高组分稀磁半导体 Cd_{1-x}Mn_xTe/CdTe 超晶格的 光调制反射谱研究^{*}

陈辰嘉 王学忠 梁晓甘 李海涛

(北京大学物理系,100871,北京)

凌震王迅

(复旦大学应用表面物理实验室,200433,上海)

V Bellani M Geddo A Stella

(INFM-Dipartimento di Fisica" A. Volta "dell' Universitiàdi Pavia, I-27100 Pavia, Italy)

S Tavazzi A Borghesi A Sassella

(INFM-Dipartimento di Scienza dei Materiali , Universit àdi Milano Bicocca , 20125 Milano , Italy)

摘要 报道用分子束外延(MB)技术生长的 x=0.4,0.8的高组分稀磁半导体 Cd_{1-x}Mn_xTe/Cd Te 超晶格的光调 制反射谱在室温和液氮下的实验结果. 观测到 11 H,22H,33H和 11L 等激子跃迁结构,计及子能级的量子限定效应 和晶格失配导致的应力效应,对子能级结构进行了计算,除 x=0.8 样品的 33 H 能量计算值与实验值有较大偏差 外,实验结果与理论符合得很好. 还与光致发光谱实验结果进行了比较. 关键词 光调制反射,激子跃迁,应力效应,超晶格.

STUDY OF PHOTOREFLECTANCE SPECTROSCOPY IN SEMICONDUCTOR Cd_{1-x}Mn_xTe/CdTe SUPERLATTICES WITH HIGH COMPOSITIONS^{*}

CHEN Chen-Jia WANG Xue-Zhong LIANG Xiao-Gan LI Hai-Tao (Department of Physics, Peking University, Beijing 100871, China)

N IN G Zhen WAN G Xun

(Surface Physics Laboratory, Fudan University, Shanghai 200433, China)

V Bellani M Geddo A Stella

(INFM-Dipartimento di Fisica" A. Volta "dell' Universiti à di Pavia, I-27100 Pavia, Italy)

S Tavazzi A Borghesi A Sassella

(INFM-Dipartimento di Scienza dei Materiali, Universit àdi Milano Bicocca, 20125 Milano, Italy)

Abstract Photoreflectance spectra of $Cd_{1-x}Mn_x$ Te/CdTe superlattices with high compositions x = 0.4, 0.8 were carried out at room temperature and liquid nitrogen temperature. The samples were grown by molecular beam epitaxy (MBE) technique. Exciton transitions of heavy and light-holes related to 11 H, 22 H, 33 H and 11L were observed. After taking into consideration the strain induced and quantum confinement effects, the theoretical calculations are in very good agreement with our photo-reflectance measurement results except 33 H of x = 0.8. Photoluminescence spectra were also performed at room temperature and low temperature in order to compare with our photoreflectance results.

 $Key \ words \ \ photoreflectance \ , \ exciton \ transitions \ , \ strain \ effects \ , \ superlattices.$

*国家自然科学基金(批准号 19874005)资助项目 稿件收到日期 2002-03-26,修改稿收到日期 2002-07-01 * The project supported by the National Natural Science Foundation of China (No. 19874005) Received 2002-03-26, revised 2002-07-01

8

引言

5期

在 - 族稀磁半导体(Diluted Magnetic Semiconductor DMS)中,磁性过渡族金属离子部分地代 替非磁性阳离子形成了一类新型半导体材料,由于 磁性离子与载流子间的自旋交换作用 (sp-d 交换作 用)以及磁性离子本身间的自旋交换作用 d-d 交换 作用,使DMS具有一系列独特的性质:如巨大的塞 曼分裂,巨法拉第旋转,自旋超晶格,极大的g因子, 巨磁阻,磁场调谐量子限定结构从 型变为 型 等^[1,2].由于最近 - 族化合物的分子束外延 (MBE) 生长工艺方面的进展,使生长高质量的 Cd1. xMnxTe/CdTe 超晶格和量子阱成为可能,在光 电器件和最近发展的自旋电子学器件 (spintronics) 方面具有广泛的应用前景^[3~5].由于 Cd_{1-x}Mn_xTe/ CdTe 超晶格样品中势垒与势阱之间晶格常数相差 较大,当组分为 x = 0.8 时,晶格失配达 1.8 %,存在 很大的应力效应,对电子和空穴(包括重、轻空穴)子 能级间的激子跃迁的影响必须加以考虑.目前国际 上关于 Cd_{1-x} Mn_x Te/Cd Te 超晶格光调制反射谱 (photoreflectance-PR)研究结果的报道还比较 少^[6,7],主要只涉及组分较小(x < 0.3)的样品.本文 着重报道高组分(x=0.4,0.8)Cd_{1-x}Mn_xTe/CdTe

图 1 Cd_{0.6}Mn_{0.4} Te/CdTe 超晶格样品 A 在 T = 300 K(a) 和 T = 80 K(b) 下的 PR 谱. 点为实验值,线为线型拟合 最佳值,箭头指处为激子跃迁结构

Fig. 1 PR spectra (dots) of $Cd_{0.6}Mn_{0.4}$ Te/Cd Te SLs samlpe A at T = 300 K (a) and T = 80 K (b) , the solid line is a line shape best fit , and arrows identify the exciton transitions 超晶格的光调制反射谱在室温和液氮下的实验研究 结果,并与理论计算结果进行比较,还与我们的光致 发光谱实验结果进行了比较.

