机载成像光谱仪图像边缘辐射校正的研究*

范文义

(东北林业大学森林资源与环境学院,黑龙江省,哈尔滨,150040)

摘要 通过对国产高光谱仪 OMIS-1系统的数据进行分析,发现由于地物的二向反射分布等因素的影响图像边缘 部分与中心部分的相同地物光谱曲线发生了变化,表现在彩色合成图像上相同地物呈现不同色调.经过对数据深 入分析研究后,提出了一种空间参数拟合的直方图匹配方法,并用 VC++语言编程实现,取得了很好的效果. 关键词 二向反射分布,直方图匹配,边缘辐射校正,成像光谱仪,图像处理、

STUDIES ON CALIBRATION OF EDGE RADIATION FOR IMAGES OF AIRBORNE HYPERSPECTRAL IMAGING SPECTROMETER *

FAN Wen-Yi

(Northeastern Forestry University, Harbin, Heilong jiang 150040, China)

Abstract By analyzing the data of state-produced hyperspectral resolution imagining spectrometer OMIS-1 system, it was found that the same field spectral curves of the edge and center parts of the images were changed showed because of the effects of bi-directional reflectance distribution and the bigger scanner's (Field-of-View FOV). The same field features showed different color on color synthesis images. By analyzing a lot of data, a histogram match method was developed for fitting spatial parameter. All of the procedures were carried out in the VC + + program. The research result shows that the brightness of the images calibrated by this method have been enhanced greatly.

Key words distribution of bi-directional reflectance, Histogram match, calibration of edge radiation, imaging spectrometer, image processing.

引言

机载扫描仪总视场角较大^[1],研究中采用中科 院上海技术物理所研制的 OMIS-I 实用模块化成像 光谱仪系统,该系统 128 波段、扫描宽度 512 像元、 瞬时视场 3mrad、总视场 90°.系统在扫描时机下点 至扫描线边缘的像元所对应的地面采样面积、大气 衰减和路径辐射均有不同,特别是地物的二向反射 分布(BRDF)的值发生了变化,BRDF 呈主轴为光线 入射方向的椭球面分布,则观测方向与主反射方向 (与光线入射方向一致的反射方向称为主反射方 向)的夹角越大,探测器获得的表面 BRDF 值越 小^[3,4].在扫描成像时定义观测方向与主反射方向 的最小夹角时为沿扫描方向有向反射率的"热点", 任何角度的偏移都将导致 BRDF 值的减小^[2].如果 "热点"在探测器视场之外,则图像显示出沿扫描方 向由低到高的高度渐变趋势;如果"热点"在视场之 内,则图像显示出沿扫描方向亮度从"热点"向两边 递减的趋势。因此,对获取的图像,若不进行校正, 会出现同一种地物在边缘图像中的光谱曲线与图像 中心点不同的情形,表现在彩色合成图像上相同地 物呈现不同色调。本研究根据图像的统计特征,提 出了一种基于空间参数拟合的直方图匹配的图像边 缘校正算法,取得了很好的效果.

1 基本原理

对 OMIS-I 获取的图像中心点和图像边缘同类 地物的亮度值的统计分析表明,离中心点不同距离

Received 2002-03-13, revised 2002-06-05

^{*} 国家自然科学基金(批准号 30070604) 资助项目 稿件收到日期 2002-03-13, 修改稿收到日期 2002-06-05

^{*} The project supported by The National Natural Science Foundation of China (No. 30070604)

and edge columns

的同种地物的亮度值不同,图像亮度值呈现从中心 点向两侧递减的趋势.

