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ANALYSIS ON OPTIMIZING OPTICAL
LIMITING IN INFRARED FOCUSED
OPTICAL-DETECTING SYSTEMS™
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Abstract The effecr of geometry arrangements of oprical-limiting media with cubic nonlinearities in infrared fo-
cused optical-detecting systems on the oprical limuiting was caleulated and analyzed by using beam propagaton and
Gaussian decomposition (GD) metheds, and optimem geometry arrangements were given in the analysis. The re-
sults shaw that the optical limiting for the near-field geometry arrangement is very different from thar for the far-
field geometry arrangements, and ;n some geometry arrangements noolinear media with positive nonlinear index
can nor be employed as optical-limiting media , which is different fram previous suggestions for the far-field geome-
try arrangements, It is also shown that focused geametry arrangements can be employed for measurements of nan-
linear refractive index with a higher sensitivity than that of comman Z-scan rechniques.
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Introduction

Passive optical limiting resulting from irradi-
ance-dependent nonlinear-optical processes in ma-
terials has been widely studied"' ~*). The significant
application of optical limiters is to protect sensors
(especially infrared sensors} from being damaged
by intense input laser. The characteristics of an
ideal optical limiter should be that it has a high lin-
ear transmission for low input (e, g., energy E or
power P}, but low transmission for high input.
Since high transmission for low input is expected.
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low linear absorption in optical-limiting materials
is needed. This leads to the use of nonlinear ab-
sorption and nonlinear refraction. Great efforts
have been made for getting applicable limiters™~%
although some shortcomings exist. such as nar-
row-band operation and high limiting power.

M. Sheik-Bahae er af. got a better optical lim-
iter for protecting an infrared sensor from being
damaged by a 300ns (FWHM?} 10. pm CO, laser
pulse. in which the thick CS, medium with impuri-
ties absorber was used and placed at an optimum
position'™. In this paper we give a theoretical anal-
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ysis for gptimizing the gptical limiting resulting
from a cubic nonlinearity in infrared focused opti-
cal-detecting systems by employing Gaussian de-
composition and g transformation approach. Some
useful results such as optimum geometry arrange-
ment and limiting characteristics are ohtained. Our
calculations show that the optical limiting for the
near-field geometry arrangements is very differnet
from that for the far-field geometry arrangements,
and in some geometry arrangements nonlinear me-
dia with positive nonlinear index can not be em-
ployed as optical limiting media as suggested previ-
ously for the far-field geometry arrangements.
Meanwhile, it is also presented that the focused
geometry arrangements can be employed for mea-
surements of nonlinear refraction with a higher
sensitivity than that of common Z-scan. We think
that the optimization of geometry arrangements of
optical limiting I1s one of the nost important ways
for applieations of optical limiters in infrared fo-
cused optical-detecting systems.

1 Theory and Calculation

Previous discussions on optical limiters usual-
ly have a geometry arrangement analogons 1o that
in Z-scan®™%7), where the detecting plane locates in
the far-field. But usually in some kinds of optical -
detecting systems such as infrared positioning sys-
tems (we call them infrared focused optical-detect-
ing systems) and optical imaging systems, sensi-
tive detectors need to be placed on the focal plane,
therefore, the optical irradiance on the detectors
will be very large when a laser is incident on the
optical-detecting systems. The protection of these
systems from optical damage is most practical and
pressing. Figures 1 {a) and {b) give two possible
kinds of geometry arrangements of optical limiting
in these kinds of optical-detecting systems. Other
configurations of optical-limiting in focused opti-
cal-detecting systems can be equivalent to one of
the two kinds. In the following calculation, we as-
sume that the optical-limiting material is thin.
This means that changes in the beam diameter
within material due to either diffraction or nonlin-
ear refraction can be neglected. This assumption
can simplify the problem considerabily. At the
same time we only consider the optical limiting re-

sulting from cubic nonlinear refraction without the

Fig. 1 The geomerry arrangements
of optical limiting
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existence of nonlinear absorption. Assuming a
TEM, Gaussian beam of beam waist radivs e,
travelling in the+-z direction. we can write E as
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is the beam radias at =,

N|N

ora

/
' zh .
w, is the beam waist radius. R (2) =z( 1+;) 18

the radius of curvature of the wavefront at z,z,=
kal ) ) T,
—2-" is the diffraction length of the beam, k=BT is
the wave-vector and A is the laser wavelength.
E,(t) denotes the electric field at the focus. The
term ¢~ "™ contains all the radieally uniform phase
variations.

The complex electric field E, exiting the sam-
ple with a cubic nonlinearity can be expressed as®!

