基于神经网络模型的辐射真温测量方法研究*

孙晓刚 戴景民 丛大成 褚载祥

(哈尔滨工业大学精密仪器系,黑龙江,哈尔滨,150001)

摘要 将神经网络理论用于多光谱辐射测温领域,实验结果表明,该方法是解决目标真温考量行之有效的一种新方法. 法. 关键词 真温测量,神经网络,BP模型.

TRUE TEMPERATURE MEASUREMENT BY RADIATION METHOD BASED ON NEURAL NETWORK MODEL*

SUN Xiao-Gang DAI Jing-Min CONG Da-Cheng CHU Zai-Xiang

(Department of Precise Instrument, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China)

Abstract The theory of neural networks was applied in the field of multi-spectral radiation thermometry. The experimental results show that the above-mentioned method is an effective method for solving the true temperature measurement.

Key words true temperature measurement, neural network, BP model.

引賣

80年代以来,欧共体和美国国家技术及标准研究院(NIST,原 NBS)先后研制了光导纤维分光,干 涉滤光片限定工作波长的 6 波长高温计^[1~3].90年 代初哈尔滨工业大学成功地研制成 35 波长像差补 偿焦平面式高温计,克服了以往多波长高温计需要 干涉滤光片限定工作波长的缺点^[4~5].但对于多光 谐辐射测量数据,国内外均采用最小二乘法进行数 据处理,这必须要假设发射率与波长之间的函数关 系.由于假设模型与实际情形是否相符会对目标真 温的计算结果影响很大,所以人们一直在寻求一种 能取消发射率与波长假设模型的新方法.本文采用 目前应用最为广泛,且理论上也最为完善的 BP 模 型处理多光谱辐射测量数据,通过大量的计算机仿 真实验表明,该方法是一种解决目标真温测量行之 有效的新方法,具有良好的应用价值.

1 数学模型的建立

设多波长温度计有 n 个通道,则第 i 个通道的

输出信号 V; 可表示为

$$V_{i} = A_{i} \cdot \varepsilon(\lambda, T) \cdot \lambda^{-5} \cdot \exp(-\frac{c_{2}}{\lambda T}),$$

(i = 1, 2, ..., n) (1)

式(1)中 A₄为只与波长有关而与温度无关的检定常数,它与该波长下探测器的光谱响应率、光学元件透过率、几何尺寸,以及第一辐射常数有关;ε(λ,T)为 温度 T 的目标光谱发射率.

在定点黑体参考温度 T'下,第 i 个通道的输出 信号 V:'为:

$$V_{1}' = A_{\lambda_{1}} \cdot \lambda_{1}^{-5} \cdot \exp(-\frac{c_{2}}{\lambda_{1}T'}),$$

(此时 $\epsilon(\lambda, T) = 1.0$), (2)

由式(1)和式(2)可得:

$$V_{\prime}/V'_{\prime} = \varepsilon(\lambda, T) \cdot \exp(\frac{c_2}{\lambda T'} - \frac{c_2}{\lambda T}),$$
 (3)

由此可知,同一通道下两个电压值之比 V,/V', 与目标真温 T 存在某种非线性映射关系,神经网络 在处理非线性映射问题上有其优越性,理论上已经 证明:三层 BP 模型可以任意精度逼近任意非线性

Received 2000-11-11, revised 2000-12-08

^{*} 国家自然科学基金(编号 69777020)资助项目 稿件收到日期 2000-11-11,移改稿收到日期 2000-12-08

^{*} The project supported by the National Natural Science Foundation of China.

映射,本文即采用 BP 模型来解决多个波长下的电压测量值与目标真温的非线性映射问题.

2 神经网络的原理

从结构上讲,BP 网络是典型的多层网络,分为 输入层、隐层和输出层,层与层之间多采用全互连方 式,同一层单元之间不存在相互连接,BP 网络的每 一层连接权值可以通过学习来调节,基本处理单元 (输入层单元除外)为非线性输入一输出关系,最常 用的节点作用函数有 Sigmoid、双曲正切、正弦函数 等 S 型函数,即分别为:

$$f(x) = \frac{1}{1 + e^{-x}},\tag{4}$$

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}},$$
 (5)

$$f(x) = \sin x. \tag{6}$$

BP 模型实现了多层网络学习的设想. 当给定网络的一个输入模式时,它由输入层单元传到隐层单元,经隐层单元逐层处理后再送到输出层单元,由输出层单元处理后产生一输出模式,这是一个逐层状态更新过程,称为前向传播. 如果输出响应与期望输出模式有误差,不满足要求,那么就转入误差后传播,将误差值沿连接通路逐层传送,并修正各层连接权值. 对于给定的一组训练模式,不断用一个个训练模式训练网络,重复前向传播和误差后向传播过程, 当各个训练模式都满足要求时,即 BP 网络已学习好了. 应该强调一点,从网络学习的角度关系来看, 网络状态前向更新及误差信号后向传播过程中,信息的传播是双向的,但是这并不意味着网络层与层之间的结构连接也是双向的,BP 网络是一种前向网络.