1 实验

样品在复旦大学应用表面物理实验室完成,采 用分子束外延技术生长,衬底为(001) GaAs,缓冲层 材料为 Cd Te 厚度约为 0.5 μ m. 典型样品 A:x = 0.4,L_b(垒宽) = L_w(阱宽) = 14nm;样品 B:x = 0.8,L_b(垒宽) = L_w(阱宽) = 10nm;周期均为 20.

光调制反射谱实验分别采用 He-Ne, He-Cd 和 Nd 激光器为调制光源, 新波器频率约为 150 Hz. 以 卤钨灯为探测光源, 经 HRD-1 双光栅单色仪分光后 聚于样品上, 经样品反射后,反射光的直流部分 R 和交流部分 R 分别通过探测器连接的多用电位计 和锁相放大器给出,由计算机控制单色仪扫描和采 集数据,给出 R/R 与光子能量的关系曲线.

光致发光谱测量是在室温和低温(T = 8K, 13K)下进行的.微光致发光谱(microPL)在室温下 用 Jobin- Yvon LAB RAM 全自动系统完成.激发光 由 He Ne 激光器 632.8nm 谱线提供,本实验用激发 功率为 2.6mW.光致发光讯号由 1024 单元组成的 CCD 相机接收.低温光致发光谱样品置于 oxford 连 续流低温杜瓦中.

2 结果和讨论

图 1~3 分别给出样品 A (300 K和 80 K) 和样品 B (300 K和 90 K) 下典型的 PR 谱实验结果.图中

图 2 Cd_{0.2} Mn_{0.8} Te/CdTe 超晶格样品 B 在 T = 300 K 下的 PR 谱. 点为实验值,线为线型最佳拟合值,箭矢指 处为激子跃迁结构

Fig. 2 PR spectrum (dots) of $Cd_{0.2}Mn_{0.8}$ Te/Cd Te SLs sample B at T = 300 K, the solid line is a line shape best fit, and arrows identify the exciton transitions

8

圆点为实验值, PR 谱中的曲线为单振子线型^[8]最 小二乘法拟合值,由公式(1)给出.图中箭头是阱内 子能级间激子跃迁结构的拟合结果.

$$R()/R() = \sum_{j=1}^{m} Re[C_{j}e^{i_{j}}(E - E_{g,j} + i_{j})^{-m_{j}}].$$
(1)

式中 j 代表第 j 个能级跃迁, C_j 、j、 $E_{g,j}$ 和 j 分别 为第 j 个结构的振幅、位相、跃迁能量和线宽, m_j 代 表临界点类型,依赖于微扰类型. 对阱内激子跃迁用 一阶微分函数 (m = 2),对 GaAs 衬底和 CdTe 缓冲 层用三阶微分函数 (m = 2.5).图中 E_0 为 GaAs 衬 底和 CdTe 缓冲层对应的能隙.我们指认图中激子 跃迁(箭头所指能量位置)分别为:11H,11L,22H, 32 H和 33H.其中 11H 和 11L 分别代表从第一个 (基态)导带子能级到第一个(基态)重空穴和轻空穴 子能级间的激子跃迁.

图 1 (a) 和 (b) 分别为样品 A (x = 0.4) 在 300 K 和 80 K 下典型的 PR 谱. 室温下用 He-Ne 激光器的 632.8nm 谱线为调制光源,80 K 下用 He-Cd 激光器 的 325.0nm 谱线为调制光源.在 300 K 的 PR 谱 (a) 中,除 E_0 (GaAs) 和 E_0 (Cd Te) 外,有 4 个锐结构对 应于 激 子 跃 迁,相 应 能 量 分 别 为:11H (E = 1514 meV),11L (E = 1535 meV),22H (E = 1566 meV),和 33H (E = 1646 meV);80 K 的 PR 谱显 示类似的激子跃迁结构,与 300 K 的相比,结构更锐 且强,并向高能方向移动平均约 85 meV,激子跃迁 能量 分 别 为:11H (E = 1594 meV),11L (E = 1624 meV),22H (E = 1650 meV),和 33H (E =

图 3 Cd_{0.2}Mn_{0.8} Te/CdTe 超晶格样品 B 在 T = 90 K 下的 PR 谱. 点为实验值,线为线性拟合最佳值,箭矢指 处为激子跃迁结构

Fig. 3 PR spectrum (dot s) of $Cd_{0.2}Mn_{0.8}$ Te/CdTe SLs sample B at T = 90 K. The solid line is a line shape best fit, and arrows identify the exciton transitions 1733 meV).

