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ILLUMINATION-EUCLIDEAN INVARIANT
RECOGNITION OF COLOR TEXTURE USING
CORRELATION AND COVARIANCE FUNCTIONS

Mohammed Al-Rawi YANG Jie YE Chen-Zhou
(Image Processing and Pattern Recognition Istitute, Shanghai Jiao Tong University, Shanghai 200030, China)

Abstract A complete set of Zernike moment correlation functions is used to capture spatial structure of a color texture.
The set of moment correlation functions is grouped into moment correlation matrices to be used in illumination invariant rec-
ognition of color texture. For any change in the illumination, the moment correlation matrices are related by a linear trans-
formation. Comparisons between suggested color covariance functions with circular and non-circular correlations have been
carried out using about 600 textured images in different illuminations and rotations conditions. QOur suggested method can
promise in high computation efficiency as well as recognition accuracy.
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Introduction

Early image recognition algorithms were based on
computing { geometric) invariant features for gray-level
intensity images. The goal was to detect an object or
classify a textured image from an image database. De-
spite of the increase in dimensionality, the use of col-
ors is unavoidable in recent recognition applications.
In fact, using color images may give a better recogni-
tion performance than gray-level images due to the ca-
pability of capturing local and global image features

within and between color bands. Moreover, it is not
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possible to perform illumination invariant recognition
without using color properties of an image.

Many techniques had been suggested to investigate
the use of multi - bands of a color image to achieve ge-
ometry, illumination, or illumination-geometry invari-
ant recognition. First, the work of Swain and Ballard
7 in which they showed that color distributions can be
used directly for recognition without even paying atten-
tion to the spatial structure of the image. Their meth-
od, however, fails if the illumination spectral is
changed or the spatial structure of the image is high (it
is possible for regions with significantly different spatial
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structure to have similar color distributions). A Color
Indexing color constancy algerithm >’ was developed to
remove the dependency of color distributions on illumi-
nation changes. The algerithm performs well for an ob-
ject recognition task but with less success when the im-
age is highly structured as in textures. The other group
of color image recognition algorithms deals with compu-
ting spatial structure based features, some of the meth-
ods are Gabor filters \>* | color distributions of spatially
filtered images '*!, Markov random field models "' |

.. Moment invariants

and spatial covariance functions
“*1 of color covariance functions within and between
bands of a color image had been used to recognize
three-dimensional textures. The same color covariance
functions had been used successfully in a series of illu-
mination recognition experiments of 2-D color texture

911 10 . .
L ! (1] ysed color covariance functions to rec-

. Jain
ognize multispectral satellite images. In [11], Zemike
moment invariants were computed for color covariance
functions, the derived Zemike moment invariants,
however, were not complete. In this paper a complete
set of Zernike moment correlation and covariance matri-
ces is derived. Different color correlations are intro-
duced, circular and non-circular. Experimental results
using about 600 different illumination-rotation images
are used to compare the proposed model to previously

suggested color covariance functions.

1 SPATIAL INTERACTION WITHIN
AND BETWEEN COLOR BANDS

To be able to recognize the texture of a color im-
age, the interaction within and between its bands is
considered in this paper. The spatial covariance family
functions forms one of the most reliable schemes used
to model the color texture. In this paper we will discuss
four different measures of these covariance functions.
1.1 Spatial Covariance Functions

Over the image region defining the texture, each
band I, (a,8) is assumed wide-sense stationary and
each pair of bands is assumed jointly wide-sense sta-
tionary . The set of covariance functions within and be-
tween sensor bands (1 <i,j<<N) is defined as
Cy(x,y) = Ei[L(a,p) - L1I(a + %8 +7) -
Ak (1)

-

Where Z and }J denocte spatial means and E denotes the
expected value. For the trichromatic case N =3 we ob-
serve the following properties :

The definition given in (1) will lead to nine co-
variance functions that include three autocovariance
functions and six crosscovariance functions. All the
nine spatial covariance functions have the following
property C;(x,y) =C;( —x, —y) in which only the
autocovariance functions are symmetric about the ori-
gin. Therefore, we can make use of this symmetry to
reduce computations.

