

光激发 LT-GaAs 共面微带传输线 THz 色散与衰减特性*

<u>郭 浓 文锦辉 张海潮 钟传彬 林位株</u> TN817

(中山大学物理系超快速激光光谱学国家重点实验室,广东,广州,510275)

摘要 采用半经验色散公式分析了 LT-GaAs 厚衬底共面谈带传输线的 THz 模式色散与切伦坷失辐射损耗特性, 同于 计算了导体欧姆损耗和衬底介电损耗, 结果表明, 较小的横向尺寸有利于改善 LT-GaAs 共面微带传输线模式色散和辐射损耗特性, 较大的横向尺寸比可降低导体欧姆提耗.

关键词 LT-GaAs、THz,共面微带传输线、色散,切伦柯夫辐射,

老路芝 毫减

TERAHERTZ DISPERSION AND ATTENUATION CHARACTERISTICS OF OPTICALLY EXCITED COPLANAR STRIPLINES ON LT-GaAs*

GUO Bing WEN Jin-Hui ZHANG Hai-Chao

ZHONG Wei-Bin LIN Wei-Zhu

(State Key Laboratory of Ultrafast Laser Spectroscopy, Department of Physics, Zhongshan University, Guangzhou, Guangdong 510275, China)

Abstract By employing the semiempirical dispersion formula for coplanar transmission lines, the mode dispersion and Cerenkov radiative attenuation characteristics in the frequency domain over a terahertz range of coplanar striplines on thick LT-GaAs substrate were analyzed. The analytical result reveals that the radiative attenuation and the mode dispersion characteristics can be improved by reducing the total binewidth, and that a greater ispect ratio should be designed to reduce the conductor loss.

Key words LT-GaAs, terahertz, coplanar striphne, dispersion, Cerenkov radiation.

引言

低温生长砷化镓(LT-GaAs)具有光生载流子寿 命短、迁移率高、暗电阻大以及介质击穿场强高等特 点,使之成为超快光电导器件颇具竞争力的衬底材料. 用超短激光脉冲激发 LT-GaAs 为衬底的共面传输线 上的光电导缝隙,可以产生亚皮秒量级的超短电脉冲、 经传输线传输至探测位置后,再由外电光晶体或光微 发共面传输线上的第二个光电导对它进行同步取样探 测,如果在电脉冲的产生与探测位置之间连接待测器

* 国家自然科学基金(编号 [9874082)和广东省自然科学基金(编号 960025)资助项目

稿件收到日期 [999-07-27,修改稿收到日期 [999-11-25

件,则可测量器件的超快时域响应特性1-1,

电脉冲沿共面微带传输线时,所经历的是由自由 空间与衬底材料组成的非均匀介质,当频率较高时,共 面微带传输线可传导的沿纵向传输的电磁波(即导波) 模式不仅有横电磁波(TEM 模),同时亦可传导横电 波(TE 模)和横磁波(TM 模),随频率的不断上升,各 高阶次的 TE 和 TM 模相继被激励.由导波模的传输 特性可知,TE 和 TM 模均为色散模,其传输常数随频 率而变,即存在模式色散;另一方面,信号沿共面微带 传输线传输时,由于传输线上信号导波模耦合人衬底

The project supported by the National Natural Science Foundation of China (No. 19874082) and Natural Science Foundation of Guangdong Province, China (No. 960025) Received 1999-07-27 (revised 1999-11-25)

模以及金属导体欧姆损耗和衬底介电损耗而导致信号 功率衰减^[…].LT-GaAs 光生电脉冲宽度为亚皮秒量 级,带宽达 THz.为了提高 LT-GaAs 共面微带传输线 的有用带宽和探测灵敏度,应尽可能减小色散和损耗. 特别应降低 THz 以上高频范围的模式色散与损耗.研 究 LT-GaAs 共面微带传输线的色散与衰减特性可为 传输线设计及相应的模拟计算提供依据.

本文采用半经验色散公式分析光激发 LT-GaAs 厚衬底共面微带传输线 THz 模式色散与辐射损耗特 性,同时计算了衬底介电损耗与导体损耗,并讨论横向 结构参数对 LT-GaAs 共面微带传输线色散与衰减特 性的影响.