图 2 为样品 B(x=0.8)在 300 K下的典型 PR 谱,其中显示 5 个锐结构的激子跃迁,分别对应能 量:11H(E=1541meV),11L(E=1575meV),22H (E=1617meV),32H(E=1704meV)和 33H(E= 1745meV).样品 B 在 90 K下的典型 PR 谱如图 3 所示,调制光源为 Nd 激光器 512.0nm 谱线.与室温 PR 谱类似显示 5 个锐结构的激子跃迁,分别对应能 量:11H(E=1648meV),11L(E=1680meV),22H (E=1716meV),32H(E=1812meV),33H(E= 1861meV),平均向高能方向移动约 105meV,其中 33 H 的移动达116meV.反射率的变化 R只是 R 的很小一部分,我们实验的典型值是 10⁻⁴(详见图 3.4).注意到激子跃迁 32H(n))由于应力和阱 垒间耦合效应而不再禁戒.

因为 Cd_{1-x}Mn_xTe/CdTe 超晶格中阱垒间存在 很大的应力效应^[9],从而使半导体的能带发生变 化.应力包括两个部分:即由平行于样品生长方向晶 格崎变所引起的剪应力(b_v)和由垂直于样品生长方 向晶格崎变所引起的流体静压力(a_c, a_v),前者使原 来简并的轻重空穴能级分裂,后者使半导体导带底 和价带顶的位置发生移动. Cd_{1-x}Mn_xTe/CdTe 超晶 格中应力沿(001)方向引起导带、重空穴和轻空穴价 带极值能量的改变可分别表为^[9]

$$E_c = -C \quad a_c , \qquad (2)$$

 $E_{hh} = -C \quad a_v + C \quad b_v, \qquad (3)$

 $E_{lh} = -C \quad a_v - C \quad b_v .$ (4)

式中 C = 2(1 - C₁₂/C), C = $(1 + 2C_{12})/C$, C₁₁

图 4 Cd_{0.6}Mn_{0.4}Te/CdTe 超晶格样品 A 在室温 下的 PL 谱.箭矢指出在能量为 1.524,1.564 和 1.621eV 处观察到激子跃迁

Fig. 4 Room-temperature PL spectrum of $Cd_{0.6}Mn_{0.4}$ Te/CdTe SLs(sample A), the excitonic transitions are observed at 1.524, 1.564 and 1.621eV as a rows identify

8

5期

和 C_{12} 是弹性常数. CdTe 的形变势参数为 $a_c = -3.96 \text{ eV}$, $a_v = 0.55 \text{ eV}$, $b_v = 1.1 \text{ eV}$, 为平行于 界面平面的应力张量.

计及应力和量子限定效应,用包络函数近似计 算^[10],给出轻重空穴激子跃迁能量为

$$e_{e_x}^{lh, hh} = E_g + E_c + E_v^{lh, hh} - E_b.$$
(5)

式中 E_c和 E_v分别为导带和价带子带能量, E_g是阱 带隙, E_b是激子结合能. 理论计算结果详见表 1,并 与 PR 实验测量结果相比较. 得到理论与实验结果 相符合的最佳值:导带偏移 Q_c=0.9,重空穴和轻空 穴的激子结合能分别为 16meV 和 10meV. 正如表 1 所示,除 x = 0.8 样品激子间高能级 33H 的跃迁能 量理论值与实验值有较大偏差外, PR 谱实验结果与 理论计算符合得非常好.

高组分 x = 0.8 的样品中,由于阱垒间的相互 作用更强,波函数会有更多的相互重叠.Shen S C. 等^[7]曾报道 x = 0.28 的 Cd_{1-x}Mn_xTe/CdTe 多量子 阱中 33H高能级的温度系数比其它能级间跃迁大 很多,更接近 Cd_{1-x}Mn_xTe 材料的温度系数.这可 能是 33H 实验值大于理论值的原因之一.