ECeurt) = Edzor,ne-t § L ide(e,)”

!
y zmrﬂ
expl — wztz}) , (2)
. _ Ap(n)
Wlth Mz’:)'—l_!_zz/zg [ ]

where a%=§fanﬂum,ﬂ, Ly=~(l—e Y a, L is

the sample length, @ is the linear absorption coeffi-

cient, and Ang (¢} i3 the instantaneous on-axis in-




5 ¥ HEES. 4 BEARENER T ERMM UM LD 329

dex change at the focus.

For the geometry arrangement of optical limit-
ing shown in Fig. 1(a). by g transformation ap-
proach, one can obtain the on-axis electric field on

the focal plane as

Epiz,r =0.8) = E(z,r = U.t)e:‘%J
w —_— (7, m
< { zﬂzf th 1 — (3)
m=n0 ! g_i_l-d_

m

P #kwﬁ,ﬁ . wf(z)
R sde=——, and wi,=

2 2m—+1"
Since damage to detectors is almost always de-

where g=1—

termined by irradiance or fluence. in our analysis,
we can only examine the on-axis irradiance on de-
tecting plane for illustrating the role of limiting
media in sensor protection. The on-axis irradiance

on the detecting plane is

Z

w -
Intz,r = 0.8 = I(t) wz(‘;)e L
= (—ide(za)) 1 2
=0 m) g_l_zdi 3 4}

where I,{t) is the on-axis irradiance at focus with-

out the existence of nonlinear refraction. We define
1.0 T

0.2 . 1
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Fig. 2 The normalized transmittance T as a function of x
for negative cubic nonlinear index in the geometry
arrangement of Fig. 1(a).

(a) Ap=—0.5, {b) Ap=—1. 0,

() Ap=—1.5. (d} Ag=—2.0.
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(a) Ag=—0.5, (b) Ag==—1.0,

() Ap=—1.5, (d) dg=—2.0

the normalized transmittance as 7 {z. ¢) =

1

D
— ., th
Iexp{—al) then
T{r.t) = i i!—lmcns{ B.. g — (‘,..,.} , (5
m=0a=1 ! J

where r=xz/2,. Other parameters are expressed as
follows

A = [Apliz, 1]

- it
x4+ 1

[14 (2m + D]+ (20 + D]

B, =n—m,

C.. =tan ‘[xi2n + 1)] —tan "[x(Zm — 1]

Figure 2 gives the normalized transmittance T
as a function of x for negative cubic nonlinear in-
dex, It shows that there is minimum normalized
transmittance at about xr==—0. 35. Figure 3 gives
the input-output characteristics of optical limiting .

where I,=7 | Ag | represents the output irradiance
since | Ag. | is proportional to input irradiance. We

can find out that the optimum geometry arrange-
ment of optical limiting is to place nonlinear medi-
um with a cubic nonlinearity at a position where

the normalized transmittance is minimum., the po-
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Fig. 3 The input-output characteristics of optical limiting
with the geometry arrangement of Fig. 1(a). U= |4@ .
(a) z=—1.5, {b) x=—1.Q, {&) z=—0. 35.

B3 @R REERBLAHEFT.
BAHBHMMEEXRER.C= ap|
(a) z=—1.5+ (b) x==—1,0, (¢} x=—0. 35
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Fig.- 4 Maximum npormalized transmittance 7', as a
function of nonlinear phase shift |A@ | in the geometry
arrangement of Fig. 1{a). Curve (a) corresponds to
nonlinear media with negative nonlinear phase shift,
curve (b)Y to nonlinear media with positive nonlinear
phase shift
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sition is about z=—90- 35z Our results show that
the maximum normalized transmittance change T,
=1 — Tpin+1n which T, corresponds to minimum
normalized transmittance, iz proportional to the
nonlinear phase shift |A@ | for small |Ag, | limit.
As shown in Fig. 4. for | A@(<{0.5, the following

relation exists with an accnracy of £5%.
T, = 0.57|An . (8)

This means that with the geometry arrange-
ment we can obtain a higher measurement sensitiv-
ity than that of common Z-scan™". Our calcula-
tions also show that for nonlinear media with posi-
tive nonlinear index there does not exist a valley of
normalized transmittance s but a peak exists as
shown in Fig. 5. It is explained by that self-focus-
ing in the nonlinear medium causes the focal plane
to shift backward and the beam size on modified fo-
cal plane to become smailer, but the beam size on
the detecting plane still becomes smaller, there-
fore, the normalized trasmittance still increases. It
is different from the far-field case that nonliear me-

dia with both positive and negative nonlinear re-

Fig. 3 The normalized transmittance T as a function
ol x for positive cubic nonlinear index in geometry
arrangement of Fig, 1(a>
{a} Ap=0.5. (b) Agp=1.0,