1 LT-GaAs 共面微带传输线结构及参数

LT-GaAs 为衬底的共面微带传输线结构如图 1 所示,它由 LT-GaAs 衬底上表面的两条等宽微带金 属电极组成.在两电极间加上直流偏压,用超短激光脉 冲照射电极间的缝隙产生超短电脉冲,然后电脉冲耦 合人传输线沿 Z 方向传输.LT-GaAs 衬底相对介电常 数 $\epsilon_{s}=13$,厚度 $h=500\mu m;t,w,s$ 分别为金属电极层 厚度,宽度与间距,传输线的横向尺寸比定义为 k=s/(s+2w).其中 $t=0, 2\mu m,w,s,k$ 取不同值,以考察横 向结构参数对 LT-GaAs 共面微带传输线模式色散与 衰减特性的影响、

图 1 LT-GaAs 共面微带传输线示意图 Fig. 1 The geometry of coplanar struplines on LT-GaAs

2 LT-GaAs 共面微带传输线模式色散与衰减 特性的理论分析

2.1 LT-GaAs 共面微带传输线模式色散

设 z=0 处初始光生电脉冲为 v(t,0),经 Fourier 变换得到其频率分量 V(f,0),电脉冲沿传输线纵向传 输到 z 处时,信号中 f 频率分量记为 V(f,z),在频域 内可表示为:

$$V(f,z) = V(f,0)e^{-(\omega/t) + i\theta(f)/z},$$
 (1)

a(f)为衰减常数: $\beta(f)$ 为2方向传输常数,它表征电脉冲的色散特性.

从图1横截面(xv平面)看,LT-GaAs共面微带 传输线是由 LT-GaAs 衬底和自由空间组成的非均匀 介质结构,不仅有导体与衬底之间的界面,而且存在自 由空间与导体及衬底之间的界面,正是由于这种不均 匀边界条件,使得到较高频率后,共面微带传输线不仅 有横向(x,y方向)场分布,而且有 ≈ 方向的纵向场分 布.共面微带传输线导波模可认为是由 TE 模和 TM 模叠加而成,其横向与纵向电磁场量可用 TE 模和 TM 模对应的标势表示,代入麦克斯韦波动方程后,得 到标势所满足的亥姆霍茨方程 由于金属微带电极横 向(x方向)是不连续的,在空间域内求解标势所满足 的亥姆霍茨方程很困难. Galerkin 频域全波分析方法 可克服上述困难,其方法是将标势函数经傅里叶变换 为频域函数,使相应的亥姆霍茨方程变为常微分方程, 利用边界条件,可求出给定频率下导波模纵向传输常 数的数值解,对不同频率重复这种数值计算,可得到纵 向传播常数频率色散特性目、这种方法有相当好的精 度,但对于 THz 以上宽频域而言,要得到纵向传播常 数的频率色散特性,计算量很大.为使场的分析简化, 引入有效介电常数 ε, / 描述共面微带传输线非均匀介 质与场的相互作用.通过拟合全波分析法的数值计算 结果,可得到ε,,,半经验公式^[6];

$$\sqrt{\epsilon_{rff}} = \sqrt{\epsilon_q} + \left[(\sqrt{\epsilon_r} - \sqrt{\epsilon_q}) / (1 + \alpha (f/f_r)^{-1.8}) \right]$$
(2)

式(2)中, $\epsilon_q = (\epsilon_r + 1)/2$ 为共面微带传输线有效介电 常数的准静电值, $f_n = c/4h \sqrt{\epsilon_r - 1}$,是最低阶纵向模 TE,模的截止频率, ϵ 为真空中光速.对于本文所讨论 LT-GaAs 厚衬底共面微带传输线而言、 $\epsilon_q = 7$, $f_n = 43$ GHz. a 是由 w,s,h 决定的参数^[7]. 共面微带传输线 的归一化模式色散定义为 β 与 K_o 之比,即; $\beta/K_c = \sqrt{\epsilon_{eff}}$,其中 $K_o = 2\pi f/c$ 表示真空中传播常数.由此计 算得到 LT-GaAs 共面微带传输线归一化模式色散 (见图 2).

