FY-2B 气象卫星红外通道发射前实验室定标与在轨辐射定标比较

戎志国 邱康睦 胡秀清 张玉香
（国家气象卫星中心，北京，100086）

摘要 FY-2B 是自旋稳定卫星，红外通道无法进行在轨上绝对定标。FY-2B 发射前的地面实验室定标方案参考了 FY-2A 在轨环境温度的变化情况，定标结果十分理想。在轨电子学定标数据修正红外通道的量化关系，得到的结果与利用青海湖进行的同步场地辐射定标结果非常接近。

关键词 FY-2，实验室定标，在轨定标，场地辐射定标，红外，亮温，辐亮度。

COMPARISON OF PRE-LAUNCH CALIBRATION IN LAB WITH THE RADIOMETRIC CALIBRATION IN ORBIT FOR FY-2B METEOROLOGICAL SATELLITE’S IR CHANNEL

RONG Zhi-Guo QIU Kang-Mu HU Xiu-Qing ZHANG Yu-Xiang
（National Satellite Meteorology Center, Beijing 100081, China）

Abstract The FY-2B is a satellite with the spin stabilized attitude, it is hard to make the absolute calibration for its IR channel while the satellite is in orbit. As the satellite’s pre-launch Lab calibration had a reference on the in-orbit environment temperature changes of FY-2A. its calibration is ideal. With the correction on quantitatively relationship of the IR channel by the in-orbit electronic calibration, the obtained results are very close to the ones from the simultaneous site radiometric calibration over the Qinghai lake.

Key words FY-2 calibration in Lab, calibration in orbit, radiometric calibration, infrared, brightness temperature, radiance.

引言

FY-2B 采用了编号 9902 的扫描辐射计。

为了修正已发射上天的 9902 扫描辐射计红外、水汽通道的定标结果，在对定标设备进行了无涂化改造后，2000 年 12 月对 9901 进行了复定标，以验证定标结果受污染的程度，并得到对在轨的 9902 辐射计的定标结果进行修正的依据。

利用辐射校正场对卫星进行在轨辐射定标，是对在轨卫星定标的一种有效手段。国家卫星气象中心外定标试验队分别于 2000 年 8 月下旬、2001 年 8 月上旬在青海湖外定标场对 FY-2B 卫星红外通道进行了在轨辐射定标试验，取得了较好的结果。

1 FY-2B 红外通道发射前定标和在轨定标

FY-2B(03)星的实验室定标参照了 FY-2A 星在轨时的环境温度分布的变化，以主镜为主线，设定和控制次镜的几种温度状况，每种状况进行一组定标。9902 正样产品辐射定标试验在辐冷器二级冷
块温度 95 K 时, 共测定了 6 种不同主镜和次镜温度状态. 其中第 2、第 3 种状态时, 主镜的温度设定相同而只变化次镜的温度, 其它部件的温度随主镜温度而变化. 100 K 时测定了两组. 星上黑体在每种状态下, 切入后光路定标一次. 定标时的各部件温度见表 1.

根据实验室的定标数据即可进行定标计算.

1.1 定标方法

由测定的目标黑体温度 T 通过积分计算可得出相应的辐射度 L_n(u, T); (为了与外标结果进行比较, 用波数公式计算).

$$L_n(u, T) = \int_{v_1}^{v_2} \frac{2\hbar c^2 v^3}{\exp(hc v/kT) - 1} du, \quad (1)$$

式(1)中 k 是普朗克常数, c 是光速, 而 k 是玻尔兹曼常数. 波数 v_1 = 769 cm^{-1}, v_2 = 1000 cm^{-1}.

目标黑体的发射率 ε(v) 和辐射计的光谱响应函数 φ(v) 由研制单位提供, 辐射度 L_d(v, e, T) 可以写为

$$L_d(v, e, T) = \int_{v_1}^{v_2} \Phi(v) \cdot \epsilon(v) \cdot \frac{2\hbar c^2 v^3}{\exp(hc v/kT) - 1} du, \quad (2)$$

发射率 ε(v) 为常数, 等于 0.999.

对于 FY-2B 红外、水汽通道的通道波谱范围, v_i 是连续的. 式(2)的积分可以简化为 L_n(T) 对 v 的求和, 即

$$L_d(T) = \sum_{v_i}^{v_{i+1}} \Phi(v_i) \cdot \epsilon(v) \cdot \frac{2\hbar c^2 v^3}{\exp(hc v/kT) - 1}, \quad (3)$$

对式(3)进行归一化处理后, 将得到等效辐射度 L_e(T)

$$L_e(T) = \frac{L_d(T)}{\int_{v_1}^{v_2} \Phi(v) \, dv} \quad (4)$$

式(4)中 L_e(T) 的单位是 MW/(m²·sr·cm⁻¹).

