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Nonlocality-induced polarization beam splitting via metal-dielectric composites
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Abstract. Three kinds of polarization beam splitters are designed by using a simple metal-dielectric multilayered
structure with strong nonlocality. It is found that the equal frequency contour for the transverse electric polarization
is a small circle when the average permittivity is close to zero. At the same time, the equal frequency contour for
the transverse magnetic polarization turns to be two branches of parabolas due to the surface plasmon-induced non-
local effect. Based on the dramatic difference between dispersions of the two polarizations, three kinds of polariza-
tion beam splitters are demonstrated, including the ultrathin ones, which may have important applications in polari-

zation-sensitive absorbers and compact optical devices.
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Introduction

Metamaterials composed of subwavelength micro-
structures generally can be homogenized to effective
media characterized by local effective parameters, i. e. ,
without spatial dispersion''*'. However, interestingly,
the effective parameters of some metamaterials containing

metallic components are found to be nonlocal , i. e. , spa-
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tially dispersive, even when the microstructures are in
deep-subwavelength scale *?’. Therefore, traditional ef-
fective medium theories (EMTs) predicting the local ef-
fective parameters fail to homogenize such metamaterials.
As we know, the traditional EMTs usually require rela-
tively uniform fields inside and between the microstruc-
tures *'’. But in metallic structures, surface plasmons
may be excited, resulting in drastically varying fields in-
side and between the microstructures. As a conse-
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quence, the nonlocality may appear in the effective pa-
rameters, thich brings rich and colorful effects and appli-
cations beyond the local framework of metamaterials. In
particular, the nonlocality becomes even stronger in the
zero-index media with the permittivity or/and permeabili-
v ne: (2028, 234] . . ies and :
y near zero , yvielding unique properties and ap-
plications like parabolic dispersion

) 20230 additional ex-
traordinary waves'*?'  all-angle negative refraction and

subwavelength imaging' ™’ | etc.

On the other hand, polarization beam splitters ( PB-
Ss), which separate two orthogonal polarizations of light
into different propagation directions, are very important
and widely used in polarization manipulation, optical
communication, data storage, image processing and dis-
play. Traditional PBSs are based on either Brewster
effect or natural crystal birefringence, which requires a
large thickness to obtain enough walk-off distance be-
tween the two polarizations as the birefringence of a natu-
ral material is always small' ™'
photonic crystals, metamaterials and metasurfaces, novel
methods have been proposed *>*'.
on photonic crystals, polarization-dependent disper-
sions' ™ 7*" or bandgaps at different wavelength range
for two polarizations'*'*' can be achieved to split trans-
verse electric (TE) and transverse magnetic (TM) po-
larizations. The strong anisotropy in metamaterials can
mitigate the design of PBSs'“**. Gradient metasurfaces
can introduce different additional phases to different po-
larizations to separate the two polarizations "), In addi-
tion, broadband PBSs and polarization rotators can be re-
alized based on multi-wave interference in multilayered
meta-grating structures' ™

In this paper, we propose to use a simple metal-die-
lectric multilayered structure with nonlocal effects to real-
ize three kinds of PBSs. We find that when the average
permittivity of the multilayer is near zero, the nonlocal
effect become dramatic. This leads to a great difference
in dispersions of TE and TM polarizations, enabling the
separation of two polarizations.

For instance, based

1 Dispersions and polarization beam
splitters

To begin with, we investigate the dispersions of me-
tal-dielectric multilayered structure, as illustrated in Fig.
1(a). Such a muliilayer is a periodic stacking of metal
and dielectric layers with a lattice constant of . Based on
the transfer matrix methods, the dispersions for TE and
TM polarizations can be, respectively, expressed as:

cos(k,a) = cos(fyp,a)cosh(f,q,a) -
o (2 = B sin(fp,a)sinh(fg,0) (1)