由图 2 可见,LT-GaAs 共面微带传输线有效介电 常数 ϵ_{eff} 随频率增加而增大.以截止频率 f_{ν} =43GHz 为参考点, f_{μ} 以下的低频区,有效介电常数 ϵ_{eff} 随频率 递增很慢;当频率超过 f_{μ} 增加到 THz 高频区,有效介 电常数 ϵ_{eff} 随频率增加而急剧上升,由式(2)可见,当频 率增大到超高频后有效介电常数 ϵ_{eff} 将趋于饱和值 ϵ_{eff} 由于不同频率分量对应的有效介电常数 ϵ_{eff} 不同,使得 信号中各频率分量的传播速度 $v_{e}=c/\sqrt{\epsilon_{eff}}$ 不一样,从 而导致模式色散.光激发 LT-GaAs 共面微带传输线

图 2 LT-GaAs 共面质带传输线模式色散 (a) 不同电极宽度 (b) 不同横向尺寸比 Fig. 2 Modal dispersion of coplanar striplines on LT-GaAs (a) for various electrode widths (b) for various aspect ratios

所产生的初始电脉冲带宽为 THz 量级、其高频成分正 处于有效介电常数 ϵ_{eff} 急剧变化的频率区域、所以高频 模式色散比较严重.图 2(a), k = 1/5 时,电极宽度 w 越小、模式色散也越小、当电极宽度 w 较大(如 w = 30μ m)时,模式色散随 k 减小而减小;当 w 值较小(如 w = 10μ m)时,模式色散随 k 的变化不敏感.由上可 知,总的横向尺寸(s+2w)越小,则 LT-GaAs 共面微 带传输线的模式色散越小.

2.2 LT-GaAs 共面微带传输线衰减特性

由于传输线上信号导波模耦合人衬底模以及导体 欧姆损耗和衬底介电损耗而导致信号功率衰减.对于 LT-GaAs 厚衬底共面微带传输线而言,信号通过衬底 的往返时间远大于探测时间窗口,因此,表面波对信号 衰减的贡献不显著,信号导波横向衬底模的耦合所引 起的功率衰减主要表现为辐射损耗^[7]、

2.2.1 辐射损耗

电脉冲沿共面徽带传输线的传输速度 $v_z = c/\sqrt{\epsilon_{eff}}$,而衬底内电磁波的相速 $v_d = c/\sqrt{\epsilon_{eff}}$.由上述的分析可知,在LT-GaAs 光生电脉冲带宽范围内总有 $\epsilon_{eff} < \epsilon_{eff}$,所以 $v_z > v_d$.超短电脉冲沿共面微带传输线传输时,与之相联系的是电多极矩沿共面微带传输线 z 方向的运动,电脉冲的传输速度和电多极矩的运动速 度是相同的^[5].由于 $v_z > v_d$,LT-GaAs 衬底内产生切 伦柯夫(Cerenkov)电磁波辐射,其波前为位于衬底内 顶角为($\pi - 2\phi$)的半锥面, ϕ 为辐射角,它满足如下关系^[9]

$$\cos(\psi) = v_d / v_z, \qquad (3)$$

将
$$v_{z} = c/\sqrt{\epsilon_{eff}}$$
及 $v_{d} = c/\sqrt{\epsilon_{e}}$ 代人式(3),则;
 $\cos(\psi) = \sqrt{\epsilon_{eff}/\epsilon_{e}}$, (4)

以 a,表示衬底内 Cerenkov 电磁波辐射衰减常数,由微扰法可得 $a_r = W_i/2W_i$, W_i , W_i 分别为距离激励源为 z 处的信号传输功率及 Cerenkov 电磁波辐射引起的功率衰减. 传输功率 $W_r = I^* Z_{cpr}/2 \cdot I$ 为共面微带传输线上的总电流, Z_{cpi} 为共面微带传输线的特性阻抗; W_r 可由 Lorentz 互易定理求得^[9], 由 W_i 和 W_r 得到辐射衰减常数;

$$a_r = (\pi/2)^5 \cdot 2(3 - \sqrt{8}) \cdot \sqrt{\epsilon_{eff}/\epsilon_r} \cdot \sin^4(\Psi)$$

$$\cdot (s + 2w)^2 \epsilon_r^{3/2} f^3/(c^3 K^r k) K(k)), \qquad (5)$$

式(5)中.K(k)和 K'(k)分别为一类与二类完全椭圆 积分,可查表得到.联合式(2)、式(4)和式(5),可计算 得到 LT-GaAs 厚衬底共面微带传输线辐射衰减常数 (见图 3).

