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AlGaN/GaN HEMT with 200 GHz fmax on
sapphire substrate with InGaN back-barrier
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of 200

GHz is reported. The gate-recessed device with a T-shaped gate exhibits a maximum drain current density of 1.1 A/mm,

Abstract: A gate-recessed AlGaN/GaN high electron mobility transistor (HEMT) on sapphire substrate having f,
and a peak value of 421 mS/mm for extrinsic transconductance with minimum short-channel effects because of an InGaN
back-barrier layer. A unity current gain cut off frequency(f, ) of 30 GHz and a maximum oscillation frequency(f,, ) of 105
GHz were obtained. After removing SiN by wet etching, the f; of the device increase from 30 GHZ to 50 GHz and the fmax
increases from 105 GHz to 200 GHz, which are the results of lower C_ and C,
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Introduction

Great development of AlGaN/GaN high-electron
mobility transistors ( HEMTs ) has been achieved in
recent years. AlGaN/GaN HEMTs have demonstrated
high current levels, high breakdown voltages, and high
frequency power performance due to the unique proper-
ties of the material. At Ka-band and higher frequency,
excellent performances were reported, such as output

power densities in excess of 10 W/mm at 40 GHz and
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more than 2 W/mm at 80. 5 GHz on SiC sub-
strates' '™ .

However, for a Ka-band power device there are
still some problems to be solved such as short-channel
effects '**' | higher fmax and so on. The short-channel
effects deteriorate the pinch-off characteristic; the
threshold voltage will reduce with the increase of the
drain voltage. The short-channel effects also limit the

high-frequency characteristics, which increasing moni-

dealities in cut off frequency and maximum oscillation
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frequency of the devices. Some effective methods were
reported to restrain short-channel effects, for example,
introducing an extrinsic impurity such as Fe and inser-
ting an InGaN back-barrier on the GaN buffer layer "*'.

Another problem is how to increase the maximum
oscillation frequency ( f,.. ) which describing the
devices’ power ability. Some effective methods were
reported ; using gate-recess technology, optimizing the
structure of the device and so on ',

In this article, we report a gate-recessed AlGaN/
GaN HEMT on sapphire substrate having f,  of 200

GHz.

1 Experimental

The AlGaN/GaN transistor structure was grown on
a sapphire substrate by MOCVD. The heterostructure is
consisted of a 1.5 wm-thick GaN buffer layer, a 80A
In, osGa, os N back-barrier layer, a 80A GaN layer, a
Inm AIN layer, a 14 nm undoped AlGaN layer in
which the Al composition is 30% , and an undoped
15A-thick GaN cap layer, as shown in Fig. 1. The
2DEG mobility and sheet carrier concentration were

1296 ¢cm®/ V + s and 1.37 x 10" cm 2

, respectively.

Gate

Fig.2  Schematic of AlGaN/GaN HEMTs devices
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Fig. 1 Structure of epi-layers
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Source and drain ohmic electrodes were formed by
evaporating Ti/Al/Ni/Au, which was then alloyed
using rapid thermal annealing at 850°C for 30 seconds.
The contact resistivity evaluated by transmission-line
matrix measurements was 10 ° Q + em’. Device isola-
tion was accomplished by ion implantation. A 120 nm-
thick Si;N, was then deposited using plasma-enhanced
CVD. Afier a gate footprint was opened through the
SiN film using SF, plasma dry etching, gate recess
etching was performed using Cl, and BCl; plasma dry
etching by ICP. Electron-beam lithography was applied
to define a T-shaped gate using PMMA/Al/UVIIL.
Ni/Au was used as a gate metal, and then the device
was provided with a Ti/Au metallization, as shown in
Fig. 2.

Finally, the Si; N, film was wet etched by HF
(49% ): NH,F(40% ): H,0=1: 1: 1, then the
215 nm physical gate length was confirmed by scanning

electron microscope (SEM), as shown in Fig. 3.
2 Results and discussion

A 75 pm AlGaN/GaN HEMT device was select-
ed, with 2.4 pm source and drain separation. The d¢
characteristics, the small signal RF characteristics were
tested.