() Am=1.5, (d) Ax=2.0
B AR FHARMLTHES T . RFEES
B HREHEN - EHE T S r EREXR
(a) &g=0. 53, {b) am=1.0,

(c) Ap=1.5. (d) d@=2. 0

fraction can act as limiting media®®. We think
that for the geometry arrangement of Fig. 1¢a).
only nonlinear media with negative nonlinear re-
fraction are suitable for limiting media. For the
nonlinear medium with positive nonliear index.
taximum normalized transmittance change T, =
T — 1+ In which T .. corresponds t maximum
normalized transmittance. is proportional to the
nonlinear phase shift | Ag | for small | 3@ ). As
shown in Fig. 4, for |Ag |<0. 5, the [ollowing re-

lation exists with an accaracy of +5%,
T, = 0,650 . (7)

For the geometry arrangement of cptical limit-
ing shown in Fig. 1{b), in which two lenses have
the same focal length f, their separation is 2f.
and the distance from the focal plane in image
space to the second lens is f, by g transformation
approach, we obtain the on-axis electric field on

detecting plane that is focal plane in image space;
Eplz,yy = 0) = E{z,r = O,t}e‘%

= (— idglz,e "y f )
Eﬂ‘—‘“_“"‘m; ) 8
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with
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Thus the on-axis irradiance on the detecting plane

18
2 e w ' y
ID=ID(z)ﬁZmZamcoslbm%+c...,.l. (97
where
_ [Aptz.)T "
ma mlnl
41

[(z* 4 (Zm + DD+ (2n + 1D

Pa = 1~ NI,

Comn = tan“’l am+ 1) tanil( MI
|z S
Let Aplz.£) =0, we have
Ip = Ip = I, (e ™ % (10)

where Ip represents the on-gxis irradiance an the
detecting plane without the existence of nonlinear
refraction. Therefore, the normalized transmit-

tance T (x,t) can be expressed by

Tix.) = iiamcos'bm%-l-fml (11>

m=n=1
Figure & gives the normalized transmittance
T {x,¢) as a function of x for some nonlinear phase
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Fig. 6 The normalized transmitrance T as & function of x
for different nonlinear phase shift in the geometry
arrangement of Fig. 1(b) -
{a) &p=0.5, {b) Am=1.0,{(c) Am=1.5,

) dg=—0.5,{(e) Ap=—1.0,(f) Agp=—1.5
Be EHIORRHABRFILAEGST . EFAEHE
HE— B8R TS cHEEXF
(a) Ap=0.5, (b) Ap=1.0.(c) Ag—1. 5.

(d) dp=—0.3.0e) dm=—1.0,{f) Amp=—1.5.

shift. By calculation we obtain the following rela-
tions ;
AT, . == (1.406| 8| . |dg| <= (12>
AZ, == 1. T2y 13>

where AT, . is the peak-valley transmittance
change. and AZ,_, is the peak-valley separation of
normalized transmittance. The relations in Eqgs.
¢{12) and (131 are the same as those in the conven-
tional Z-scan which uses one lens!™. The input-
output characteristics of optical limiting are given
in Fig. 7 at different positions of nonlinear media.
The optimum positions of limiting media with posi-
tive and negative cubic nonlinearities are about
-0, 85 z, and about 0. 85z, respectively. At these
optimum positions the transmitted on-axis irradi-
ance decreases by about 0. 203 | Ag|. It is shown
obviously by Figs. 3 and 7 that the limiting effect
with the geometry arrangement of Fig. 1{a) is
more effective than that of Fig. 1(b) for the same
nonlinear medium at their optimum geometry ar-

rangements.

2 Summary

We discuss the effect of geometry arrange-

3 T T -

% o5 0 15 20
C

Fig. 7 The input-output characteristics of oprical limiting
with the geomerry arrangement of Fig. 1(b} for positive
_ cubic nonlinearity index, C= | Agn |
(a} r=—0.85, (b)Y =0, {c) x=0. 85
B? #H1OGFrARMLTHAT . AFEER
HIFSAENRANRENSEELRBE.C= |An|
{a) £=—10.85, (b} =0, (c) r=0.85
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ments of optical-limiting media with cubic nonlin-
earfties in infrared focused optical-detecting sys-
tems on optical limiting. The optimum geometry
arrangements in these systems are discussed. It is
noted that in the geometry arrangement depicted in
Fig. 1¢a) the nonlinear media with positive nonlin-
ear index can not be employed as optical-limiting
media. which is different from previous sugges-
tions for the far-field geometry arrangements. The
geometry arrangements discussed in this paper can
also be employed for measurements of nonlinear re-
fraction with a higher sensitivity than that of com-

mon Z-scan.
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