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Abstract; Taking Cr** ; YAGs as saturable absorbers and reflective volume Bragg gratings (RVBG) as output mirror,
passively Q-switched operation of flash-lamp pumped Nd: YAG single-longitudinal-mode ( SLM) laser was demonstra-
ted. Single-frequency operation is accomplished for all output powers by twisted mode cavity and RVBG. This method
can bring higher energy and stability. The maximum linewidth of SLM laser is about 78 MHz. The curve of energy and
pulse width have been obtained under conditions of several Cr** ; YAGs with different initial transmissivity. The maxi-
mum SLM laser output energy is 20. 8 mJ, minimum pulse duration is 13.2 ns and peak power is 1. 18 MW.
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Introduction

Q-switched SLM lasers in a nanosecond regime
with a stable repetition rate are widely used in applica-
tions such as laser remote sensing, laser satellite net-
working, laser communication, and many nonlinear
Laser diode (LD) pumped
passively Q-switched ( PQ) laser has been studied
generally because of its high efficiency. However it is

optical experiments''!.

limited in some field because of its low peak power of
laser pulse'*
properties of the Q-switched lasers, such as SLM,

single transverse mode ( STM), stable pulse shape

. Most of applications require additional

and pulse width, or ultra-compact and rugged oscilla-

tors with some, or all, of the above properties"’.
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Longitudinal mode selection, which requires
both narrow line width and easy to achieve, is of sig-
nificance in the SLM system. The wavelength selec-
tivity system can be described as spectral selector. La-
ser cavity designed for a SLM is usually based on
spectral selectors which contain multiple dispersive el-
ements '*!. The SLM laser only operates about thresh-
old of laser with common methods because of mode
competition, namely the output energy is low. The
higher SLM energy and stability is the goal of re-
searchers. A new type of longitudinal mode selector
for solid state lasers has been proposed. This ap-
proach is based on intra-cavity mode selection by u-
sing volume Bragg grating ( VBG) recorded on pho-
to-thermo-refractive ( PTR) glass %!, The RVBG
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works as output coupler in CW, pulsed solid state and
semiconductor lasers. It can bring very excellent per-
formance in SLM laser system.

1 Experimental setup

In the experiment, a RVBG is added into the
twisted mode cavity for both mode selection and stabi-
lization of SLM The typical twisted mode cavity core

is composed of two quarter wave plates and a polariz-

[8]

er'’l. Based on Kogelnik s theory '*!, Ciapurin de-

rived the relationship between diffraction efficiency of

RVBG and the detuning from center wavelength 1.

1_(A2AA)2 B

2nm/5n
n = 1+ (1)
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where 7, denotes the average refractive index of the

grating, §, represents the index modulation, d is the
thickness of grating, f is the spatial frequency of grat-
ing modulation, A is the wavelength of laser, A A re-
presents the detuning from center wavelength.

The Efficiency of Grating
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Fig.1 The relation between diffraction efficien-
cy and the error of central wavelength
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The diffraction efficiency of RVBG is shown in
Fig. 1, where central wavelength is at 1 064. 4 nm.
The spatial frequency of the grating is 2 793 mm ',
the average refractive index is 1.49 with a modulation
of 2.7 x10 >, The thickness of RVBG, which plays
an important role in high reflectivity and narrow band-
width, is the only variable in our mathematical model.

In order to achieve a stable SLM laser, twisted
mode cavity and RVBG are employed in oscillator, as
shown in Fig. 2. The RVBG used in this experiment

with narrow spectral selectivity was designed mainly

for longitudinal mode selection. The spectral profile
of the diffraction efficiency of RVBG centered at ~
1064. 4 nm is shown in Fig. 3. The RVBG has band-
width (FWHM) of about 0. 05 nm along with the
maximum diffraction efficiency of 90. 6% as shown
in Fig. 3. The physical dimension of RVBG is 8.0
mm X 6.2 mm x 18.66 mm. The important feature of
RVBG is that diffraction efficiency strongly depends
on incident wavelength. Other wavelengths have big
losses except the center wavelength. So it is easy to
get the higher diffraction efficiency around the centre
wavelength. Therefore, a SLM laser can be achieved.
The schematic diagram of the PQ Nd:YAG SLM la-
ser is shown in Fig. 2. The Nd: YAG laser cavity
mainly consists of five parts: a total reflection mirror
(TRM ), a twisted mode selector, passively Q-
switched crystal, an adjustable aperture for transverse
mode selection and a RVBG as an output coupler.
The total reflectivity of the flat end mirror is greater
than 99% . The Nd: YAG crystal, the dimension of
which is 5-mm in diameter and 80 mm in length,
pumped by a single flash-lamp. And the doped con-
centration is 1% . The Nd:YAG is cooled by water a-
bout 20 C. The twisted mode include two 1/4 wave-
plates at 1 064 nm and a polarizing disc which is laid
by Brewster angle. Total optical length of laser was a-
bout 22. 5 cm. The Cr**. YAG saturable absorber
was laid near the total reflection mirror. Q-switched
pulses were readily observed with an energy detector,

PIN photodiode and digital oscilloscope.

