中巴地球资源一号卫星红外多光谱扫描仪 交叉定标方法研究*

杨忠东1) 谷松岩1,2) 邱 红1,2) 黄 签1) 范天锡1)

(¹⁾ 国家卫星气象中心,北京,100081;
 ²⁾ 北京大学物理学院,北京,100871)

摘要 建立 CBERS-1 上搭载的红外多光谱扫描仪(IRMSS)与 FY-1C 通道 4 及 Landsat-7 上 ETM + 波段 6 多星星载 热红外遥感仪器交叉定标的算法模型,利用美国 Landsat-7 上搭载的 ETM + 红外通道 6 和 FY-1C 通道 4 分别对 IRMSS 热红外通道进行交叉定标,得到二组定标结果.相同地标点对比分析结果表明,二个定标结果得到的目标点 亮度温度相对偏差为 1.2K;IRMSS 交叉定标结果与 Landsat-7 ETM + 热红外通道在轨定标结果独立样本对比分析 结果,均方根偏差为 1.6K.

关键词 红外通道,光谱匹配,数据匹配,交叉定标.

RESEARCH ON THE ALGORITHM OF CROSS CALIBRATION ABOUT IRMSS ABORD ON CBERS-1 *

YANG Zhong-Dong¹ DU Song-Yan^{1,2} QIU Hong^{1,2} HUANG Qian¹ FAN Tian-Xi¹

(¹⁾National Satellite Meteorology Center, Beijing 100081, China;

²⁾ Physics Institute of Peking University, Beijing 100871, China)

Abstract The algorithm of cross calibration between IRMSS aboard on CBERS-1 and FY-1C or Landsat-7 ETM + band 6 has been built. Two sets of cross calibration results between Landsat-7 ETM + band 6 and IRMSS band 9, FY-1C band 4 and IRMSS band 9 were obtained. The bias of the same point controlled relative-err analysis is 1.2K, and the average root-err between IRMSS band 6 and ETM + band 9 is 1.6K.

Key words IR band, spectrum matching, data matching, cross calibration.

引言

辐射定标是热红外通道遥感信息定量应用的基础性问题.当热红外通道遥感仪器不具备在轨定标能力或在轨定标失败时,一般可以借助外定标和交叉定标等多种替代定标方式来弥补.利用仪器性能稳定、定标精度比较高的在轨卫星的定标结果进行中巴地球资源一号卫星红外多光谱扫描仪(IRMSS)的交叉定标,可以在轨实时地得到 IRMSS 热红外通道的定标系数,有效弥补目前 IRMSS 热红外通道在轨定标精度的不足,提高 IRMSS 定量应用的能力.

一般在遥感数据定量处理中,定标主要指将星 上观测到的遥感计数值转换成物理量绝对值的过 程. 对红外遥感资料而言,就是将计数值转换成辐射 率或亮度温度. 不同卫星上的红外遥感仪器,其波段 的光谱响应函数和空间响应函数都不尽相同,因此 在进行相互之间相对的辐射定标时,需要进行时空 匹配和光谱匹配,获得相对统一的辐射量值,进而实 现中巴地球资源一号卫星红外多光谱扫描仪 (IRMSS)热红外通道的交叉定标,开展定量应用.

1 原理

红外波段的辐射定标,由辐射传输模拟计算和 匹配数据统计分析二步来完成^[1].通过相对辐射定 标,可以使不同卫星上红外扫描辐射计得到遥感数 据,以红外辐射率为基础,建立相互之间的关系,得

^{*} 国防科工委中巴地球资源一号卫星一期评价项目和国家重点基本 研究(批准号 G1998010909)项目资助

稿件收到日期 2002 - 06 - 14,修改稿收到日期 2003 - 03 - 24

^{*} The project supported by the phase one of CBERS-1 assessment and the Foundation of State Key Basic Research of China (No. G1998040909) Received 2002 - 06 - 14, revised 2003 - 03 - 24

到中巴地球资源一号卫星红外扫描仪(IRMSS)热红 外通道的交叉定标结果,实现遥感数据的定量应用.