qy p}
and  cos(k,a) = cos(f,p,a)cosh(f,q,a) -
—ﬁﬂ&_@&pmmmmmm%w

g0y, E.D,

, (2)
Vedky =k, q, =k —e.ko. ko ( =21/),)
and A, are the wave number and Wavelength in free space,
respectively. &,(f;) and g, (f, ) are the relative permit-
tivity (filling ratio) of the dielectric and metal layers,

where p =

With the development of

respectively. Here we have the relation f, +f,, =1.
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Fig.1 (a) Schematic of the first kind of PBS. (b) The EF-
Cs for TE (blue lines) and TM ( green lines) polarizations.
[ (¢) and (e) ] Amplitude of electric fields for TE (left) and
TM (right) polarized waves under normal incidence when the
relative permittivity of metal is (¢) &, = -2, (e) &, = -2
+0. 2i. The thickness of the multilayered structure is w =
0.20A. (d) The distribution of amplitude of electric fields a-
long the dashed lines in (c) for TE (solid lines) and T™M
(dashed lines) polarizations when the thickness is set to be w
=0. 151 (blue lines), w =0.20A (red lines) and w =0. 25
(black lines). (f) The distribution of amplitude of electric
fields along the dashed lines in (e) for TE (solid lines) and
TM (dashed lines) polarizations when the relative permittivity
of metal is g,, = —2 (blue lines), &, = —2 +0. 02i (red
lines) and g, = —2 +0.2i (black lines). The relevant param-
eters are ¢, =6, f,, =0.75 and a =A/6
Bl (a)8—2fm iR/t asmom K. (b) TE ik (i
i) A TM fii Bk (2Rt k) N ry Sz, [ () Ml
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Assuming that the lattice constant is much smaller
than the working wavelength, thus, the trigonometric
functions in Eqs. (1-2) can be simplified by using the

1

relation x=x and cosx =1 — 27'96 . Then, Egs. (1-2)
are reduced to,
k§2+ K = e ks , (3)
and , Ky + k'w‘ =~ ké , (4)
e, &

where & (= ¢e,f, +&,/,,) and &, ( =¢g,e,/(&,f, +
e,/.) ) are the average permittivities in the xz plane and
y direction, respectively. Actually, they correspond to
the local effective parameters predicted by traditional
EMTs ",

In particular, if £, =0, then Egs. (1-2) indicate
that the equal frequency contours ( EFCs) of TE and TM
polarizations are a point and a line, respectively. Evi-
dently, they are not physical. In fact, in the case of ¢
=0, one higher order term of the trigonometric functions

1
sinx = x — *x and cosx =

31

should be considered, 1. e.

1 —sz +Lx4. Thus, Eqs. (1-2) are rewritten as,
21" "a)
i + kz 12f11841k4 12 fd+fm+4flf;n(fd+fm):|k4
, (5)
2
and k, %i%(k(z) —i) . (6)
2.3 £,

Equations (5-6) indicate that the EFCs of TE and
TM polarizations, respectively, are a small circle and two
branches of parabolas (see Fig. 1(b) ), which are quite
different from those obtained from Eqs. (3-4). This re-
veals that the traditional EMTs fail to describe the multi-
layered structure with ¢, and the effective parameters
are not local any more. Especially for the TM polariza-
tion, the dispersion is drastically different from the local
one, which actually is caused by the strong nonlocality
induced by the surface plasmons at metal/dielectric sur-
faces' ).

In the numerical calculations, the relevant parame-
ters are £, =6, &,,= -2, f,=0.75 and @ =A/6. From
the EFCs in Fig. 1(b), we can see that TE polarized
waves under normal incidence onto the yz plane of the
multilayered structure can be transmitted, while TM po-
larized waves would be reflected due to the bandgap, as
illustrated in Fig. 1(a). Bases on such a difference, TE
and TM polarizations can be separated. Thus, one kind
of PBSs can be realized.