The crosscovariance functions are not symmetric;
however, only three should be computed 1. e. (C,,,
C,;,C,) ,the other three {C,,,C; ,C;, ) can be ob-
tained using C;(x,y) =C;( —x, —y). It was shown
in [7] that it is useful to use only the basic six covari-
ance functions.

Considering two surfaces S and S’ oriented arbi-
trarily in space where C;(x) and C';(x) are the cor-
responding covariance functions and {x = [x y]"}.
From [7]1, those covariance functions are related by a
linear coordinate transform M as C’,(x) = C;(Mx).

Values of spatial covariance functions may be neg-
ative, zero, or positive.

If the illumination between the corresponding tex-
tures changes, then the relation between their corre-
sponding covariance functions changes. Suppose a tex-
tured surface observed at two different orientations in
space under different illumination cenditions, also sup-
pose that the covariance functions are arranged into a
column vector C,{x), then we group the covariance
functions into a covariance matrix as C(x) =[C, (x)
C.(x):-Cg(x) ]. Following [11], let C,(x) be the
covariance matrix of the surface corresponding to the il-
lumination /{(A) and C'{x) be the covariance matrix
for the same surface after an orientation change de-
scribed by M and under illumination 1 { X), then C
(Mx) =C'(x)E. Where E is a 6 x 6 matrix with ele-
ments that depend on 1(A) and I (X). Therefore, for a
change in illumination and orientation, the covariance
matrices are related by a linear transformation E and a
linear coordinate transformation M.

The above covariance functions had been used

successfully in the recognition of color texture. In all
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previous works, however, they considered that all
crosscovariance functions are symmetric ( the fact they
were enforced to be symmetric ). One reason is the
high degree of pixel-to-pixel correlation between differ-
ent bands belonging to the same image, which leads to
a very small symmetric error.
1.2 Spatial Correlation Functions

Here we assume again that over the image region
defining the texture, each band /,(«a,B) is wide-sense
stationary and each pair of bands is assumed jointly
wide-sense stationary. We define a set of correlation
functions within and between sensor bands (1<i,j<
N) as

Ri(x,y) = E[I(a,B)[{a+x,B+y)] (2)
where £ denotes the expected value. For the trichro-
matic case N = 3, correlation functions will have the
same properties as those given for covariance functions
except that correlation functions will always have posi-
tive values. Positive values of correlation functions are
necessary when used with moments since moments
should be computed for nonnegative bounded func-
tions. In the previous work of Kondepudy and Heal-
eyl they used the absolute value of color covariance
functions to eliminate the negative values.- This may in
turn destroy the color covariance functions and the
transform between the original image and iis corre-
sponding test image may be non linear or cannot be
predicted.
1.3 Circular Correlation and Circular Covari-
ance Functions

It is important to define a third group of corre-
lation functions that capture some circular symmet-
ric properties when the texture region is averaged
within and between sensor bands. One way to do
this is by averaging or estimating color correlations
We de-

fine circular correlations within and between sensor

{ or covariances) inside a circular region.

bands as:
R - {E[Ii(a,ﬁ)lf(a +x,8+y)] L+ <]
! 0 elsewhere

(3)
where R is the radius of the region to compute the ex-
pectation value at. Similarly, cireular covariance func-

tions are defined by:

L[ a+x,8+y) - 1]

EllL(a,B8)

{ o+ R
0 elsewhere
(4)

Circular color correlations and color covariances should
give better results due to the ability to capture the same
amount of information as an image is rotated by an an-
gle. Experimental results discussed later will show
which of the four proposed covariances schemes outper-~
form the others. Figure 1 shows cloth image photo-
graphed with five different illuminations.