1.1 辐射匹配的模拟分析

星载红外扫描辐射计接收到的主要是地气系统 的热辐射.辐射传输的模拟分析就是要利用辐射传 输模式,依据不同卫星相关波段间传感器各自的光 谱响应函数,模拟分析二者在相同的大气状况下,所 获得的红外热辐射的辐射率.建立起二颗星相关通 道间,辐射能量之间的换算关系.

一般来说,地气系统热辐射的光谱辐射率为

$$R(v,\theta) = B(v,T_0)\tau(v,P_0,\theta) + \int_{P_0}^{0} B[v,T(P)] \frac{d\tau(v,P,\theta)}{dP} dP, (1)$$

式(1)中v是波数,T是温度,P是气压, θ 是观测点 的卫星天顶角,B是 Plank 函数, τ 是大气透过率,下标0表示地面.

星载红外扫描辐射仪的波段辐射率为

$$R(v^*,\theta) = \int_{v_1}^{v_2} R(v,\theta) f(v) \,\mathrm{d}v / \int_{v_1}^{v_2} f(v) \,\mathrm{d}v, \quad (2)$$

式(2)中 v_2 和 v_1 是波段光谱范围, v^* 为波段的中心 波数,f(v)为星载热红外波段的光谱响应函数.

对于仪器光谱响应函数相近的 2 个红外波段, 依据式(1)和式(2),可以对一组大气廊线按不同的 卫星天顶角进行模拟计算,得到二颗星相应的波段 辐射率 $R(v_2^*, \theta^*)$ 和 $R(v_1^*, \theta^*)$ 值,进而获得某一天 顶角(θ^*)时二者之间的统计关系:

 $R(v_{2}^{*},\theta^{*}) = a_{0} + a_{1}R(v_{1}^{*},\theta^{*}), \quad (3)$ $\exists (3) + v_{1}^{*}, v_{2}^{*} \exists m \neq n = n = n = 0$

这就是不同的星载热红外遥感仪器在相同大气 状况下观测同一地面目标物时,所得到的辐射量之 间的统计关系.

1.2 匹配数据的统计分析

交叉定标时的匹配数据是指两颗卫星在相同时 间、以相同或相近的观测方式观测同一地点时所得 到的二颗星红外波段相互对应的计数值. 匹配数据 统计分析的目的是要建立二颗星红外扫描辐射仪计 数值之间的关系,以便将二颗星中任一颗星的记数 值转换为另一颗星的记数值. 观测方式不同时,不同 卫星间匹配数据空间分布的几何格局不同.

设二颗星相互匹配的红外波段的计数值为 $I_{\theta}(v_1^*), I_{\theta}(v_2^*),$ 可以得到关系

$$I_{\theta}(v_{1}^{*}) = d0 + d1 * I_{\theta}(v_{2}^{*}).$$
(4)

如果第一颗星红外波段的定标结果是已知的, 那么有定标关系

$$R_{\theta}(v_{1}^{*}) = c_{0} + c_{1}I_{\theta}(v_{1}^{*}), \qquad (5)$$

可以得到第一颗星的辐射率. 在此基础上,借助二颗 星记数值间的统计关系和二颗星辐射值之间的关 系,可以得到等效的第二颗卫星红外波段的辐射率. 这样就可得到第二颗星的记数值 $I_{\theta}(v_2^*)$ 和辐射率 $R_{\theta}(v_2^*)$ 的匹配数据. 再利用统计回归的方法可得到 第二颗星的交叉定标结果. 获得下式

 $R_{\theta}(v_{2}^{*}) = c_{0}^{*} + c_{1}^{*}I_{\theta}(v_{2}^{*}),$ (6) 式(6)中 c_{1}^{*} 和 c_{1}^{*} 就是第二颗星的交叉定标系数的 截距和斜率.

上述交叉定标方法的精度,对于红外波段而言, Beriot 等人曾作过试验,用法国 Lannion 站接收的资料,进行了 NOAA 卫星和 METEOSAT 卫星之间红外 窗区和水汽波段的交叉定标.结果表明,红外窗区波 段当亮温在 265~315K 范围内时,交叉定标精度在 0.5K 左右^[2].

