

ent bands belonging to the same image, which leads to 

a very small symmetric error. 

1. 2 Spatial Correlation Functions 

Here we assume again that over the image region 

defining the texture, each band I. ( a ,(3) is wide-sense 

stationary and each pair of bands is assumed jointly 

wide-sense stationary . We define a set of correlation 

functions within and between sensor bands (1 :s; i ,j :s; 

N) as 

Rij(x,y) = E[IJa,(3)(a +x,{3 +y)] (2) 

where E denotes the expected value. For the trichro­

matic case N = 3, correlation functions will have the 

same properties as those given for covariance functions 

except that correlation functions will always have posi­

tive values. Positive values of correlation functions are 

necessary when used with moments since moments 

should be computed for nonnegative bounded func­

tions. In the previous work of Kondepudy and Heal­

ey[7] , they used the absolute value of color covariance 

functions to eliminate the negative values. This may in 

turn destroy the color covariance functions and the 

transform between the original image and its corre­

sponding test image may be non linear or cannot be 

predicted. 

1. 3 Circular Correlation and Circular Covari­

ance Functions 

It is important to defint> a third group of corre­

lation functions that capture some circular symmet­

ric properties when the texture region is averaged 

within and between sensor bands. One way to do 

this is by averaging or estimating color correlations 

( or covariances) inside a eircular region. We de­

fine circular correlations within and between sensor 

bands as: 

RH = {E[I i (a,(3)(a +x,{3 +y)] 
~ 0 

a 2 + ~ :s; m 
elsewhere 

(3) 

where m is the radius of the region to compute the ex­

pectation value at. Similarly, circular covariance func­

tions are defined by: 

323 

-
JE [Ii (a,{3) -IJ[Ij (a+x,{3+y) -IJ 

1 a
2 +~ .:s; m 

o elsewhere 

(4) 

Circular color correlations and color covariances should 

give better results due to the ability to capture the same 

amount of information as an image is rotated by an an­

gle. Experimental results discussed later will show 

which of the four proposed covariances schemes outper­

form the others. Figure 1 shows cloth image photo­

graphed with five different illuminations. 

It is our task to show that images shown in Fig. 1, 

and another 25 cloth images (for each illumination) at 

different rotation angles belong to the same original 

class. The spatial correlation and spatial covariance 

functions draws a surface that is to be recognized (in­

stead of the original multispectral image). That surface 

may take the shape of a pyramid like shape or a cone 

like shape and may be deformed according to the com­

bination of geometry and illumination changes. For this 

recognition process and how much those shapes are 

changing, we shall use the method of moment mvan­

ants (specifically Zernike moments). 

2 ZERNIKE MOMENTS OF CORRELA­
TION AND COVARIANCE FUNCTIONS 

Zernike moments[12] may be used to produce 

one of the most reliable feature set used to achieve in-
. •• [13 -15] I . vanant pattern recognItIon . t IS our purpose to 

compute Zernike moments of covariance functions and 

correlation functions to obtain invariant features that 

will be used to recognize the color texture. The com­

plex Zernike moments of f( x,r) are defined as: 

Znj = (n +l)ffdxdJ!(x,y)[Vnt (r,O»)" = (Zn_I)· (5) 
~ . 

where the integration is taken inside the unit disk x 2 + 

l :s; 1 , n = 0 , 1 ,2 , ... ,00 is the order and l is the repe­

tition which takes on positive and negative integer val­

ues subject to the conditions n - I l I is even, am;!. I 

Fig. 1 

!!II 
The image of cloth under five different illuminations 
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Z I<凡．Note that， (r，0)are the complex Zemike 

polynomials given as ：R (r)exp(ilO)see[12] 

for their complete deftnitions．Zernike moments where Z 

takes negative values can be obtained by making use of 

the complex conjugate property，which is z ：Z： 

In this work．Zeruike moments will be used to generate 

invariants of color correlation and color covariance 

functions． These invariants are of great importance 

since thev reduce the redundant feature of correlations 

and covariances． For one specific autocorrelation or 

cI．0sscorrelation function that correspond one set of(i， 

)value，Zemike moments is computed as 

z, 1／= ∑ 
： 

)[ (r， (6) 

and for obtaining Zernike moments of color covariances 

just use G ( ，y)instead of R ( ，y)in the above e’ 