To verify such PBSs, numerical simulations are per-
formed by using finite-element software COMSOL Mul-
tiphysics. In the left and right figures of Fig. 1(c), TE
and TM polarized waves are normally incident from air
onto the multilayered structure, whose thickness is w =
0.20A in the x direction. The amplitude of the incident
electric field is 1 V/m. The simulation results show that
most TM polarized waves can propagate through the mul-
tilayered structure, while TE polarized waves are mostly
reflected. Furthermore, in Fig. 1(d), we plot the am-
plitude of electric fields for TE ( solid lines) and TM

(dashed lines) polarizations along the dashed lines in
Fig. 1(c). It is seen that the transmission decreases as
the increase of the thickness of the multilayered struc-
ture. And the transmission contrast of the two polariza-
tions can be enlarged by the increasing the thickness to
block the TM polarization. For example, when the thick-
ness is increased to w =0. 25X, the transmission coeffi-
cient for the TM polarization is around 0. 1 (see Fig. 1
(d)). On the other hand, the loss of transmission for
the TE polarization is mainly due to the impedance mis-
match between air and the multilayered structure, which
can be relieved by using appropriate antireflection coat-
ings %]

Moreover, we consider material loss effects on the
performance of the PBS. In Fig. 1 (e), we re-simulate
the distributions of electric-field amplitudes under both
TE (left inset) and TM (right inset) polarizations when
the relative permittivity of the metal component is set to
be . Compared with Fig. 1(c¢), we can see that although
the transmission is decreased a bit due to material losses,
the transmission contrast of the two polarizations is still
quite large. In Fig. 1(f), we plot the electric-field am-
plitudes along the dashed lines in Fig. 1(e) for TE (sol-
id lines) and TM ( dashed lines) polarizations when the
relative permittivity of metal component is ( blue lines) ,
(red lines) and (black lines). These results reveal that
the PBS can still work well in the existence of material
losses.

It is worth noting that the thickness of such a PBS is
much smaller than the working wavelength, as we have
shown above. Such an ultrathin PBS may be more useful
in compact optical devices compared with the previously
proposed PBSs*"

Now, we rotate the multilayered structure, so that
the waves are incident onto the plane. Then, we can get
different refractive behaviors of the two polarizations, as
illustrated in Fig.2(a). Such a difference in the refrac-
tive behaviors enables another kind of PBSs. Therefore,
we can obtain different kinds of PBSs by using the same
multilayered structure when waves are incident onto the
different surfaces.

Specifically, positive and negative refractions occur
for the TE and TM polarizations, respectively, as seen
from the EFCs in Fig. 2(b). The arrows denote the di-
rections of group velocities of incident and refracted
beams. Simulation results under an incident angle of 10
deg are presented in Fig.2(c¢), showing positive refrac-
tion for the TE polarization (left) and negative refraction
for the TM polarization (right). In Fig.2(c), the color
(arrows) denotes the magnitude (direction) of the time-
averaged power flow. We notice that almost all the inci-
dent waves are transmitted through the multllayered
structure irrespective of the polarizations. Moreover, in
Fig.2(d), we plot the time-averaged power flow dlong
the dashed lines in Fig. 2 (¢). The solid and dashed
lines in Fig.2(d) denote the lossless case with and the
lossy case with , respectively. We can clearly see a large
walk-off distance in the direction for the two polariza-
tions, thus making it possible to separate the two polari-
zations. We note that such a walk-off distance can be
further enlarged by increasing the thickness of the multi-
layered structure, or increasing the incident angle.
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Fig.2 (a) Schematic of the second kind of PBS. (b) The
EFCs for TE (blue lines) and TM ( green lines) polariza-
tions. (c) Snapshots of the magnitude (color) and direction
(arrows) of the time-averaged power flow for TE (left) and
TM (right) polarized waves under an incident angle of 6 =
10 deg. The multilayered structure is composed of 5 unit
cells and an additional metal layer. (d) The distribution of
time-averaged power flow along the dashed lines in (c) for
TE (blue lines) and TM ( green lines) polarizations. The
solid and dashed lines in (d) denote the lossless case with g,
= —2 and the lossy case with ¢,, = —2 +0. 02i, respective-
ly. The relevant parameters are the same as those in Fig. 1
B2 (a)8 =2kt R &K, (b) TE ik (i
@RhZ) 1 TM fidfk (R @20 T IAEIRIZL. () TE
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The above two kinds of PBSs are based on the sepa-
rated parabolic dispersion of the TM polarization. Interest-
ingly, the two branches of parabolas can be tuned to be
crossed. In Fig. 3, we show that based on the crossed
parabolic dispersion, a new kind of PBSs can be a-
chieved. Figure 3(a) illustrates the designed PBS, show-
ing that the normally incident TE polarized waves will
propagate through the multilayered structure without re-
fraction. On the other hand, the TM polarized waves split
into two beams having symmetric span angles around sur-
face normal. Therefore, the propagation directions of the
two polarizations are separated in the simple multilayered
structure. The mechanism of the beam splitting for the TM
polarization relies on the crossed parabolas (Fig. 3 (b))
as the result of surface plasmon-induced nonlocal effect.
This means that this kind of PBS is unique and not realiz-
able in metamaterials described by local parameters.