假定在飞行时太阳高度角保持不变且地物分布 相对均匀,根据统计理论,无限长航线的图像亮度列 均值曲线应趋近于一条直线。当图像存在边缘辐射 畸变时,图像亮度列均值直线则变为一条反映图像 边缘辐射畸变特征的曲线,这是用统计方法进行图 像边缘辐射畸变校正的理论依据^[5]、尽管在现实中 不能满足航线无限长,但是如取足够长的航线图像 为统计单位,从图像边缘辐射畸变特征的曲线上仍 能反映出图像中心部位与边缘部位亮度对应的统计 规律^[6,7]、

本文通过统计每列的亮度均值发现,以扫描线 为横坐标、以每列的亮度均值为纵坐标的曲线呈中 间高两边低的稳定趋势,在太阳高度角不变的情况 下航线越长本文提出的方法就越具普遍性和实用 性,但是,若采用简单的方法,以中心列为基准,图像 的每一列加上一个修正系数的方法进行校正,则图 像的整体灰度增加,不符合图像的视觉原理和校正 的物理原理、因此,本研究根据中心列与各非中心列 的亮度概率的对应关系(如图1~图3所示),通过 直方图匹配的方法进行图像边缘辐射校正.

图 3 根据累积概率曲线的回归方法 Fig. 3 Regression methods according to accumulation probability curves

2 数据分析及校正算法

2.1 数据分析

为了满足太阳高度角相对不变的条件,航线取 得不宜过长,同时为了保证不同列亮度概率分布曲 线的稳定性,必须保证足够的像元数。在实际操作 中将 N 列(512)图像分为 n 组,每组图像为 N/n 列, 统计子图像的直方图对亮度值的概率分布曲线进行 估计.

图像长度平均为 5000 扫描行,将 512 列图像分 为 16~32 组,分组数大于 32 组时每组总像元数将会 少于 80000 个,这会影响不同列亮度概率分布曲线的 稳定性;而分组数小于 16 时,会影响校正效果。因 此,在研究中将 512 列图像分为 32 组,共划分为 128 个亮度级.6条航线的数据共划分为 24 块.以其中的 一块为例,对其数据分析进行说明.为了不失一般性, 我们选择 15,20,35 三个波段对数据进行分析,图 4~ 图 6 绘出了中心列和几组边缘列的直方图、累计直方 图和边缘亮度与中心亮度的对应关系.图 4 中的纵坐 标 PS 表示频数.图 5 中的纵坐标 ACPS 表示累计频 数.图 6 中横坐标 CB 表示中心列的亮度等级,纵坐 标 EB 表示边缘列的亮度等级。

大量的数据分析表明:1)图像边缘亮度值与中 心亮度值存在明显的线性关系,可以用一个平移量

70000

60000 50000

40000

30000

边缘列

边缘列;

图 8 三个波段回归系数 b 与扫描点位置的关系 (粗线为一个波段的拟合曲线)

的平移因子和拉伸因子 a 和 b.

以中心点坐标为原点,不同列的坐标值分别为 -255.5,-254.5,…,-0.5,0.5,1.5,…,255.5.在 图像分组的情况下,用每组图像中心点的坐标值代 表这一列的坐标值,则坐标值与 *a* 和 *b* 存在着如图 7 与图 8 所示的对应关系.

在图 7 和图 8 中,横坐标 X 表示扫描方向不同 列的坐标值,纵坐标 A、B 分别表示不同边缘列对中 心列的平移因子和拉伸因子.

从图中可知,不同的边缘列对中心列的平移和 拉伸因子都不相同,其复杂关系可以用多项式来表 达,研究中采用二次多项式即 $y = a_0 + a_1 x + a_2 x^2$ 来 近似,其中 y 为某个回归系数(a 或 b),x 为某一列 图像在扫描方向的坐标值.

这样,先对每一列与中心列的平移因子和拉伸 因子进行拟合,然后再将平移因子和拉伸因子进一 步对扫描线方向进行空间拟合,分波段完成边缘辐 射校正.

2.3 校正结果

使用以上算法对研究区的 24 块图像用 VC + + 语言编程进行了校正,取得了比较满意的结果。图 9 为 35、20、15 彩色合成后的图像对比,从图像中可 以看出,边缘图像的色调获得了比较明显的改善.