3 仿真结果分析

本文采用的 8 波长辐射温度计,其有效波长分 別为 0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1µm,参考 温度选为 1200K,9 个温度点分别为 1800、1820、 1840、1860、1880、1900、1920、1940、1960K,在每个 温度点上采用如图1所示的 A、B、C、D、E5类发射 率样本,每类又分别包括10种发射率样本训练网 络,其发射率训练样本集的具体数值见文献[6],表 1 只列出了部份发射率训练样本.其中 A、B、C、 D₁、E₁作为检验数据不参加训练,即实际输给 BP 模 型的训练样本共 405 个(45×9). 除了未参加训练网 络的 A_1, B_1, C_1, D_1, E_1 作为检验数据以外,已参加训 练网络的 A₅, B₅, C₅, D₅, E₅ 也将作为检验数据, 这样 检验数据共有 90 个(10 > 9). BP 模型采用 4 层网 络,即含有两个隐层,其网络拓扑的结构为 8-4-4 -1,网络经过 5000 次的学习,训练集的累计样本误 差为 0.06282631,其结果见表 2.

4 结论

由表 2 可见,对于未训练过的发射率样本如 C₁, 由于训练过的发射率样本与其差别较大,所以其计算 结果与真值差别较大.而对于那些虽然未参加训练, 但它与训练过的发射率样本很接近,这时仍然得到较 好的计算结果。这说明只要采用尽可能多的发射率训 练样本,会很好地解决目标真温的测量等问题.

此方法的提出彻底消除了多光谱辐射数据处理 时受发射率假设模型的影响,突破了以往在最小二乘 范畴处理多光谱辐射测量数据的局限性,是一种处理 多光谱辐射测量数据的全新方法.依据此方法可以制 造出真正意义上与发射率无关的真温辐射测试仪表.

图 1 BP 模型发射率样本图 Fig. 1 The emissivity sample chart of BP model

Table 1 The emissivity samples of BP model											
样本 —	·····································										
	0.4	0.5	0,6	0,7	0.8	0, 9	1.0	1.1			
A ₁	0.85	0.80	0.75	0.60	0.65	0.60	0.55	050			
A_5	0,75	0.70	0.65	0.60	0.55	0.50	0.45	0.40			
Bı	0,50	0.55	0.60	0.65	0.70	0.75	0.80	0.85			
B,	0,40	0.45	0.50	0.55	0.60	0.65	0.70	0.75			
C,	0.85	0,80	0.75	0.70	0.70	0,75	0.80	0, 85			
(*,	0.75	0.70	0.65	0.60	0.65	0.70	0.75	0, 80			
D_1	0.70	0.72	0, 74	0.76	0.78	0.76	U. 74	0.72			
D ₅	0.62	0.64	0.66	0.68	0. 66	0.64	0.62	<u>0,</u> 60			
Ει	0.70	0.72	0.74	0.72	0.70	0.72	0,74	ē. 72			
Es	0.67 .	0.69	0.71	0, 69	0.67	0, 69	Ð. 71	0, 69			

表 1 BP 模型发射率样本 Fable 1 The emissivity samples of BP model

表 2 BP 模型计算结果 Table 2 The calculated results of BP model

检验样本	温度点/K										
	1800	1820	1840	1860	1880	1900	1920	1940	1960		
Ai	1820.64	1839.15	1858.61	1878.59	1898.55	1917.89	1935.94	1952.09	1965.86		
A ₅	1818.12	1835, 72	1854.29	1873.47	1892.81	1911.76	1929.72	1946.12	1960.45		
$\mathbf{B}_{\mathbf{i}}$	1809.42	1824.57	1840.66	1857.52	1874.86	1892.35	1909.58	1926.10	1941.46		
B5	1813.64	1829.92	1847.16	1865.10	1883.42	1901.65	1919.33	1935.92	1950, 93		
C_1	1836.82	1854.97	1873,73	1892.69	1911.32	1929.05	1945.32	1959.63	1971.61		
C ₅	1822.75	1840, 20	1858.52	1877.37	1896.29	1914.75	1932. 20	1948.08	1961.92		
D_1	1821.36	1838.62	1856.76	1875.45	1894.26	1912.67	1930, 15	1946.13	1960, 16		
D_5	1905.53	1821.66	1838.88	1856.96	1875, 57	1894.27	1912.58	1929.95	1945.84		
E_1	1823.17	1840.45	1858. 57	1877, 20	1895.91	1914.18	1931.48	1947.27	1961.08		
Es	1824.58	1841.36	1858. 91	1876.92	1895.01	1912.72	1929, 56	1945.05	1958, 75		

REFERENCES

- [1]Gardner J L. Jones T P. Davies M R. A Six-wavelength pyrometer. High Temp. High Press. 1981.13: 459-466
- [2]Hiernaut J P.Beukers R. Submillisecond six-wavelength pyrometer for high temperature measurements in the range 2000 to 5000K. High Temp. High Press., 1986, 18: 617-625
- [3]Cezairliyan A. Six-wavelength millisecond resolution pyrometer. Temp., its Measur. and Contr. in Sci. and

Ind. 1993.6: 757-762

- [4] Ruffino G, Chu Z X, Kang S G. Multi-wavelength pyrometer with photodiode array. Temp., its Measur. and Contr. in Sci. and Ind., 1993,6(2): 807-810
- [5]Coppa P.Dai J M.Ruffino G. The Transient regime of a multiwavelength pyrometer. Int. J. Thermophysics., 1993.14(3): 599-608
- [6] Sun X G. Study of the theory and experiment of the multispectral thermometry. Ph. D. Thesis, Harbin Institute of Technology (孙晓刚,多光谱测温法的理论及实 验研究,哈尔滨工业大学博士学位论文),1998