2 IRMSS 红外通道的交叉定标

中巴地球资源一号卫星 IRMSS 热红外通道的 交叉定标使用零级数据为基础数据源.以 Landsat-7 的 ETM + 波段 6 和我国风云气象卫星(FY-1C)波段 4 为定标参考波段. 三颗星观测相同目标时,观测时 间不完全一样.数据匹配时,利用静止气象卫星 GMS-5 每小时一次的高频次观测资料,作为时间订 正的参考信息.各仪器红外波段的光谱特征参见图 1,IRMSS 的仪器性能参数见表1 所列.

从图 1 中可以看到, GMS 和 FY-1C2 个红外窄. 波段仪器的光谱响应函数比较一致. 而 2 个宽波段 Landsat-7 的 ETM + 波段 6 和 CBERS-1 的 IRMSS 波

图 1 GMS、FY-1C、Landsat 7 和 CBERS-1 红外波段 光谱响应函数

Fig. 1 Spectrum function of IR bands of GMS-5, LANDSAT-7, FY-1C, and CBERS-1

段9,光谱响应函数形状差异比较大.交叉定标时利 用 MOTRAN 辐射传输模式,在相同大气状况下正演 模拟计算光谱响应函数不同的各红外遥感仪器的辐 射率,建立各仪器间红外波段光谱辐射率间光谱匹 配的订正关系.当相互交叉定标的红外通道光谱响 应函数差异比较大时,光谱的匹配及订正会给交叉 定标结果带来误差,因此交叉定标时,应尽量选取光 谱响应函数接近、观测方式一致的通道进行.

表 1 红外多光谱扫描辐射仪(IRMSS)仪器性能参数 Table 1 The Characters of IRMSS

传感器名称	红外多光谱扫描辐射仪(IRMSS)
传感器类型	垂直轨道双向扫描
可见/近红外波段	$B6; 0.50 \sim 0.90 \mu m$
短波红外波段	B7 ;1.55 ~1.75μm,B8 ;2.08 ~2.35μm
热红外波段	波段9:10.4~12.5μm
辐射量化	8 BITS
扫描带宽	119.5Km
扫描线每波段像元数	波段6、7、8:1536 像元;波段9:768 像元
空间分辨率(星下点)	78m(B6,B7,B8),156m(B9)
侧视能力	无
视场角	8.80°

2.1 IRMSS 与 FY1C 热红外波段间的交叉定标

CBERS-1和FY-1C的热红外波段光谱特性不完全一样,二者之间的交叉定标主要技术难点在于 波段之间的光谱匹配和遥感数据的时空匹配.通过 辐射传输的模拟计算可以建立二颗星相关红外波段 辐射率之间的匹配关系,有效克服二颗星光谱差异 引起的不同,实现光谱匹配.合理选取匹配数据可以 有效解决空间匹配问题.选取匹配数据时,尽量保证 资料获取时间和扫描角接近.Landsat-7 ETM + 以推 帚方式获取数据,因此在近星下点条件下选取FY-1C数据.以分布均匀的地面沙漠和云区二类目标为 参考点提取分析区数据.分析数据为 2000 年 6 月

图 2 CBERS-1 IRMSS 通道 9 敦煌分析区图像 Fig. 2 The image of Dunhuang in CBERS-1 band 9

图 3 敦煌附近 FY-1C 局地图像 Fig. 3 The local composite image around Dunhuang area in FY-1C

18 日过境的 CBERS-1 和 FY-1C 遥感资料.

建立交叉定标匹配数据集时,对 CBERS-1 数据 进行了空间匹配处理和图像灰度归一化处理,得到 如下用于交叉定标分析的图像(图 2). 图中彩色虚 框分别标出了交叉定标高、低温参考点的位置. 其中 虚框 1 为高温参考目标沙漠分析区,虚框 2 为低温 参考目标均匀云区. 图 3 为与 CBERS-1 分析区相匹 配的 FY-1C 三通道合成图像.