处理 9902 实验室定标数据即可得到目标辐射度与输出电压的关系. 辐射度 L 与电压 U 为线性关系, 见式(5)

$$L = A \times U + B, \quad (5)$$

其中 A, B 为拟合系数.

根据卫星研制部门提供的 FY-2(03) 扫描辐射计红外和水汽通道 A/D 量化关系, 可以得到计数值与电压的关系, 见式(6) 和图 1. 它是发射前设定的电路输出量化关系

$$U = A \times D C + B, \quad (6)$$

其中斜率 A = 19.644, 截距 B = 119.89, U 为电压, DC 为计数值.

从式(5) 和式(6) 可以看出, 计数值与辐射度也是线性关系, 在轨标定确定的就是两者之间的关系.

$$L = \alpha \times DC + \beta, \quad (7)$$

卫星在轨时各通道每次扫描观测的头几行需要测定有关标定信息, 包括电定标阶梯、黑体计数值和空间计数值等. 此时的电定标阶梯是卫星在空间环境中得到的. 用它与电定标的关系, 可以得到卫星电路输出的实际量化关系. 红外 A 增益第 08 级时, 其各阶梯电压输出值为: 0.0, 0.589, 1.107, 1.593, 2.079, 2.264. 图 2 为 FY-2B 在轨的电定标过程图, 红外与水汽通道的阶梯计数值基本一样, 阶梯电压与计数值之间的关系图 (图 1) 中的短线, 可以看出阶梯的量化关系与地面给定的 A/D 量化关系的一致, 而分辨率为 120 mV(约 6 个计数值). 在

<table>
<thead>
<tr>
<th>序号</th>
<th>辐冷温度</th>
<th>主镜温度</th>
<th>次镜温度</th>
<th>折镜温度</th>
<th>定标镜温度</th>
<th>星上黑体温度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95.24</td>
<td>275.2</td>
<td>289.3</td>
<td>275.6</td>
<td>267</td>
<td>280.3</td>
</tr>
<tr>
<td>2</td>
<td>95.24</td>
<td>278.9</td>
<td>282.2</td>
<td>278.53</td>
<td>269.57</td>
<td>280.6</td>
</tr>
<tr>
<td>3</td>
<td>95.24</td>
<td>278.08</td>
<td>288.15</td>
<td>278.41</td>
<td>269.55</td>
<td>281.31</td>
</tr>
<tr>
<td>4</td>
<td>95.24</td>
<td>280.08</td>
<td>289.15</td>
<td>280.37</td>
<td>270.93</td>
<td>280.52</td>
</tr>
<tr>
<td>5</td>
<td>95.25</td>
<td>282.12</td>
<td>292.15</td>
<td>282.39</td>
<td>272.71</td>
<td>280.98</td>
</tr>
<tr>
<td>6</td>
<td>95.25</td>
<td>285.2</td>
<td>293.4</td>
<td>285.4</td>
<td>275.4</td>
<td>281.12</td>
</tr>
<tr>
<td>7</td>
<td>99.89</td>
<td>278.13</td>
<td>288.1</td>
<td>278.45</td>
<td>269.4</td>
<td>280.57</td>
</tr>
<tr>
<td>8</td>
<td>99.89</td>
<td>281.15</td>
<td>290.92</td>
<td>281.43</td>
<td>272.63</td>
<td>280.79</td>
</tr>
</tbody>
</table>

图 1 FY-2(03) 红外与水汽通道 A/D 量化分析

Fig. 1 The A/D quantitatively relationship of the IR & WV channels and the electronic calibration in-orbit for FY-2(03)
轨电定标量化是卫星输出(计数值)的真实反映。

FY-2B电定标阶梯的输出非常稳定,在轨一年多未变,用2000年7月红外、水汽通道开通不久的一组阶梯确定的量化关系,系数为:19.572,截距:-8.869。我们以此作为定标的量化依据。

当\(DC = 0, 1, 2, \ldots, 254, 255 \) (反向后为:255,254,\ldots,2,1,0)将得到一组电压值\(U_i \),代入式(5)即可得到一组幅亮度值\(L_i \)。由光谱响应函数可以求得通道的中心波数\(\nu_0 \)。由幅亮度\(L_i \)及中心波数,可以反演出通道的目标幅温\(T_i \),

\[
T_i = \frac{hc\nu_0}{k}\ln(1 + 2hc^2\nu_0^2/L_i), \quad (8)
\]

用中心波数反演出的目标幅温有一定的误差,将此温度\(T_i \)代入式(3)和式(4),可得一幅亮度\(L_i' \),比较\(L_i' \)与\(L_i \),如二者相差超出误差范围,则给\(T_i \)一个修正量\(\Delta T \),使\(T_i' = T_i + \Delta T \),再重复以上过程,直至得到的目标幅亮度\(L_i' \),达到精度要求。