quation． 

2．1 Construction of Zernike M oment Correlation 

Invariants 

It can be shown that the relation between the 

Zemike m0ment invariant matrices of the corresponding 

textures takes the following form，see[17]for deriva- 

tion， 

= GH． (7) 

where‘D is the Zernike moment invariant matrix of the 

first texture，G is the Zernike moment invariant matrix 

of the second texture，H is the matrix that depends to— 

tally on illumination changes．The matrix elements are 

given by 

= Rel z：lf1(Zk ) }． (8) 

where 

Re{Z nlf．(Z m f ) } 1≤m≤6 

g =l Re{z ．(z ) +z 。(ti m：) }(9) 
l 7≤m≤21 

And 

= [。
i ： · c 1。 

where the i andj． number set is given by(i ，J ) 

{(1，2)，(1，3)，(1，4)，(1，5)，(1，6)，(2，3)，(2， 

4)， 

(2，5)，(2，6)，(3，4)，(3，5)，(3，6)，(4，5)，(4， 

6)，(5，6)} 

f0r all m =7，8，⋯，21 respectively，i．e．(i7， )= 

(1，2)，⋯(i ，J2 )=(5，6)． 

Lets assume using a total of w invariants for which “= 

1。2⋯ ． and in our discussed case k=1，2，⋯ ，6，tlle 

matrices are obvious， is a w ×6 sized matrix which is 

the m0ment invariant matrix (it is translation—rotation 

invariant)。G is aw x21 sized matrix，andH is a 21 x 

6 sized matrix with elements that depend only on l( ) 

and l(入)which represent the effect of illumination． 

For texture recognition．G is represented using an 0卜 

thonormal bases obtained by a 

tion method as follows 

G=uEvr． 

singular value decomposi- 

where U is a w×21 sized matrix，U=[／／1，u2，⋯， 21 J 

having columns that are orthonormal eigenvectors of 

GG ，∑ is a 21 x21 diagonal matrix of singular values 

A1，A2，⋯ ，A 21，and V is a 21×21 matrix having col。 

umns that are orthonorm al eigenvectors of G G． For 

recognition purpose， the following distan ce function 

can be used： 

D=∑ 一 [(u )u +(M：T )u： 

+⋯ +(u2T1 )u21]ll 2． (12) 

where 1， 2，⋯ ， 6 are the column vectors of ．Th e 

ab0ve distance function characterizes how well the col— 

umn vectors of can be approximated as a linear 

combinati0n 0f the columns of U．Thus，the smallest 

va1ue of D for matrices and G will correspond to 

textures related by some combination of rotation and 

illumination changes． In our work，the matrix p is 

used to store the feature of the original database under 

white illumination．The matrix G is used for the tex- 

ture under recognition(investigation)，i．e．，the tex’ 

ture that had undergone ullumination and geometry 

changes．To clarify the generation of the matrix G we 

will give a brief description； first，generate the six 

c0l0r correlation functions using(2)，compute Zerni— 

ke moments for each of the correlation functions using 

(6)，and generate the elements of the G matrix using 

the definition given in(9)and by following the rules 

of generating a complete set of invariants Ven in 

『12]and[16]． 

3 EXPEl ENTAL RESULTS 

In this section we intend to test the color covari— 
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l I < n. Note that. V nJ ( r, 0) are the complex Zemike 

polynomials given as VnJ = RnJ (r) exp (iLO) see [12] 

for their complete definitions. Zemike moments where l 

takes negative values can be obtained by making use of 

the complex conjugate property, which is ZnJ == Zn*. -I' 

In this work, Zemike moments will be used to generate 

invariants of color correlation and color covariance 

functions. These invariants are of great importance 

since they reduce the redundant feature of correlations 

and covariances. For one specific autocorrelation or 

crosscorrelation function that correspond one set of (i, 

j) value, Zemike moments is computed as 

Z~ = (n + 1) L L R~(x.y) [VnJ(r,O) J * (6) 
"iT x2 +y2S; 1 

and for obtaining Zemike moments of color covariances 

just use Cij(x,y) instead of Ry(x.y) in the above e­

quation. 