由式(5)可知,影响 a_r 的主要因素为辐射角 ϕ_s 传 输线横向尺寸(s+2w)与频率 f、椭圆积分项 K'(k)和 K(k)随 k 的变化不敏感,对 a, 的影响不大. 图 3(a), k =1/5 时,给定频率的低频信号辐射衰减常数随横向 尺寸(s+2w)的增大而增加,当横向尺寸较小(如:w/h=0.01,0.02,0.03)时,高频信号辐射衰减常数随横 向尺寸的变化依然保持这种趋势;但横向尺寸较大时。 高频信号辐射衰减常数随横向尺寸的变化趋势却与之 相反. 高低频信号的 a, 随横向尺寸变化规律的不同归 因于不同横向尺寸的 LT-GaAs 共面微带传输线模式 色散特性的差异.由图2可见,当频率较低或横向尺寸 较小时,因LT-GaAs 厚衬底共面微带传输线有效介 电常数 ε_{eff}变化较慢,辐射角ψ随传输线横向尺寸及频 率的变化较小,因而 α_r 近似正比于 $(s+2w)^2 f^3$;横向 尺寸较大时,到了 THz 高频范围,LT-GaAs 共面微带 传输线有效介电常数 ε,η 随频率急剧递增,由式(3)可

图 3 LT-GaAs 共面微带传输线辐射损耗 (a) 不同电极宽度 (b) 不同橫向尺寸比 Fig. 3 Radiative loss of coplanar striplines on LT-GaAs (a) for various electrode widths (b) for various aspect ratios

知辐射角 ϕ 将快速变小,使得 α , 减小,随着频率的增加这种效应不断增强,另一方面,横向尺寸的增大使 α , 增大,两方面的因素使得横向尺寸较大的 LT-GaAs 共面微带传输线辐射损耗具有如下频率特性: α ,先是 随着频率增大逐渐递增到最大值,然后随频率的继续 上升而递减,高频 α ,随频率的变化明显偏离 f^{α} 的关 系.同理,可解释以下结果;当电极宽度较大(如 w= 30μ m)时,k 值越大则 α , 越小(见图 3(b));当 w 值较 小(如 w=10 μ m)时, α , 随 k 的变化不敏感.

2.2.2 导体欧姆损耗与 LT-GaAs 衬底介电损耗

由于金属导体的趋肤效应引起表面电阻、从而产 生导体欧姆损耗、导体表面电阻 *R*_{*}=ω*L*_{*},ω 为圆频率、 *L*_{*} 为传输线分布内电感、根据 Wheeler 增量电感法^[4] 求出 *R*_{*} 后,与计算辐射衰减常数 α,类似,由微扰法导 出导体欧姆损耗衰减常数 α,的计算式为:

$$a_i = 17.34 \cdot g \cdot R_i / Z_0, \qquad (6)$$

式 (6) 中, $g = \frac{P^*}{\pi S}$ · (1 + $\frac{w}{s}$) ·

 $\frac{(1.25/\pi)\ln(4\pi w/t)+1+(1.25t/\pi w)}{(1+2w/s+(1.25t/\pi s)(1+\ln(4\pi w/t))^2}$,g为共面微 带传输线的结构因子、P^{*}是与横向尺寸比 k 相关的参 数^[5]; R,= $\sqrt{\pi\mu_0 f/\sigma}$ 为导体表面电阻、其中 σ 为导体的 电导率、 μ_0 为真空磁导率; Z₀ 为 LT-GaAs 共面微带传 输线特性阻抗的准静电值. 共面微带传输线导体欧姆 损耗随横向尺寸比 k 的变化见图 4、选用的导体材料 为 Au、其电导率 σ =45 \wedge 10⁶A/V. m.

由于 LT-GaAs 衬底仍有一定的电导率、由此产 生衬底介电损耗、相应的衰减常数为^[4]:

$$\alpha_d = 27.3 \cdot \epsilon_r (\epsilon_q - 1) \cdot \tan \delta / (\sqrt{\epsilon_q} (\epsilon_r - 1) \lambda_n),$$
(7)

式(7)中,λ_u、δ分别为真空中波长与介电损耗角,经计算,在THz高频率范围,LT-GaAs 衬底介电损耗相应 衰减常数约等于 0.2dB/cm.

LT-GaAs 共面微带传输线总的功率衰减常数 $\alpha = \alpha_r + \alpha_r + \alpha_s$. 从以上分析可知,不同横向结构参数 LT-GaAs 共面微带传输线的辐射衰减常数相差较大, 特别是到了 THz 高频区.选择尽可能小的横向尺寸(s+2w)有利于减小 α_r ,若同时选择较大的 k 值可减小 导体损耗 α_r (见图 4).

