A novel ZnO photoanode with high specific surface area and good light scattering ability was fabricated for dyesensitized solar cells(DSSCs). The photoanode comprised of mesoporous ZnO microspheres which were prepared by a solvothermal process. The structures and morphologies of ZnO microspheres were measured and confirmed by means of x-ray diffraction ( XRD), scanning electron microscopy ( SEM ), energy dispersive spectrum ( EDS ), and multi-point Brunauer- Emmett-Teller(BET) analysis. ZnO microspheres are in sub-micrometer scale and have BET specific surface area of - m^2·g^-1. Furthermore, a - 3μm thick photoanode made from ZnO microspheres resultes in a preliminary short-circuit current density( Jsc ) of - 4. 5mA · cm^-2 with an open-circuit voltage (Vooc) of -602mV and a conversion efficiency of 1.28% in DSSCs. All these suggest that mesoporous ZnO microspheres can be an alternative and feasible photoanode material for DSSCs. Key words: ZnO; mesoporous microsphere; dye-sensitized solar cells (DSSCs)
Reference
Related
Cited by
Get Citation
TAO Jun-Chao, SUN Yan, GE Mei-Ying, CHEN Xin, DAI Ning. PREPARATION OF MESOPOROUS ZnO MICROSPHERES AND THEIR APPLICATION IN DYE-SENSITIZED SOLAR CELLS[J]. Journal of Infrared and Millimeter Waves,2010,29(1):1~5