Simulation results are presented in Fig. 3 (c¢), in
which the left and right figures correspond to the TE and
TM polarizations, respectively. The color (arrows) de-
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Fig.3 (a) Schematic of the third kind of PBS. (b) The
EFCs for TE (blue lines) and TM ( green lines) polariza-
tions. (c) Snapshots of the magnitude (color) and direction
(arrows) of the time-averaged power flow for TE (left) and
TM (right) polarized waves under normal incidence. The
thickness of the multilayered structure is w =1. 6A. (d) The
distribution of time-averaged power flow along the dashed
lines in (c¢) for TE (blue lines) and TM ( green lines) polar-
izations. The solid and dashed lines in (d) denote the lossless
case with g,, = —4 and the lossy case with ¢,, = -4 +0. 04i,
respectively. The relevant parameters are g, =1, f,, =0.2 and
a=\/8
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m

notes the magnitude ( direction) of the time-averaged
power flow. The relevant parameters are g, =1, g, =

-4, f.=0.2 and a =A/8. It is clearly seen that the TE
polarized waves can propagate through the multilayered
structure (w =1.6A) without splitting, while the TM po-
larized wave are symmetrically split into two beams. As a
result, there is a wall-off distance in the y direction for
the transmitted TE and TM polarized beams, as demon-
strated by the distributions of the time-averaged power
flow in Fig. 3(d), in which the solid and dashed lines
denote the lossless case with ¢, = —4 and the lossy case
with g, = =4 +0. 04{, respectively. Here, the transmis-
sion of this kind of PBSs is not quite high due to the im-
pedance mismatch and material losses, which actually
can be relieved by using antireflection layers"™® and
. . . 750601
optical gain media .
Finally, we note that all the proposed PBSs in the a-
bove can be realized in practice. For instance, in 2012,
Subramania et al. fabricated a Ag-TiO, multilayered
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structure with a near-zero average permittivity in the opti-
cal regime'®'. After this work, similar multilayered
structures have been fabricated by exploiting Ag and SiN
layers'® | Au and SiO, layers'®’, Ag and SiO, lay-

ers'®). These experimental investigations manifest that

practical implementation of the proposed PBSs is realiza-

ble.
2 Conclusions

In summary, we have proposed three kinds of PBSs
by using metal-dielectric multilayered structures based on
different dispersions of TE and TM polarizations. The
surface plasmon-induced nonlocality results in parabolic
dispersion for the TM polarization when the average per-
mittivity is near zero. Interestingly, the designed PBSs
can be ultrathin, which may have important applications
in compact optical devices.
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