根据匹配数据的回归分析得到 Landsat-7 ETM + 波段9和 FY-1C 波段6 记数值之间的关系为

DN_{FY-IC} = -4.27273 * DN_{ZY-1} + 894.636, (7) 敦煌分析区附近 FY-1C 的定标关系为

P_{FYIC} = -0.1715 * DN_{FYIC} + 172.746, (8) 其中 DN 遥感数据记数值, R 为遥感辐射率. 对 FY-1C 而言,定标关系中的斜率和截距对同一定标周期 而言不变,同一轨道的不同定标周期间,有缓慢变 化. 与云区对应的定标系数中的斜率和截距为 -0.17137和172.65.

CBERS-1 卫星过境时间与 FY-1C 过境时间相 隔约2 个小时,二颗星都是上午轨道. 用每小时一次 的静止卫星 GMS-5 资料来订正 FY-1C 资料. 首先确 定 GMS-5 当天陆表亮温随时间的变化特征,确定二 颗星获取资料时间间隔内,GMS-5 地表亮温的变化 量,然后将这一变化量换算为 FY-1C 的亮温变化 量,最后用这一变化量来订正 FY-1C 的辐射亮温.

图 4 是 2000 年 6 月 18 日 GMS-5 亮温日变化曲线. 从 02:30 (UTC) FY-1C 过境到 04:00 (UTC) CBERS-1 过境,期间敦煌目标分析区 GMS-5 地面亮 温变化量约为 6.0K. 根据正演模拟分析的结果,

290K 附近 GMS-5 红外波段(A)6.0K 的变化量相当 于 FY-1C 的亮温变化量为6.44K.转换为辐射量,相 当于 FY-1C 辐射率变化了约 10.0(W/cm/m * m/ rad).

对 FY-1C 辐射量进行订正后,利用辐射传输模 拟计算得到的 CBERS-1 和 FY-1C 二颗星热红外波 段辐射率之间的匹配数据,对匹配数据做进一步的 统计分析,得到其间的统计关系为

 $R_{CBERS-1} = 1.009125 * R_{FY-1C} + 3.446024, (9)$ 式(9)中 $R_{CBERS-1}$ 为CBERS - 1 热红外波段的辐射 量; R_{FY-1C} 为FY-1C 热红外波段 4 的辐射量. 建立统 计关系时,相关系数达到 97.0%.

利用上面得到的 CBERS-1 与 FY-1C 记数值之间的关系、FY-1C 的定标系数以及 CBERS-1 与 FY-1C 间的辐射率匹配订正关系,得到 CBERS-1 记数 值与辐射率间的匹配数据.

经统计分析得到资源卫星红外波段记数值与辐 射量间的交叉定标结果为

*R*_{CBERS-1} = 0.761406 * *DN*_{BERS-1} + 30.7032, (10) 式(10) 中 *DN*_{BERS-1} 为 CBERS-1 星上搭载的 IRMSS 热红外波段 9 的记数值, *R*_{CBERS-1} 为 IRMSS 波段 9 的 辐射率. 上述统计关系的相关系数为 96.0%. 辐射 率的单位为 W/(M * * 2/cm).

2.2 IRMSS 波段9 与 ETM 波段6 间的辐射定标

IRMSS 波段9 与 Landsat - 7 ETM + 波段6 光 谱响应函数十分接近,过境时间仅相距 30min. 二 颗星的观测方式一致,从这二点上看,Landsat-7 ETM + 波段6 最适合 IRMSS 波段9 相对的辐射定 标.

辐射定标时,使用前面和 FY-1C 相匹配的 CBERS-1 的资料,时间为 2000 年 6 月 18 日.相应 的 Landsat-7 ETM + 资料为 2000 年 6 月 3 日.两颗 星的资料在时间上相差了约 15 天.用 GMS-5 在这 15 天中的亮温变化情况来订正时间差异带来的匹 配数据间辐射量的差异.下表是 GMS-5 红外通道 A 从 UTC 时间 00 时到 08 时期间的亮温变化情况.