It is our task to show that images shown in Fig. 1,
and another 25 cloth images (for each illumination) at
different rotation angles belong to the same original
class. The spatial correlation and spatial covariance
functions draws a surface that is to be recognized ( in-
stead of the original multispectral image }. That surface
may take the shape of a pyramid like shape or a cone
like shape and may be deformed according to the com-
bination of geometry and illumination changes. For this
recognition process and how much those shapes are
changing, we shall use the method of moment invari-

ants ( specifically Zernike moments).

2 ZERNIKE MOMENTS OF CORRELA-
TION AND COVARIANCE FUNCTIONS

Zernike momenis''?! may be used to produce
one of the most reliable feature set used to achieve in-

variant pattern recognitionm'ls].

It is our purpose to
compute Zernike moments of covariance functions and
correlation functions to obtain invariant features that
will be used to recognize the color texture. The com-

plex Zernike moments of f(x,y) are defined as;
1 L] L
7, =" faatef e ) [V, 001" = (2,207 ()

where the integration is taken inside the unit disk 2+
¥'<1,n=0,1,2,--

tition which takes on positive and negative integer val-

;o is the order and [ is the repe-

ues subject to the conditions n — | I | is even, and

Fig. 1 The image of cloth under five different illuminations
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I| <n. Note that, V,(r,8) are the complex Zernike
polynomials given as V; = R, (r)exp (il§) see [12]
for their complete definitions. Zemike moments where {
takes negative values can be obtained by making use of
the complex conjugate property, which is Z, =2 _,.
In this work, Zernike moments will be used to generate
invariants of color correlation and color covariance
functions. These invariants are of great importance
since they reduce the redundant feature of correlations
and covariances. For one specific autocorrelation or
crosscorrelation function that correspond one set of (i,
j) value, Zernike moments is comnputed as

-2y S RG] (6)

2yl

and for obtaining Zemike moments of color covariances
just use C;(x,y) instead of R (x,y) in the above e-
quation.
2.1 Construction of Zernike Moment Correlation
Invariants

It can be shown that the relation between the
Zemnike moment invariant matrices of the corresponding
textures takes the following form, see [ 17] for deriva-
tion,

¢ = GH. (7

where @ is the Zernike moment invariant matrix of the
first texture, G is the Zermike moment invariant matrix
of the second texture, H is the matrix that depends to-
tally on illumination changes. The matrix elements are
given by

¢u = RelZ:

where

(Zo) "1 (8)

nily

{Zr:l,{,(zlnzzz)‘% lsm<6b6
&m = |RelZ"m (ZMn )" + 2" (2" )"} (9

[y "212
Tsm=<?2l

(10)
T=sm=<?2l

where the i and j_ number set is given by (i_,j ) =
1(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,
4},
(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,
6),(5,6) !

forall m =7,8,

-, 21 respectively, 1. e. (i;,5;) =

(1,2), “(3‘21 ,j21) = (576)*
Lets assume using a total of w invariants for which u =
,6, the

matrices are obvious, ¢ is a w X6 sized matrix which is

1,2---,w and in our discussed case k=1,2,---

the moment invariant matrix (it is translation-rotation
invariant ), G is a w x 21 sized matrix, and H is a 21 x

6 sized matrix with elements that depend only on I{\)

and [ {X) which represent the effect of illumination.
For texture recognition, G is represented using an or-
thonormal bases obtained by a singular value decomposi-
tion method as follows

G=UXV. (11)
where U is a w X 21 sized matrix, U =[u, ,u,, ", 1, |
having columns that are orthonormal eigenvectors of
GG", Y is a 21 x21 diagonal matrix of singular values
A As, e,

umns that are orthonormal eigenvectors of G'G. For

A, ,and Vis a 21 x 21 matrix having col-

recognition purpose, the following distance function

can be used:

