Investigation on broadband terahertz generation based on ultrashort laser pumped AlGaAs multilayer heterostructure
CSTR:
Author:
Affiliation:

1.School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang 330063, China;2.Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China

Clc Number:

O474

Fund Project:

Supported by the National Natural Science Foundation of China (12064028) ; Open Fundation of Key Laboratory of Nondestructive Testing (Ministry of Education), Nanchang Hangkong University (EW202108218)

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Semiconductor heterostructures have great ability to bind carriers and the potential to produce high power terahertz radiation. However, the intensity of terahertz radiation is substantially reduced, due to the interference effects of incoherent oscillations of plasma in the heterostructure. Thus in the AlGaAs ) multilayer heterostructure, it is able to adjust the absorption coefficient of the narrow band-gap layer by adjusting the aluminum molar fraction, which makes the excitation carriers number in each narrow band-gap layer approximately the same, achieving the goal of almost completely eliminating the interference effects. Based on the AlGaAs multilayer heterostructure terahertz radiation model, the properties of broadband terahertz radiation are studied with the numerical calculations, the quantitative relationships between the pump laser pulse width and the generated terahertz pulse are obtained, and the influence of pump laser pulse parameters on the parameters of generated terahertz pulse is also analyzed. This study provides a reference for the development of broadband terahertz radiation sources based on the semiconductor.