表 2 GMS 亮温变化对比分析表(单位:K)

Table 2The Controlled Analysis of GMS-5 BrightnessTemperature between 3rd of June, 2000 and the 18th ofJune, 2000

时间(UTC)	02	03	04	05	06	07	08
2000.6.03	272.1	274.6	278.7	281.4	274.2	275.3	281.9
2000.6.18	284.4	288.9	291.2	284.1	262.2	275.0	259.8

表 3 ETM 波段 6 定标系数

 Table 3
 Calibration Coefficients of ETM band 6

	A	В
低增益通道	0.066823533002068	0.0
高增益通道	0.037058821846457	3.2

CBERS-1 和 Landsat-7 卫星在不同天、不同时刻 过境地标分析区,2 天间 GMS-5 红外 A 的亮温变化 量约为 12K. 在 28.0K 附近 GMS-5 红外 A 波段 12K 的亮温变化量相当于是 Landsat-7 ETM + 波段 6 约 11.0K 的变化量.分别将这一变化量订正上去后可 以建立 IRMSS 波段 9 与 Landsat-7 ETM + 波段 6(L) 间的辐射定标关系.其中 IRMSS 波段 9 与 Landsat-7 ETM + 波段 6 记数值间的关系为

$$DN_{(\text{ETM + B6L})} = 0.7069 * DN_{(\text{CBERS-1})} + 74.035$$
,

(11)

建立 回 归 关 系 时, 残 差 为 1.2279E-013.其 中 DN_(ETM + B6L)为 Landsat-7 ETM + 波段 6 低增益通道遥 感图像记数值.

Landsat-7 ETM + 波段 6 的定标关系为

$$R = A * DN + B , \qquad (12)$$

A 为增益, B 为偏移量. 对 Landsat-7 ETM + 波段 6 的 高低增益通道而言, A 和 B 值分别如表 3 所列.

IRMSS 波段 9 与 Landsat-7 ETM + 波段 6 的光 诸响应函数很接近,二者间光谱订正关系为

R_(IRMSS) = 0.9969552 * R(ETM) + 1.869979. (13) 上述回归关系的相关系数为 0.999,残差为 0.2297. 其中 R_(IRMSS) 为 IRMSS 波段 9 的辐射量; R_(ETM+) 为 Landsat-7 ETE + 波段 6 的辐射量.

表4 两种交叉定标结果的对比分析

 Table 4
 Control Analysis between Two Sets of Calibration

 Coefficient
 Coefficient

	均匀沙漠下垫面
IRMSS 图像中的记数值	140
以 FY-IC 为参照得到的交叉定标结果 Tbl (亮温 K)	312.6
以 ETM 为参照得到的交叉定标结果 Tb2 (亮温 K)	313.8
相对偏差 Tb1-Tb2(K)	-1.2

根据上面分析结果,我们可以从 IRMSS 的记数 值出发,借助 IRMSS 波段9 与 Landsat-7 ETM + 波段 6 记数值之间的统计关系得到与之相匹配的 Landsat-7 ETM + 波段6 的记数值;根据 Landsat-7 ETM + 波段6 的定标关系可以得到 Landsat-7 ETM + 波段6 的幅射值,这样就得到了 IRMSS 波段9 相互匹配的

IRMSS 记数值	81	83	89	90	107	113	123
根据 IRMSS 与 ETM 交叉定标结果得到 的亮温 Tb1(亮温 K)	290.4	291.8	293.4	293.77	299.812	301.88	305.25
ETM 记数值	121	124	129	130	146	149	158
ETM 定标结果得到的亮温 Tb2 (亮温 K)	289.7	291.29	293.9	294.43	302.42	303.86	308.10
亮温偏差(Tbl-Tb2)	0.699	0.51	-0.5	-0.66	-2.6	- 1.98	-2.85

表 5 ETM 定标结果与 IRMSS 交叉定标结果的对比分析 Table 5 Controlled analysis between ETM band 6 and IRMSS band 9

记数值和辐射值.进一步统计分析得到 IRMSS 波段 9 的辐射定标关系为

*R*_(IRMSS) = 0.0456897 * *N*_(IRMSS) + 4.40345, (14) 建立回归关系时,残差为7.35E-017.其中辐射量的 单位为: W/M * M/um.