Fig. 4 shows the DC characteristics of the fabrica-
ted 215 nm gate-recessed AlGaN/GaN HEMT. The
maximum drain current at U, =3 V was 1. 1 A/mm,
and the peak transconductance at U, =6 V was 421
mS/mm. The breakdown voltage was over 100 V at U,
=-2V.

To study the short-channel effects of the AlGaN/
GaN HEMT device, the transconductances of the tran-

Fig.3 SEM image of the 215 nm T-shaped gate
[¥3 215 nm T FAEY SEM fR ;5
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Fig.4 Characteristics of AlGaN/GaN HEMT (a) DC character-
istics (b) transfer characteristics at U, = 6 V
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sistor at different drain voltages were measured. It can
be seen in Fig. 5, the pinch-off characteristic of the de-
vice was excellent. The threshold voltage changed from
-1.5 Vito —2.4 V when drain voltages changing
from 10 V to 50 V. And the drain-induced barrier low-
ering (DIBL) is 30 mV/V.

It is because of a better confinement of the elec-
trons in the 2DEG channel with an InGaN back-barrier
layer. Although the InGaN layer has a narrower
bandgap compared with the GaN layer, the strain-in-

duced piezoelectric polarization in the InGaN layer rai-

ses the potential in the InGaN layer, effectively crea-
ting a high potential barrier. This additional barrier at
the backside of the channel leads to better carrier con-
finement and better buffer isolation, which in turn, en-
ables improved device performance, such as better
pinch-off characteristic and higher fmax.

The small signal RF measurements of AlGaN/GaN
HEMT were applied. Fig. 6 shows the plots of the cur-
rent gain | H, |, the maximum stable power gain
(MSG) and maximum available gain ( MAG) versus
frequency for the device. It can be seen that the f is
30 GHz, the f,,, is 105 GHz.

The Si;N, film of the device was wet etched by HF
(49% ) . NH,F(40%): H,0=1: 1: 1. Fig. 7
shows the DC characteristics of AlGaN/GaN HEMTs
devices before and after wet etching of Si;N, film.

It can be seen that after wet etching of Si;N, film,
drain saturation currents at U, =3 V was reduced by
20% . The peak transconductance at U, =6 V was re-
duced by 5% .

Fig. 8 shows the plots of the small signal charac-
teristics of AlGaN/GaN HEMT before and after wet
etching of Si; N, film. It can be seen that after wet
etching of SiN film, the f; increases to 50 GHz and the
Jonax Increases to 200 GHz.

The small-signal equivalent circuit parameters of
the device before and after wet etching of Si; N, film
were extracted. Table 1 shows the small-signal equiva-

lent circuit parameters, C, and C .
& e
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Table1 C, and C,, of the device before and after wet
etching of SiN
€. (pF) Coa (pF)
Belore wet etching 0.111 0.02
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Fig.7  Characterigtics of AlGaN/GaN HEMT before and after
wet etching of SiN (a) DC characteristics ( b) transfer character-
istics at U,, =6 V
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Fig.8 Small signal characteristics of AlGaN/GaN HEMT be-
fore and after wet etching of SiN
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With the removing of Si;N, film, the capacitances
between passivation layer and gate metal are de-
creased. Thus, C, and C,, are decreased. Then the f;

and f, will increase based on Eq. 1 and 2.

gm
fT = R +R ,(1)
e+ cgd)(1 . d)+ £.CuCR 4R

ds

Jonas @ ! ;

4 o lg
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ad

ds

It can be seen that except C, and C,,, the other
parameters such as R, R,, R;, R, R, L_, etc. also
effect f; and f, .. More works should be done to opti-
mize the structure of AlGaN/GaN HEMTs devices.

3 Conclusion

In this article, we report a gate-recessed AlGaN/
GaN HEMT on sapphire substrate having a f, _ of 200
GHz. The gate-recessed device with a T-shaped gate
exhibits a maximum drain current density as high as
1.1 A/mm, and a peak extrinsic transconductance of
421 mS/mm with minimum short-effects. A unity cur-
rent gain cutoff frequency (f;) of 30 GHz and a maxi-
mum oscillation frequency (f,, ) of 105 GHz were
obtained. After the Si;N, film wet etched, the f; of the
device increases to 50 GHz and the f  increases to
200 GHz. The reason is that with the removing of

Si;N, film, €, and C, are decreased.
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