对样品 A 和 B 的光致发光(PL) 谱在室温和低 温下进行了研究,并与 PR 谱作了比较.样品 A 在室 温下的 PL 谱典型结果如图 4 所示:主峰在能量位 置 E=1.524eV 处,其半宽 E 34meV,在高能端 肩膀处的能量位于 E=1.564eV,此外在更高能量 方向有一个很小的峰,其能量位置 E=1.621eV 处. 与 PR 谱在室温下的结果比较,主峰对应于 11H,肩 膀对应于 22H,而小峰则可能对应于 33H 的激子跃 迁,没有观察到轻空穴激子的跃迁.图 5 为低温下样 品 A 的 PL 谱(T=13 K),只观察到对应于 11H 的 激子跃迁主峰,位于能量值 E=1.607eV 处,半宽仅 为 9meV.低能端宽峰对应于 CdTe 缓冲层结构.样 品 B 在室温下的 PL 谱中观察到位于能

表 1 Cd_{i x}Mn_xTe/CdTe 超晶格样品不同特征 能量 PR 实验结果和理论值

Table 1 PR experimental results and theoretical values for the energies of features of Cd1- x Mn x Te/CdTe SLs

for the chergies of reatines of cure stuffs le/Cure 5Es								
	A(300 K)		A(80 K)		B (300 K)		B (90 K)	
特征结构	Eexp	$E_{th\!eor}$	E_{exp}	E_{theor}	Eexp	E_{theor}	Eexp	Etheor
	(meV)		(meV)		(me V)		(me V)	
11H	1514	1517	1594	1598	1541	1545	1648	1645
11L	1535	1535	1624	1626	1575	1579	1680	1679
22H	1566	1567	1650	1648	1617	1613	1716	1713
32H					1704	1707	1812	1808
33H	1646	1649	1733	1730	1745	1725	1861	1827

8

C

at low-temperature, the exciton transition is observed at 1.607eV (T = 13 K) as arrow identifies

量 E = 1.540eV 处的主峰以及能量 E = 1.625 eV的小峰,与 PR 谱相比分别对应于 11H 和 22H 的激 子跃迁. 低温下样品 B 的 PL 谱(T = 8 K)也只观察 到位于能量 E = 1.625eV 处对应于 11H 激子跃迁 的主峰,虽然组分 x 高达 0.8,半宽也仅为 E 10meV. 与样品 A 相似,没有观察到轻空穴的激子 跃迁,且观察不到较高能级重空穴激子能级的跃迁, 这可能是由于载流子没有布居这些子能级.

3 结论

本文首次报道用分子束外延 (MEB) 技术生长 的 x = 0.4,0.8 的高组分稀磁半导体 $Cd_{1..x}Mn_xTe/$ CdTe 超晶格的光调制反射谱在室温和液氮下的实 验结果.观测到 11H,22H,33H和 11L 等激子跃迁 结构,计及子能级的量子限定效应和晶格失配导致 的应力效应,对子能级结构进行了计算,除 x = 0.8样品的激子高能级跃迁能量 33H 计算值与实验值 有较大偏差外,实验结果与理论符合得很好.还与光 致发光谱实验结果进行了比较.结果表明光调制反 射谱技术是研究超晶格量子态体系的有效方法.

REFERENCES

- [1] Furdyna J K. Diluted magnetic semiconductors, J. Appl. Phys., 1988,64:R29
- [2]Cheng H H, Nicholas R J, Ashenford D E, et al. Formation of type excitons in Cd_{1-x}Mn_xTe/CdTe superlattices at high magnetic fields. Phys. Rev. 1997, B56 :10453
- [3]Alleysson P, Cibert J, Fouillet G, et al. Room temperature excitoniclasing in CdTe/CdMnTe multi-quantum well het-

erostructures. Journal of Crystal Growth, 1996,159:672 [4] Prinz G.A. Magnetoelectronics. Science, 1998,282:1660

- [5]Ohno Y, Young D K, Beschoten B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature. 1999,402:792
- [6]Labrie D , Dobowski J J , et al. Evidence for the miniband dispersion in the photoreflectance of a Cd_{1-x} Mn_x Te/CdTe superlattice. superlatt and microstruct , 1994,15:25
- [7] SHEN SC, ZHANGLJ, LUW, et al. Photomolulation spectroscopy and cyclotron resonance of $Cd_{1-x}Mn_xTe/CdTe$ semimagnetic and strained multi-quantum well structures. Solid State Electronis, 1994, 37:1087
- [8] CHEN CherrJia, GAO Wei, MI Li Zhi, et al. Photoreflectance study of GaAs/Al_xGa_{1-x}As single quantum well and strained In_x Ga_{1-x}As/GaAs superlattices. Proc. International School of Physics (Enrico Fermi) Course CXVII, Semiconductor Superlattice and Interface, 1993:333
- [9]Van de Walle Chris G. Band lineups and deformation poterr tials in the model solid theory. Phys. Rev., 1989, B39: 1871
- [10] Bastard G, Brum J A. Electronic states in semiconductor heterostructures. IEEE J. Quantum Electron., 1986, QE22:1625