2. 1 Construction of Zernike Moment Correlation 

Invariants 

It can be shown that the relation between the 

Zemike moment invariant matrices of the corresponding 

textures takes the following form, see [17] for deriva-

tion, 

({J == GH. (7) 

where cp is the Zemike moment invariant matrix of the 

first texture, G is the Zemike moment invariant matrix 

of the second texture, H is the matrix that depends to­

tally on illumination changes. The matrix elements are 

given by 

({Juk = Re I Z:lll (Z~21) * \ . (8) 

where 

(9) 

7 ~ m ~ 21 

And 

(10) 
7 ~ m ~ 21 

where the im and im number set is given by (im ,jm) == 

I (1,2) , (1 ,3) , ( 1 ,4), (1 ,5), (1 ,6) , (2,3) , (2, 

4), 

(2,5) , (2,6) , (3,4) , (3,5) , (3,6) , (4,5) , (4. 

6),(5,6)\ 

forallm=7,8,·~·,21 respectively, Le~ (i7 ,i7) = 

22~ 

(l .2) .... ( i 21 ,izl) = (5 ,6) . 

Lets assume using a total of w invariants for which U = 
1 .2"', w and in our discussed case k = 1 , 2, .,. ,6, the 

matrices are obvious, If' is a w x 6 sized matrix which is 

the moment invariant matrix (it is translation-rotation 

invariant) • G is a w x 21 sized matrix, and H is a 21 x 

6 sized matrix with elements that depend only on I ( A) 

and l ( A) which represent the effect of illumination. 

For texture recognition, G is represented using an or­

thonormal bases obtained by a singular value decomposi­

tion method as follows 

(11 ) 

where V is a w X 21 sized matrix, U = [u l ,~ , ••• , ~I ] 

having columns that are orthonormal eigenvectors of 

eeT
, L. is a 21 X 21 diagonal matrix of singular values 

AI ,Az,···.A 21 ,and Vis a21 x21 matrix having col­

umns that are orthonormal eigenvectors of GT G. For 

recognition purpose, the following distance function 

can be used: 
6 

D = L II ({J - [(U;({Ji)U 1 + (U;({J.)U2 
f= 1 

(12) 

where ({JI ,({J2 , ••• , ({J6 are the column vectors of 'P. The 

above distance function characterizes how well the col­

umn vectors of If' can be approximated as a linear 

combination of the columns of V. Thus, the smallest 

value of D for matrices If' and G will correspond to 

textures related by some combination of rotation and 

illumination changes. In our work, the matrix If' is 

used to store the feature of the original database under 

white illumination. The matrix G is used for the tex­

ture under recognition (investigation) , i. e. , the tex­

ture that had undergone ullumination and geometry 

changes. To clarify the generation of the matrix G we 

will give a brief description; first, generate the six 

color correlation functions using (2) , compute Zemi­

ke moments for each of the correlation functions using 

( 6) , and generate the elements of the G matrix using 

the definition given in (9) and by following the rules 

of generating a complete set of invariants given in 

[ 12] and ~ 16 ] . 

3 EXPERIMENTAL RESULTS 

In this section we intend to test the color covari-
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ance model and the developed color correlation model 