    Reference
    [1] Neu J, Schmuttenmaer C A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS) [J]. Journal of Applied Physics, 2018, 124(23): 231101.
    [2] Amenabar I, Lopez F, Mendikute A. In introductory review to THz non-destructive testing of composite mater [J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2013, 34(2): 152-169.
    [3] Pelusi M, Vo T D, Luan F, et al. Terahertz bandwidth RF spectrum analysis of femtosecond pulses using a chalcogenide chip [J]. Optics Express, 2009, 17(11): 9314-9322.
    [4] John T, Xi C J, Nathan J, et al. Review of THz-based semiconductor assurance [J]. Optical Engineering, 2021, 60(6): 060901.
    [5] Grachev Y V, Liu X R, Putilin S E, et al. Wireless data transmission method using pulsed THz sliced spectral supercontinuum [J]. IEEE Photonics Technology Letters, 2018, 30(1): 103-106.
    [6] Fischer M, Walther M, Jepsen P U. Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy [J]. Physics in Medicine and Biology, 2002, 47(21): 3807-3814.
    [7] Ulbricht R, Hendry E, Shan J, et al. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy [J]. Reviews of Modern Physics, 2011, 83(2): 543-586.
    [8] WU Meng, ZHAO Guo-Zhong, WU Li-Zhong. Terahertz spectroscopic investigation of ellagic acid [J]. Chinese Journal of Quantum Electronics, 2010, 27(1): 1-5.吴猛, 赵国忠, 武利忠. 鞣花酸的太赫兹光谱研究 [J]. 量子电子学报, 2010, 27(1): 1-5. 10.3969/j.issn.1007-5461.2010.01.001
    [9] DU Hai-Wei. Terahertz wave generation and detection based upon ultrafast laser technology [J]. Chinese Journal of Quantum Electronics, 2013, 30(3): 257-267.杜海伟. 基于超快激光技术的THz波产生和探测 [J]. 量子电子学报, 2013, 30(3): 257-267. 10.3969/j.issn.1007-5461.2013.03.001
    [10] SUN Bo, YAO Jian-Quan. Generation of Terahertz Wave Based on Optical Methods [J]. Chinese Journal of Lasers, 2006, 33(10): 1349-1359.孙博, 姚建铨. 基于光学方法的太赫兹辐射源 [J]. 中国激光, 2006, 33(10): 1349-1359. 10.3321/j.issn:0258-7025.2006.10.012
    [11] DU Hai-Wei. Research of terahertz wave radiation from photocurrent antenna [J]. Laser & Optoelectronics Progress, 2009, 46(7): 45-48.杜海伟. 光电导天线太赫兹辐射研究 [J]. 激光与光电子学进展,2009,46(7):45-48.
    [12] Reklaitis A. Terahertz emission from InAs induced by photo-Dember effect: Hydrodynamic analysis and Monte Carlo simulations [J]. Journal of Applied Physics, 2010, 108(5): 053102.
    [13] Weiss C, Wallenstein R, Beigang R. Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces [J]. Applied Physics Letters, 2000, 77(25): 4160-4162.
    [14] Mclaughlin R, Corchia A, Johnston M B, et al. Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field [J]. Applied Physics Letters, 2000, 76(15): 2038-2040.
    [15] Liu K, Xu J Z, Yuan T, et al. Terahertz radiation from InAs induced by carrier diffusion and drift [J]. Physical Review B, 2006, 73(15): 155330.
    [16] Rasulova G K, Pentin I V, Goltsman G N. Terahertz emission from a weakly-coupled GaAs/AlGaAs superlattice biased into three different modes of current self-oscillations [J]. AIP Advances, 2019, 9(10): 105220.
    [17] Dreyhaupt A, Winnerl S, Dekorsy T, et al. High-intensity terahertz radiation from a microstructured large-area photoconductor [J]. Applied Physics Letters, 2005, 86(12): 121114.
    [18] Sammon M, Zudov M A, Shklovskii B I. Mobility and quantum modern GaAs/AlGaAs heterostructures [J]. Physical Review Materials, 2018, 2(6): 064604.
    [19] Reklaitis A. Coherence of terahertz emission from photoexcited electron-hole plasma: Hydrodynamic model and Monte Carlo simulations [J]. Physical Review B, 2008, 77(15): 153309.
    [20] Adachi S. Optical Properties of alloys [J]. Physical Review B, 1988, 38(17): 12345.
    [21] Chen L C, Fan W H. Study on finger capacitance of terahertz photomixer in low-temperature-grown GaAs using Finite Element Method [J]. Chinese Physics B, 2012, 21(10): 104101.
    [22] Reklaitis A. Monte Carlo analysis of terahertz oscillations of photoexcited carriers in GaAs p-i-n structures [J]. Physical Review B, 2006, 74(16): 165305.
    [23] Reklaitis A. Crossover between surface field and photo-Dember effect induced terahertz emission [J]. Journal of Applied Physics, 2011, 109(8): 083108.
    [24] CHENG Wen-Qin, LIU Shuang, ZHOU Jun-Ming, et al. Photoluminescence of (110) modulation-doped GaAs-AlGaAs heterostructures. Acta Physica Sinica, 1993, 42(9): 1529-1531.程文芹, 刘双, 周均铭,等. (110)取向的调制掺杂GaAs-AlGaAs单异质结的光致荧光谱 [J]. 物理学报, 1993, 42(9): 1529-1531.
    [25] LIU Lin-Sheng, WANG Wen-Xin, LIU Su, et al. Growth of AlGaAs on GaAs (110) Surface by Molecular Beam Epitaxy [J], Journal of Semiconductors, 2007, 28(9): 1411-1414.刘林生, 王文新, 刘肃, 等. 用分子束外延技术在GaAs(110)衬底上生长AlGaAs材料 [J]. 半导体学报, 2007, 28(9): 1411-1414. 10.3321/j.issn:0253-4177.2007.09.016
    [26] Satoshi I, Hidekazu S, Ken W, et al. Growth condition dependence of photoluminescence polarization in (100) GaAs/AlGaAs quantum wells at room temperature [J]. Journal of Applied Physics, 2015,118(8): 083901.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

SUN Chang-Ming, LI Qiang-Shuang, DU Hai-Wei, WU Tao, FU Yan-Jun. Investigation on broadband terahertz generation based on ultrashort laser pumped AlGaAs multilayer heterostructure[J]. Journal of Infrared and Millimeter Waves,2023,42(4):497~503

Copy
Share
Article Metrics
  • Abstract:222
  • PDF: 1262
  • HTML: 163
  • Cited by: 0
History
  • Received:October 12,2022
  • Revised:June 03,2023
  • Adopted:February 03,2023
  • Online: June 02,2023
Article QR Code