

n-HgCdTe 表面积累层的定量迁移率谱研究*

1)桂永胜 1)郑国珍 2)蔡 毅 1)褚君浩

()中国科学院上海技术物理研究所红外物理国家重点实验室,上海、200083:

²¹昆明物理研究所、云南、昆明、650223) TN 214

摘要 利用定量迁移率借技术,通过对霍尔系数和电阻率与磁场强度的关系,获得了n-HgCdTe 光导器件表面积累层口子带电子的浓度和迁移率,结果与 Shubnikov-de Hass 实验和理论计 算的结果非常吻合,

制造过程中会在 HgCdTe 光导操测器其表面引入一个势阱和大量活性的缺陷态¹¹,引起能带弯曲,在n型材料表面处形成电子积累层,电子积累层对器件性能有重要的影响¹³⁻⁴¹.人们对 HgCdTe 表面积累层进行了一系列实验、Nemirosky 和 Kidron¹⁵¹采用霍耳效 应和电容-电压测量获得了 HgCdTe 积累层的电子浓度和迁移率,Nicholas¹⁶¹等测量了积累 层的 SdH 振荡,指明 HgCdTe 表面积累层可以用具有多个子带的二维电子气来描述,理论 上需要利用自治计算方法^[7,8]计算这些子带的精确色散关系,但如果只需要知道表面子带的 电子浓度和有效质量,并不需要了解波函数,半经典近似也可以获得较理想结果^[9-1].

本文利用定量迁移率谱分析获得了HgCdTe表面积累层的子带电子浓度和迁移率,子带电子浓度结果与理论计算结果及Shubnikov-de Hass (SdH)测量结果都吻合得很好,

1 定量迁移率谱分析

霍尔实验中获得的霍尔系数 R_H 和电阻率 ρ 实际上都是磁场强度 B 的函数,因此电导 张量元 σ_{xx}和 σ_{yy}与磁场强度 B 有如下关系:

$$\sigma_{xx} = \frac{1}{\rho(B) [R_H(B)/\rho(B))^2 + 1]},$$
(1)

$$\sigma_{zy} = \frac{R_H(B)B}{\rho^2(B)[R_H(B)B/\rho(B))^2 + 1]}.$$
 (2)

由于不同种类的载流子具有不同的迁移率,它们在不同的磁场下对电导的贡献也不同, 通过分析电导张量元与磁场强度 B 的依赖关系就可以获得样品中电子和空穴的种类,以及 每种电子和空穴的迁移率与浓度,在弛豫时间近似下,通过求解玻尔兹曼方程可获得电导张

Í

^{*} 国家自然科学基金(编号 697-38020) 密助课题 稿件收到日期 1997-10-13,修改稿收到日期 1997-11-19

量与样品中各类载流子浓度 n, 和迁移率 μ, 有如下关系:

$$\sigma_{xr} = \sum_{i} \frac{en_{i}\mu_{j}}{1 + \mu_{j}^{2}B^{2}},$$
 (3)

$$\sigma_{av} = \sum_{i} S_{i} \frac{\epsilon n_{j} \mu_{i}^{2} B}{1 + \mu_{i}^{2} B^{2}}, \qquad (4)$$

式(4)中 S,为载流子电荷性,分析电导张量随磁场强度变化的实验数据,传统上采用多 载流子拟合方法^[12],由于该方法必须首先确定样品中电子和空穴和种类,以及每种载流子 的近似迁移率,所以得到的结果往往不是唯一结果,迁移率谱方法^[13,45]初步解决了这个问题,但是由于其结果只是定性的或半定量的,所以还得通过其它方法获得定量结果.

我们将迭代算法与迁移率谱结合,发展了定量迁移率谱技术,将式(3)和(4)变形为

$$S_{r}^{xx} = (1 + \mu_{r}^{2}B_{r}^{2}) \Big[\sigma_{xx}^{xx}(B_{r}) - \sum_{j=0}^{x-1} \frac{S_{j}^{xx}}{1 + \mu_{j}^{2}B_{r}^{2}} - \sum_{j=i+1}^{m} \frac{S_{j}^{xx}}{1 + \mu_{j}^{2}B_{r}^{2}} - \Big],$$
(5)

$$S_{i}^{xy} = \frac{(1+\mu_{i}^{2}B_{i}^{2})}{\mu_{i}B_{i}} \bigg[\sigma_{xy}^{xxp}(B_{i}) - \sum_{j=0}^{i-1} \frac{S_{j}^{xy}\mu_{j}B_{i}}{1+\mu_{j}^{2}B_{i}^{2}} - \sum_{j=i-1}^{m} \frac{S_{j}^{xy}\mu_{j}B_{i}}{1+\mu_{j}^{2}B_{i}^{2}} \bigg],$$
(6)

式中 *m* 为迁移率谱中所取的迁移率的数日、 $S_{i}^{\mu} = s^{\mu}(\mu_{i}) + s^{\nu}(\mu_{i}) \cdot S_{i}^{\mu} = s^{\mu}(\mu_{i}) - s^{\nu}(\mu_{i}) \cdot 空穴$ 和电子的电导密度函数(即所谓电导密度函数的迁移率谱) $s^{\mu}(\mu_{i})$ 和 $s^{\mu}(\mu_{i})$ 定义为

$$s^{p}(\mu_{i}) = ep(\mu_{i})\mu_{i}, \qquad (7)$$

$$s^{n}(\mu_{r}) = en(\mu_{r})\mu_{r}, \qquad (8)$$

£.