分析过程中,在进行数据匹配时,使用了 GMS-5 亮温的变化特征,来对观测时间不完全一致的二颗 卫星的资料进行了订正.这种处理方法,严格的讲, 只能部分订正因时间差异带来的辐射误差.因为 GMS-5 自身的观测也存在一定误差.数据匹配误差 是交叉定标误差的另一个主要来源.

2.3 交叉定标结果的验证和对比分析

为了验证所得到的 IRMSS 交叉定标结果的一 致性和正确性,我们首先在 IRMSS 波段 9 数据中选 择均匀下垫面象素分别用上述二组不同的定标结果 计算 IRMSS 波段 9 的遥感探测亮温,结果见表 4,亮 温分别为 312.60k 和 313.80k,仅相差 1.2k.这说明 2 个相对定标结果比较一致.

其次,我们在前述的 Landsat-7 ETM + 波段 6 和 IRMSS 波段 9 遥感数据中分别随机抽取 7 个同名象 素点用各自的定标系数计算亮温,其中 Landsat-7 ETM + 波段 6 用自身的红外波段定标系数, IRMSS 波段 9 用由 Landsat-7 ETM + 波段 6 交叉定标得到 的定标系数,结果见表 5. 相对来说 Landsat-7 ETM + 的定标精度是比较高的,所以这一做法可以看成是 以 Landsat-7 ETM + 的计算结果为实际值来验证 IRMSS 交叉定标结果. 从表 5 中的数值可以发现二 者之间最大相差 2.85k,最小相差 0.5K.

上述分析结果表明这里所采用的热红外交叉定 标方法的算法模型和计算过程正确合理,在目前未 提供 IRMSS 定标系数的情况下,所得到的交叉定标 系数具有较高的参考价值.如果能进一步收集到更 多更好的时空一致性的遥感数据,开展以多种类型 下垫面为参考目标的交叉定标分析,会使交叉定标 结果更具统计意义也更具代表性.结果也会在 CBERS-1 热红外定量遥感应用中具有更加可靠的 应用价值.

3 结论

本文以 FY-1C 和 Landsat-7 ETM + 为定标参考, 建立了多星热红外波段间交叉定标算法模型;引入 了静止卫星(GMS-5)的遥感结果对匹配数据进行辐 射证正,得到了较好的订正效果;尝试进行了以多颗 星为定标参考体时,交叉定标结果间的对比分析方 法试验.以 FY-1C 和 Landsat-7 ETM + 为定标参考 时,IRMSS 2 个交叉定标结果间对均匀沙漠下垫面 而言有 1.2K 的偏差.以 Landsat-7 ETM + 为参考, IRMSS 波段 9 的交叉定标结果直接与 Landsat-7 ETM + 波段 6 进行同名地表点的对比分析,结果表 明二颗星间相互校验时,均方根误差为 1.6K.本文 提出的算法模型及分析试验结果为 IRMSS 热红外 波段的在轨替代定标提供了示范.

REFERENCES

- [1] GU Song-Yan, QIU Hong, FAN Tian-Xi. Inter-Calibration Between FY-2A IR Channel and GMS-5 IRA Channel. [J]. Journal of Applied Meteorological Science(谷松岩,邱红,范 天锡. FY-2A 与 GMS-5 红外通道遥感数据的辐射定标. 应用气象学报), 2001, 12(1): 79-84
- [2] Beriot N N, Scott A, Chedin A, et al. Calibration of geostationary-satellite infrared radiometers using the TIROS-N vertical sounder application to METEOSAT-1. J. Appl. Meteor., 1982, 21: 84-89
- [3] Cotton P D, Carter D J T. Cross calibration of TOPEX, ERS-1 and Geosat wave heights. J. Geophys. Res., 1994, 99 (c12): 25025-25033
- [4] Tokola T, Lofman S, Erkkila A. Relative calibration of multitemporal landsat data for forest cover change detection. *Remote Sens Environ.*, 1999, 68(1): 1-11