Gr4+:YAG:

Fig. 2 Schematic of passively Cr** : YAG Q-switched
Nd:YAG SLM laser pumped by flash lamp
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2 Data analyzation

Nine different Cr**: YAG absorbers with nine
different initial transmissivity are shown in Table. 1.

The tenth parameter with initial transmissivity 100%
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Fig.3 The transmissivity of the RVBG depends on
wavelength
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means that there is no Q-crystal in the cavity. The en-
ergy, pulse width and peak power results under differ-
ent conditions were studied. The highest SLM energy
20. 8 mJ was obtained with the absorber having
79. 5%
pulse- width 13. 2 ns was obtained with the absorber

initial transmissivity and narrowest SLM

having 21. 7% initial transmissivity. The maximum

peak power is about 1. 18 MW.

Table 1 The serial numbers of different initial transmissiv-
ity of Cr** . YAG
£1 FEH Cr'* . YAG #HRiET RE
Number 1 2 3 4 5 6 7 8 9 10
Transmissivity(% ) 21.7 30.4 35.2 46.7 50.4 56 64.8 72.7 79.5 100

The energy of laser as shown in Fig. 4 was detec-
ted by detector ( Newport 818E). The switched pulse
energy changes obviously under the conditions of differ-
ent Cr'" . YAG with different initial transmissivity. The
prime reason is that threshold of laser cavity has been
changed for different Cr** : YAG. Other reasons may
be the unstability of laser cavity, cooling water and
flash lamp as shown in Fig. 2. the laser output can no
longer stabilize the central lasing mode at higher pump
energy. In the experiment, the multimode emission oc-
curs when the pump power exceeds 115% of the
threshold. The fifth Cr** . YAG is unusual because of
its low energy output. Some exiguous cracks was found

in this piece of Cr**

: YAG after very careful examina-
tion. The crack is too tiny to show them in pictures. At
each measurement, we record twenty energy data were
recorded in sequence and the standard error is analyzed
with Origin 8. 5.

The spectrum of laser wasmeasured by the method

of F-P photographic process using two lenses, an F-P
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Fig. 4 The energy of SLM laser output with dif-
ferent Cr'* ; YAG
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etalon and a CCD as shown in Fig. 5. In experiment,
the F-P has 18.7 pm free spectral range at A =1 064
nm. The physical dimension of F-P is 2 c¢m at length
and 2.5 cm in diameter. In experiment the material of
etalon is BK7 glass with refractive index 1.506 1 at the
wavelength 1 064 nm. The free-spectral range of the
etalon is 4. 98 GHz corresponds to 18.7 pm in wave-
length. The two lenses were used to produce interfer-
ence fringes on the surface of CCD camera. The focus
of lens 1 is 30 mm and the lens 2 is 100 mm. The sen-
sitive dimension of CCD is 7.6 mm X 6.2 mm. And
the line width of laser can also be measured by the
CCD system ',
Fig. 6 indicate that the laser operates at SLM. The
maximum linewidth of SLM laser is about 78 MHz
based on the method in Ref. 10.

The interference fringes shown in

r-=—=—"""

Monitor

Fig.5 The structure scheme of displaying SLM
and linewidth of laser
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The typical normalized waveform of laser pulse
with the first Cr** ; YAG and the pulse width is 13.2 ns

was shown in Fig. 7. The waveforms of pulse under

4+

other Cr"" ; YAG are similar. The pulse width decrease



392 ahh 5 2K ¥R 31 %

Fig. 6 Interference ring of SLM
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when the initial transmissivity of Cr** . YAG increase as
shown in Fig. 8. The narrowest pulse duration is 13.2
ns. At each measurement, ten energy data were recor-
ded in sequence and the standard error is analyzed with

Origin 8.5 too.
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Fig. 7 The normalized waveform of laser pulse
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Fig. 8 Pulse duration of SLM laser output with
different Cr** ; YAG
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The peak power shown in Fig. 9 is calculated
from the energy and pulse width. The peak power de-
creases following the decrease of the initial transmissiv-
ity of Cr** : YAG. The fifth is unusual too.
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Fig. 9 Peak power of SLM laser output with different
Cr'* . YAG
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3 Conclusions

In conclusion, the operation of a flash lamp
pumped Nd: YAG SLM laser passively Q-switched by
Cr** . YAGs saturable absorber was described. Along
with the common structure-twisted mode cavity, the
high-precision spectral selective character of RVBG
can bring high energy and stability of SLM laser out-
put. The maximum linewidth of SLM laser is about
78 MHz. This maximum energy of laser is 20. 8 mJ,
minimum pulse width 13. 2 ns and maximum peak
power 1.18 MW at 1 Hz repetition rates.

With good stability in terms of energy and fre-
quency fluctuations, the extremely narrow lasing line
width will be achieved on condition that the compact
and robust design is finished. Then it is an interesting
device for applications such as Lidar systems and non-

linear optics.
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