当不同列图像的概率分布接近正态且图像亮度 值的动态范围基本处于正常范围时(如没有过多的 零亮度像元),采用平均值之差作为平移量的估计 值,标准亮度之比作为拉伸因子的估计值,可以获得 接近直方图匹配的校正结果。

3 实验结果及讨论

机载成像光谱仪总视场角较大(OMISI-I为90° 左右),所取得的图像存在中心部位与边缘部位相 同地物色调的不同,应进行边缘辐射校正.

对图像边缘辐射校正采用不同列加减改正数的

20000 10000 0 11 21 31 41 51 61 71 81 91 101 111 121 图 5 累积 百方图 Fig. 5 Accumulated histogram 140 一边给我! 120 100 载性《边缘秀》 総性 く 边 単 判 2 80 8 60 40 20 0 20 40 100 120 140 60 CR

图 6 边缘亮度与中心亮度的对应关系 Fig. 6 Corresponding relations between marginal and central brightness

a 和线性拉伸量 b 来表达,当边缘亮度值很低时,这种关系可以是一种分段线性关系。这种相关关系的相关系数一般都在0.94 以上.2)偏离中心的位置不同,平移因子和拉伸因子也不同,即每一例与中心列进行匹配时都有特定的参数.

图 5 中的纵坐标 ACPS 表示累计频数.

2.2 图像边缘校正算法

通过上述数据分析,边缘图像与中心图像的亮 度值存在明显的线性平移和拉伸关系,但是还必须 对这种关系在空间上作进一步的分析,才有可能用 于边缘校正。尽管对每一列的图像进行上述回归分 析后进行改正在计算上是可行的,但如果每一列用 不同的参数对中心列进行匹配,则可能导致图像改 正后在列与列之间亮度值出现突变,显然不符合图 像亮度边缘校正的初衷.因此本文研究中采用了对 回归系数在空间上进行拟合的方法,来估计每一列

Fig. 7 Relationship between regression coefficient a and scanned point locations of three bands(The thick solid line is a fitting curve of a band)

300

(a) 校正前图像

(b)校正后图像

图 9 波段 15(B)、20(G)、35(R)彩色合成图像边缘辐射校正前(a)后(b)对比 Fig. 9 Comparison of colorful synthesized images of band 15(B), band 20(G) and band 35(R)(a) before and (b) after the calibration of edge radiation

方法会增加图像整体灰度。统计表明,图像边缘列 与中心列亮度值的概率对应关系为分段的线性关 系,用直方图匹配的方法,不同的边缘列与中心列匹 配的平移因子和拉伸因子均不同,每一列对中心列 用不同的参数直接校正可能造成校正后图像不同列 亮度值的随机抖动或突变。将平移因子和拉伸因子 进一步对扫描线方向进行空间拟合后再校正会大大 提高校正的效果。

REFERENCES

 WANG Jian-Yu, XUE Yong-Qi. 64-Band airborne imagining spectrometer. J. Infrared Millim. Waves (王建宇,薛永 棋. 64 波段机载成象光谱仪. 红外与毫米波学报), 1992, 11(3): 181-188

- [2]GUO Xiao-Fang, Wang Run-Sheng. Radiometric correction of airbome imaging spectrometer data. J. Journal of image and graphics. (郭小方,王润生,机载成像光谱图象边缘 辐射畸变校正. 中国图象图形学报), 2000, 5A(1): 16-20
- [3] Robert O, Green, Michael L, et al. I maging spectrocopy and the airborne visible/infrared imaging spectrometer (AVIRIS) [J], REMOTE SENS. ENVIRON, 1998, 65: 277 - 248
- [4] Oel N S, Reynolds N E. Bidirectional reflectance and its relationship to vegetation characteristics. Int. J. Remote Sens, 1989, 10: 107 - 132
- [5] Baudin G. Krawczyk R. Calibration for medium resolution Imaging Spectrometer. SPIE, 1991, 1493: 16 - 19