= 2 e - [uledu + (ue)u,

toee (uzT)(Pa)um] fl % (12)
where @, ,¢,, ", s are the column vectors of ¢. The
above distance funection characterizes how well the col-
umn vectors of ¢ can be approximated as a linear
combination of the columns of U. Thus, the smallest
value of D for matrices g and G will correspond to
textures related by some combination of rotation and
illumination changes. In our work, the matrix g is
used to store the feature of the original database under
white illumination. The matrix G is used for the tex-
ture under recognition (investigation), i.e. , the tex-
ture that had undergone ullumination and geometry
changes. To clarify the generation of the matrix G we
will give a brief deseription; first, generate the six
color correlation funetions using (2), compute Zerni-
ke moments for each of the correlation functions using
(6), and generate the elements of the G matrix using
the definition given in (9) and by following the rules
of generating a complete set of invariants given in

[12] and | 16].
3 EXPERIMENTAL RESULTS

In this section we intend to test the color covari-
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ance model and the developed color correlation model
in a texture recognition task. The image database is
consisted of 20 textured images as shown in Fig. 2,
which contains some homogenous and inhomogeneous
textures. For each image class in the database, we
generated five image samples under white, red, green,
blue, and yellow illuminations using HANSA color fil-
ters and the images are photographed with a Sony CCD
camera. For each of the five images that have different
illuminations, we generated five other rotated images at
the rotation angles 30°,60°,90°,120° and 150° with
respect to the original non rotated image.

Thus for each class, we have a total of thirty ima-
ges photographed at different illuminations and rota-
tions. The whole image database is consisted of 600
images, a total of 20 classes with 30 images per class.
For each image in the database, color covariance and
color correlation functions are estimated with averages
over a finite image region of size 60 x 60 pixels and for
a finite image lag C,;(x,y) and/or R, (x,y) is esti-
| v 1 <16. It had been

suggested to normalize color covariance functions a-

mated for | x | <16 and

gainst intensity changes by dividing by C,(0,0). We
will include this normalization scheme in our tests,
R_(0,0) will be used for normalizing correlation func-
tions. The test is divided into two stages, the training
phase for feature extraction of the original image class
and the testing phase that includes feature extraction of
the image under investigation that has illumination and
geometry changes with respect to the original image

class.

Fig.2 The original image database used in our experiments
H2 ZmPrRESREGRE

In the training phase and after computing color co-
variances and/or color correlations, For comparison
purpose, Zernike moment invariant matrices are com-
puted for each image up to the 6,,8,,10, ,and 12,
orders. The training process is performed to each of the
20 color textured images photographed under white illu-
mination and nen rotated image, and all the 20 Zemike
moment invariant matrices are stored to be used off-
line. In the testing phase, the unknown textures are
extracted from the rest of the 580 images under differ-
ent illuminations and rotations. The distance function
defined in (23) is used as a similarity measure. The
recognition performance is measured as the number of
correct matches over the total number of images. See
Fig. 3 for comparison purpose.

The circular correlation functions proposed in this
work give the highest recognition performance 97% .
On the other hand, the recognition perfomance value of
using the covariance functions proposed by Kondepudy

7

and Healey is 85% and circular covanance func-
tions gives 87% . As we increase the order of Zernike
moments, the recognition performance increases for all

models.

4 CONCLUSIONS

The spatial correlation functions introduced in this
paper is very useful in representing and modeling color
texture. Compared to a previous color covariance func-

tions the recognition performance is higher. We also
100
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Fig.3  Performance comparison of using Zernike moment
correlation matrices and Zernike moment covariance matrices
for the Illumination-rotation invariant recognition of color
texture
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derived a complete set of Zernike moment invariant
correlation and covariance matrices to make correlation
functions invariant to rotation changes of textures. The
recognition performance is increased as the moment or-
der is increased. The work also investigates four tex-
ture modeling functions, ordinary covariance, circular
covariance, ordinary correlation, and circular correla-
tion. Using Zernike moments the dimensionality of cor-
relation feature is reduced and it may be useful to use
other kinds of moments for the recognition of texture

since the derived invariants posses a general form.
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