1

为了加快计算速度,我们采用了超级松弛法用来求解形如式(5)和(6)的线性方程组,即

$$S_{i}^{rx}(k+1) = (1 - \omega_{rx})S_{i}^{rx}(k) + \omega_{rx}(1 + \mu_{i}^{2}B_{i}^{2}) \\ \left[\sigma_{\lambda x}^{\exp}(B_{i}) - \sum_{j=0}^{i-1}\frac{S_{j}^{rx}(k+1)}{1 + \mu_{i}^{2}B_{i}^{2}} - \sum_{j=i+1}^{n}\frac{S_{i}^{rx}(k)}{1 + \mu_{i}^{2}B_{i}^{2}}\right],$$
(9)
$$S_{i}^{ry}(k+1) = (1 - \omega_{i})S_{i}^{ry}(k) + \omega_{i} + \frac{(1 + \mu_{i}^{2}B_{i}^{2})}{1 + \mu_{i}^{2}B_{i}^{2}}$$

$$\left[\sigma_{xy}^{\text{exp}}(B_{i}) - \sum_{i=0}^{c-1} \frac{S_{i}^{xy}(k+1)\mu_{i}B_{i}}{1+\mu_{i}^{2}B_{i}^{2}} - \sum_{i=c-1}^{\infty} \frac{S_{i}^{xy}(k)\mu_{i}B_{i}}{1+\mu_{i}^{2}B_{i}^{2}}\right],$$
(10)

式中 $S_{1}^{rr}(k)$ 和 $S_{1}^{rr}(k)$ 分别是 S_{1}^{rr} 和 S_{2}^{rr} 第 k 步迭代结果,将迁移率谱对零场进行电导归一化 处理,将其作为迭代初始值,在每步迭代过程中保证 $s^{rr}(\mu)$ 和 $s^{rr}(\mu)$ 为正,以确保结果明确的 物理意义,收敛系数 ω_{xx} 和 ω_{xy} 决定了迭代过程的收敛速度,当 $\omega_{xx} = \omega_{xy} = 1$ 时,收敛速度最 快,但最初的迁移率谱形状很快被破坏,结果很容易发散: $\omega_{xx} = \omega_{xy} = 0$ 时,收敛速度最慢,最 终结果还是最初的迁移率谱,为了兼顾收敛性和收敛速度,通过大量实际计算,我们认为 ω_{xx} = 0.05 和 $\omega_{xy} = 0.01$ 为最优选择,另外,为了尽可能全面准确反映材料的电学性质,对数据 进行了平滑插值,使在迭代过程中迁移率取值的密度为每个数量级中有 100 个点.

2 实验结果与讨论

实验所用样品为昆明物理所的标准霍尔样品,尺寸为 888µm×290µm×8µm,样品上下

表面的钝化均采用阳极氧化,采用 In 接触的扩展电极,电极与材料形成良好的欧姆接触,在 1.2~200K,0~10T 的范围内对样品进行了变磁场的霍尔测量.

图 1 为样品 A 和 B 磁阻振荡数据的傅里叶变换结果,从图中可以发现样品中存在两套 子能级,分别对应于上下表面的积累层,图中"'"和"""表示不同表面,峰位上的数字表示所 属子能级量子数。

[約]1 样品A和样品B的磁阻振荡数据的傅里川变换曲线 Fig.1 The Fourier transforms of magneto-resistance oscillation for sample A(a) and sample B(b)

图 2(a)和(b)分別为样品 A 在 35K 和 1.2K 时的定量迁移率谱.在 35K 时.SdH 振荡 基本消失,此时可以获得样品中不同载流子准确的迁移率和浓度.图 2(a)中的 3 个峰分別 表示体电子、样品两个不同表面积累层中的二维电子.在 35K 时,我们发现同一表面中的子 带电子具有相同的迁移率,谱中每种载流子的浓度 $n = \sum \sigma_i / (e\mu_i)$, $\sum_i \overline{k}$ 表示对峰内的所有载 流子加权求利,由此可得体电子的浓度为 2.14 × 10¹⁴ cm⁻³,两表面的电子浓度分别为 4.31 × 10¹² cm⁻²和 3.25 × 10¹² cm⁻², 1.2K 时样品的定量迁移率谱明显比 35K 时复杂,具体表现 在 1.2K 时表面二维电子中不同子带的电子具有不同的迁移率.

采用定量迁移率谱、SdH 测量理论计算^[11]得 1.2K 时各类电子浓度如表 1.由1.2K时的

图 2 样晶 A 在(a)35K 和(b)1.2K 时的定量迁移率谱 Fig. 2 The quatitative mobility spectra for sample A at 35K(a) and 1.2K(b)

184

定量迁移率谱得到的体电子浓度 2.20×10¹⁴ cm⁻³,两表面总的电子浓度分别为4.11×10¹² cm⁻²和 3.03×10¹³ cm⁻²,与 35K 时相当,各子带电子分布与理论计算基本一致,与 SdH 测量结果也十分相近.