in a texture recognition task． The image database is 

consisted of 20 textured images as shown in Fig．2， 

which contains some homogenous and inhomogeneous 

textures． For each image cldss in the database， we 

generated five image samples under white，red，green， 

blue，and yellow illuminations using HANSA color fil— 

ters and the images are photographed with a Sony CCD 

camera．For each of the five images that have different 

illuminations，we generated five other rotated images at 

the rotation angles 30。，60。，90。，120。 and 150。with 

respect to the original non rotated image． 

Thus for each class，we have a total of thirty ima— 

ges photographed at different illuminations and rota— 

tions．The whole image database is consisted of 600 

images，a total of 20 classes with 30 images per class． 

For each image in the database，color covariance and 

color correlation functions are estimated with averages 

over a fnite image region of size 60×60 pixels and for 

a finite image lag C ( ，Y)and／or R ( ，Y)is esti— 

mated for I I<16 and I<16．It had been 

suggested to normalize color covariance functions a— 

gainst intensity changes by dividing by C (0，0)．We 

will include this norm alization scheme in our tests， 

R (0，0)will be used for no1~nalizing correlation func— 

tions．Th e test is divided into two stages，the training 

phase for feature extraction of the original image class 

and the testing phase that includes feature extraction of 

the image under investigation that has illumination and 

geometry changes with respect to the original image 

class 

Fig．2 The ori6nal image datM)ase used in our experiments 

图 2 实验所用的原始图像库 

In the training phase and after computing color co— 

variances and／ or color correlations， For comparison 

purpose．Zernike moment invariant matrices are con— 

puted for each image up to the 6Ih，8Ih，10tlI，an d 12Ih 

orders．The training process is perform ed to each of the 

20 color textured images photographed under white illu— 

mination and non rotated image，and all the 20 Zernike 

moment invariant matrices are stored to be used off- 

line．In the testing phase，the unknown textures are 

extracted from the rest of the 580 images under differ- 

ent illuminations and rotations．The distance function 

defined in(23)is used as a similarity measure．The 

recognition performance is measured as the number of 

correct matches over the total number of imag es．See 

Fig．3 for comparison purpose． 

The circular correlation functions proposed in this 

work give the highest recognition performance 97％ ． 

On the other hand，the recogn ition perfoman ce value of 

using the covariance functions propo sed by Kondepudy 

and Hea1ev [ ]is 85％ and circular covariance func． 

tions gives 87％ ．As we increase the order of Zernike 

moments，the recogn ition perform ance increases for all 

mode】s． 

4 CONCLUSIoNS 

The spatial correlation functions introduced in this 

paper is very useful in representing an d modeling color 

texture．Compared to a previous color covariance func— 

tions the recognition performance is higher． W e also 

6 8 l0 

Order ofZaⅡu【e M om~at8 

Fig．3 Performance comparison of using Zemike moment 

correlation matrices and Zernike moment covarian ce matrices 

for the Illumination．rotation invariant recognition of color 

texture 

图 3 采用 Zernike矩相关矩阵与 Zemike矩协方差矩阵 

关于彩色纹理的光照旋转不变识别的性能比较 
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ance model and the developed color correlation model 

in a texture recognition task. The image database is 

consisted of 20 textured images as shown in Fig. 2, 

which contains some homogenous and inhomogeneous 

textures. For each image class in the database, we 

generated five image samples under white, red, green, 

blue, and yellow illuminations using HANSA color fil­

ters and the images are photographed with a Sony CCl) 

camera. For each of the five images that have different 

illuminations, we generated five other rotated images at 

the rotation angles 30° ,60° , 90° , 120° and 150° with 

respect to the original non rotated image. 

Thus for each class, we have a total of thirty ima­

ges photographed at different illuminations and rota­

tions. The whole image database is consisted of 600 

images, a total of 20 classes with 30 images per class. 

For each image in the database, color covariance and 

color correlation functions are estimated with averages 

over a finite image region of size 60 x 60 pixels and for 

a finite image lag Cij ( x, y) and! or Ry ( x, y) is esti­

mated for I x I < 16 and I y I < 16. It had been 

suggested to normalize color covariance functions a­

gainst intensity changes by dividing by CrrCO,O). We 

will include this normalization scheme in our tests, 

Rrr CO, 0) will be used for normalizing correlation func­

tions. The test is divided into two stages, the training 

phase for feature extraction of the original image class 

and the testing phase that inc ludes feature extraction of 

the image under investigation that has illumination and 

geometry changes with respt'ct to the original image 

class. 

Fig. 2 

002 
The original image datahase used in our experiments 
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In the training phase and after computing color co­

variances and! or color correlations , For comparison 

purpose, Zernike moment invariant matrices are com­

puted for each image up to the 6'h' 8 th , 10 th , and 12'h 

orders. The training process is performed to each of the 

20 color textured images photographed under white illu­

mination and non rotated image, and all the 20 Zernike 

moment invariant matrices are stored to be used off­

line. In the testing phase, the unknown textures are 

extracted from the rest of the 580 images under differ­

ent illuminations and rotations. The distance function 

defined in C 23) is used as a similarity measure. The 

recognition performance is measured as the number of 

correct matches over the total number of images. See 

Fig. 3 for comparison purpose. 

The circular correlation functions proposed in this 

work give the highest recognition performance 97%. 

On the other hand, the recognition perfomance value of 

using the covariance functions proposed by Kondepudy 

and Healey [7] is 85% and circular covariance func­

tions gives 87%. As we increase the order of Zernike 

moments, the recognition performance increases for all 

models. 