图 4 共面微带传输线导体损耗 Fig. 4 Conductor loss of coplanar striplines

LT-GaAs 衬底介电损耗远小于辐射损耗和导体 欧姆损耗,可忽略不计.在我们的实验研究中,LT-GaAs 共面微带传输线横向结构参数取值为 k=1/5, w/h=0.02 即 $s=5\mu m$, $w=10\mu m$,对f=1THz 的频 率、 $a_r\approx 30$ dB/cm, $a_r\approx 10$ dB/cm,总的损耗系数 $a\approx 40$ 、 2dB/cm,信号衰减为初始值的 1/e 可传输的距离约为 1mm,由图 2 可见,选择以上横向结构常数时,LT- GaAs 共面微带传输线的模式色散也是比较小的.

3 结语

本文由共面微带传输线有效介电常数 ε_{/1}半经验 公式出发,分析了光激发 LT-GaAs 厚衬底共面微带 传输线模式色散与辐射损耗特性,同时亦计算了衬底 介电损耗与金属导体损耗,并讨论了横向结构参数对 LT-GaAs 共面微带传输线模式色散与衰减特性的影 响,结果表明:(1)影响超短电脉冲传输特性的因素 主要是 THz 以上高频范围 LT-GaAs 共面微带传输线 模式色散、辐射损耗与金属导体欧姆损耗,LT-GaAs 衬底 THz 高频介电损耗相应的衰减常数仅为 0.2dB/ cm 左右,与辐射损耗和导体损耗相比可忽略不计。 (2) 当共面微带传输线电极宽度较大($u w = 30 \mu m$) 时,模式色散随横向尺寸比 k 的减小而减小,而辐射衰 减常数随 k 的减小而增大;当电极宽度较小(如 w= 10µm)时,模式色散和辐射衰减常数随 k 的变化均不 敏感. (3) 低频或共面微带传输线横向尺寸较小时, LT-GaAs 衬底辐射衰减常数近似正比于(s+2w)ⁱfⁱ; 当横向尺寸较大时,到了高频范围,LT-GaAs 衬底辐 射衰减常数随横向尺寸和频率的变化将偏离上述关 系. (4) 导体欧姆损耗的衰减常数随横向尺寸比 k 的 增大而减小.

综上所述,为了改善对超短电脉冲的传输特性, LT-GaAs 厚衬底共面微带传输线应选择尽可能小的 横向尺寸以减小 THz 高频模式色散和辐射损耗,同 时,应选择较大的横向尺寸比以降低导体 THz 高频欧 姆损耗.

REFERENCES

- [1]Park S G, Melloch M R, Weiner A M. Comparison of terahertz waveforms measured by electro-optic and photoconductive sampling, *Appl. Phys. Lett.*, 1998, 73: 3184
- [2] WEN Jin-Hui、CHEN Ying-Yu, HUANG Chun, et al. Ultrafast carrier dynamics of low-temperature grown GaAs, J. Infrared and Millimeter Waves(文锦辉,陈颖宇,黄 淳, 等. 低温生长 GaAs 非平衡载流子的超快动力学特性,红外 与毫米波学报)、1999、18(3): 195
- [3]Zamdmer N. Hu Q. Mode-discriminating photoconductor and coplanar waveguide circuit for picosecond sampling, *Appl. Phys. Lett.*, 1999, 74: 1039
- [4]Gupta K C., Gary R., Bahl I J. Microstrip Lines and Slinlines. Norwood, MA: Artech, 1979, 257
- [5]Phatak D S, Defonzo A P. Dispersion characteristics of optically excited coplanar striplines; pulse propagation, *IEEE Transactions on MTT*, 1990.38: 654
- [6] Hasnain G. Dienes A, Whinnery J R. Dispersion of picosecond pulses in coplanar transmission lines. *IEEE Transactions on MTT*, 1986, 34: 738
- [7]Frankel M Y, Gupta S, Valdmanis J A, et al. Terahertz attenuation and dispersion characteristics of coplanar transmision lines, *IEEE Transactions on MTT*, 1991-39: 910
- [8]Grischkowsky D R. Duling I N. Chen J C. et al. Electromagnetic shock waves transmission lines. Phys. Rev. Letts. 1987, 59: 1663
- [9]Button K J. Infrared and Millimeter Waves, New York; Academic, 1983, 10: 29