		QMSA		SdH	理论计算
		浓度 (10 ¹² cm ^{−%})	迁移率 (104cm ⁻² /Vs)	浓度 (10 ¹⁴ cm ^{−ε})	浓 度 (10 ¹² cm ⁻¹⁾ ,
Bulk		2. 20 • 10 ¹⁴ cm ⁻⁴	33		—
Surface	n = 0	3. 02	0.81	2. 25	2, 88
	n == 1	1.09	0.96	1.17	U. 91
	$\mathbf{n} = 2$			0.44	0.33
	rotal	1. I I		3. 86	4.31
Suface	n=0	2-20	2.5	1.53	2.17
	n == 1	0.70	4.1	0.72	0.71
	n == 2	0.137	8	0.18	0.25
	total	3. 03		2.43	3. 25

表 1 1.2K 样品 A 中不同子带种类的浓度和迁移率 Table 1 The density and mobility of each subband for sample A at 1.2K

图 3 为样品 B 在 1.2K 和 49K 时的定量迁移率谱, 同样品 A 一样,样品 B 中表面积累 层的不同子带电子在 1.2K 时具有不同的迁移率, 而在 49K 时却表现出具有相同的迁移率. 从变温实验也可以发现在温度高于 35K 时, 各子带的电子迁移率趋于一致, 可以定性地解 释这种现象; 在 1.2K 时, 电离杂质散射起着决定主导地位, 由于不同的子带具有不同的有 效质量, 对应的迁移率就会不同, 表现在定量迁移率谱上就是可以分辨出不同子带的峰; 温 度升高后, 比如 35K 时, 许多散射机制都起作用, 特别是子带间散射, 它对激发态的作用比 基态强得多^[15], 所以随着温度升高, 各子带上电子迁移率间的差别越来越小.

图 3 样晶 A 在(a)1.2K 和(b)49K 时的定量迁移奉谱 F(g. 3 The quantitative mobility spectra for sample B at 1.2K(a) and 49K(b)

3 结论

我们采用定量迁移率谱对 n-HgCdTe 表面积累层中子带电子的电学性质进行了研究,

发现极低温度(1.2K)下,各子带上的电子具有不同的迁移率,而当温度高于 35K 时,各子带的电子迁移率基本相同.n-HgCdTe 光导探测器一般工作在 77K,因此我们在优化设计探测器时,可以不用考虑其表面积累层中具有多个子带这个特征,而将整个表面看成只有一种二维电子参与导电,这必将大大简化设计的复杂程度.

REFERENCES

- 1 Nemirovsky Y, Bahir G. J. Vac. Sci. Technol. 1991, A7:450
- 2 GULY S. et al. J. Infrared. Millim. Waves(桂永胜,等. 红外与毫米波学报),1997.16:121
- 3 Nemirovsky Y. Bahir G. J. Vac. Sci. Technol. 1989, A7: 450
- 4 Nemirovsky Y. J. Vac. Sci. Technol. , 1990, , 199, A8: 1185
- 5 Nemirovsky Y, Kirdron J. Solid-State Electron. ,1979-22:831
- 6 Nicholas R J, Nasir F. Singleton J. J. Cryst. Growth, 1988, 86:656
- 7 Nachev I. Semicond. Sci. Technol., 1988, 3:29
- 8 Lowney J R, et al. J. Electron. Maters (1993, 22(8)) 985
- 9 Ando Tsuneya. J. Phys. Soc. Jpn. 1985,54(7):2676
- 10 Gui Y S, et al. Chinese Journal of Semiconductors(桂水胜、等,半导体学报), 1997,18:667
- 11 Gui Y S. et al. J. Appl. Phys, 1997.82;5000
- 12 Gold M C, Nelson D A. J. Vac Sci. Technol. , 1986, A4: 2040
- 13 Beck W A. Anderson J R. J Appl. Phys. , 1987.62:541
- 14 Meyer J R, et al. Semicond. Sci. Technol. ,1993,8:805
- 15 Ando T, et al. Revnew of Modern Physics, 1982,54:509

QUANTITATIVE MOBILITY SPECTRUM ANALYSIS OF n-HgCdTe ACCUMULATED LAYERS^{*}

¹⁾GUI Yong-Sheng ⁻¹⁾ZHENG Guo-Zhen ⁻²⁾CAI Yi ⁻¹⁾CHU Jun-Hao

() National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China) ²⁾Kunming Institute of Physics, Kunming, Yunnan 650223, China)

Abstract By using quantitative mobility spectrum analysis technique, the density and mobility for each subband of the accumulated layer on the n-HgCdTe devices were determined from field-dependent Hall and resistivity data. The results agree well with the shubnikovde Hass measurements and theoretical calculations.

Key words quantitative mobility spectrum analysis, accumulated layer, HgCdTe.

^{*} The project supported by the National Natural Science Foundation of China Received 1997-10-13, revised 1997-11-19