4 CONCLUSIONS 

The spatial correlation functions introduced in this 

paper is very useful in representing and modeling color 

texture. Compared to a previous color covariance func­

tions the recognition performance is higher. We also 
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Order of Zemike Moments 

Fig. 3 Perfonnance comparison of using Zemike moment 

correlation matrices and Zernike moment covariance matrices 

for the Illumination-rotation invariant recognition of color 

texture 
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derived a complete set of Zernike moment invariant 

correlation and covariance matrices to make correlation 

functions invariant to rotation changes of textures．The 

recognition performance is increased as the moment or— 

der is increased． The work also investigates four tex— 

ture modeling functions，ordinar3 covariance，circular 

covariance，ordinary correlation，and circular correla— 

tion．Using Zernike moments the dimensionality of cor— 

relation feature is reduced and it may be useful to use 

other kinds of moments for the recognition of texture 

since the derived invariants posses a general form． 

REFERENCES 

[1]Swain M，Ballard D．Color indexing．International Jo-urnal 

ofComputer Vision，1991，7：11—32 

[2]Funt B，Finalyson G．Color constant color indexing．IEEE 
Trans．Pattern Ana 1．Machine Intell，1995，17：522—_528 

[3]Jain A K，Farrokhnia F．Unsupervised texture segmen tatio— 

nusing Gabor filters．Pattern Recognition，1991，24(12)： 

1167— 1186 

[4]Healey G，Slater D．Computing illumination—invariant de— 
scriptors of spatially filtered color image regions． IEEE 

Trans．Image Processing，1997，6(7)：1002--1013 

l 5 1 Cross G，Jain A K．Markov random field texture models． 

IEEE Trans．Pattern Ana1．Machine lnteU．，1983，5(1)： 

25— 39 

[6]Panjwani D，Healey G．Selecting neighbors in random field 

models for color images．／n Proc．IEEE Int．Conf．Image 
Processing．Austin，TX，1994，2：56—6O 

[7]Kondepudy R，Healey G．Use of invariants for recognition 
of three．dimensional color texture． Opt Soc． Amer．A。 

1994，11：3037— 3049 

l 8 1X Xu，Zhou Y ．Pattern recognition based on wavelet mo- 

ment invariants．Journal of Irtfrared and Millimeter Waves 

(徐旭东，周源华．基于小波矩不变量的模式识别方法． 

红外与毫米波学报)，2000，19(3)：215_218 

[9]Healey G，Wang L．Illumination—invariant recognition of 

texture in color images． Opt．Soc．Amer．A，1995，12： 
1 877— 1883 

[1O]Healey G，Jain A．Retrieving multispectral satellite images 
using physics．based lnvariant representations．1EEE Trans． 

Pattern Ana 1．Machine Intel1．，1996，15：＆l2— 848 

[11]Wang L，Healey G．Using Zemike moments for the 
illumination and geometry invariant classifieafion of multi． 

spectral texture． 1EEE Trans． Ima ge Processing ，1998，7 

(2)：196—_2O3 

[12]Teague M R．Image analysis via the general theory of mo- 

ments． Opt．Soc．Amer．，1980，7O：920—930 
l 13 Teh C H，Chin R T．On image analysis by moment invari． 

ants．1EEE Trans． Pattern Analysis Machine Intelligence． 

1988。10(4)：496—513 

l 14 l Bailey R R，Srinath M．Orthogonal moment features for 

use with parametric and non．param etric classifi ． 1EEE 

Trans．Pattern Analysis and  Machine Intelligence．1 I6．18 

(4)：389—399 

l 15 l Khotanzad A．Invariant image recognition by Zemike mo- 

ments．1EEE Trans．Pattern Analysis and  Machine Intelli． 

genee，1990，12(5)：489．_497 

l 16 Wallin A，Kubler O．Complete sets of Zemike moment in． 

variants and the role of Pseudo．invariants．1EEE T．P M1． 

1995．17(11)：l106一 l11O 

l 17 A1．Rawi M S．Developing correlation based invariants for 

the recognition of texture in color images．A Ph．D．Thesis． 

Shanghai：Shanghai Jiaotong University(阿拉威．用彩色图 

像纹理识别的不变性关联分析研究．上海 ：上海交通大学 

博士学位论文)，2002 

维普资讯 http://www.cqvip.com 

326 

derived a complete set of Zemike moment invariant 

correlation and covariance matrices to make correlation 

functions invariant to rotation changes of textures. The 

recognition performance is increao;ed as the moment or­

der is increased. The work also investigates four tex­

ture modeling functions. ordinary covariance. circular 

covariance. ordinary correlation, and circular correla­

tion. Using Zemike moments the dimensionality of cor­

relation feature is reduced and it may be useful to use 

other kinds of moments for the recognition of texture 

since the derived invariants posses a general form. 
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