1.2 系统误差修正

由于FY-2(03)星的两套扫描辐射计在实验室标标时,发生了真空泵油泄漏汽化,导致真空容器中的定标器受到污染,使两套辐射计受到污染的过程是一样的,所以,为了修正已发射上天的9902扫描辐射计红外、水汽通道的定标结果,在对定标设备进行了无油化改造后,2000年12月对9901进行了重新定标,以验证定标结果受污染的程度,并得到对在轨的9902辐射计的定标值进行修正的依据。表2为上海技物所提供的9901两次红外、水汽通道实验室定标得到的定标曲线斜率变化及建议使用的修正量。

9901与上天的9902在实验室标标的不同环境不完全相同,且两套辐射计的AB两机也不完全相同及对应,因此,用9901的结果修正9902时只能用一个平均值:在红外通道的2.56%,在水汽通道为1.82%。不同温度点的幅亮度变化将引起不同的温度差,对于红外通道,2.56%的系统差最大能引起2K的误差。

利用系统差可以修正上轨辐射计红外、水汽通道的定标结果,得到定标系数、截距(反向后),以及定标查找表,95K的六组、100K两组的定标系数、截距见表3。

2 利用辐射校正场——青海湖对FY-2B红外通道进行在轨绝对辐射定标

在进行了严格的科学测量和分析后,中国遥感卫星辐射校正场选定位于青藏高原的青海湖水面上作为遥感卫星热红外通道的辐射校正场。

表2 9901两次红外、水汽通道实验室定标曲线斜率变化及建议使用的修正量

<table>
<thead>
<tr>
<th>状态</th>
<th>红外变化率(%)</th>
<th>红外建议修正值(%)</th>
<th>水汽变化率(%)</th>
<th>水汽建议修正值(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.39</td>
<td>2.60</td>
<td>2.99</td>
<td>1.90</td>
</tr>
<tr>
<td>2</td>
<td>2.94</td>
<td>2.30</td>
<td>2.62</td>
<td>1.80</td>
</tr>
<tr>
<td>3</td>
<td>2.95</td>
<td>2.05</td>
<td>2.50</td>
<td>1.65</td>
</tr>
<tr>
<td>4</td>
<td>2.95</td>
<td>2.11</td>
<td>2.53</td>
<td>1.62</td>
</tr>
<tr>
<td>5</td>
<td>2.80</td>
<td>2.37</td>
<td>2.59</td>
<td>2.05</td>
</tr>
<tr>
<td>6</td>
<td>2.87</td>
<td>2.80</td>
<td>2.83</td>
<td>2.16</td>
</tr>
<tr>
<td>7</td>
<td>2.24</td>
<td>2.20</td>
<td>2.22</td>
<td>1.17</td>
</tr>
<tr>
<td>8</td>
<td>1.95</td>
<td>1.93</td>
<td>1.94</td>
<td>1.52</td>
</tr>
<tr>
<td>9</td>
<td>2.67</td>
<td>2.97</td>
<td>2.82</td>
<td>1.79</td>
</tr>
<tr>
<td>平均值</td>
<td>2.75</td>
<td>2.37</td>
<td>2.56</td>
<td>1.74</td>
</tr>
</tbody>
</table>
表 3 利用星上电定标及系统修正过的 FY2B 在轨定标结果
Table 3 FY-2B's in-orbit calibration result that corrected by the in-orbit electronic calibration

<table>
<thead>
<tr>
<th>辐冷温度</th>
<th>序号</th>
<th>系数</th>
<th>裁距</th>
<th>主镜温度 K</th>
<th>次镜温度 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>95K</td>
<td>1</td>
<td>-0.5951</td>
<td>148.43</td>
<td>275.2</td>
<td>289.3</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.6028</td>
<td>150.47</td>
<td>278.9</td>
<td>282.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-0.6032</td>
<td>150.57</td>
<td>278.08</td>
<td>288.15</td>
</tr>
<tr>
<td>100K</td>
<td>4</td>
<td>-0.6099</td>
<td>152.12</td>
<td>280.08</td>
<td>289.15</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>-0.6139</td>
<td>153.3</td>
<td>282.12</td>
<td>292.15</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>-0.6254</td>
<td>156.27</td>
<td>285.2</td>
<td>293.4</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-0.6589</td>
<td>164.96</td>
<td>278.13</td>
<td>288.1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-0.6668</td>
<td>167.06</td>
<td>281.15</td>
<td>290.92</td>
</tr>
</tbody>
</table>

1994年 - 1999年对青海湖进行的综合考察表明，青海湖的水面辐射特性和地区大气条件符合遥感卫星热红外通道的定标要求。青海湖面积4473 km²，湖面平均深度360 km。湖面东西长约109 km，南北宽约65 km，呈椭圆形。湖水面积约为19 km²，蓄水量达105 Gm³，湖面海拔3196 m。水温温度水平梯度小于0.12℃，水温分布均匀。是一个天然的红外辐射源。青海湖地区属于较高寒半干燥草原气候，大气干洁，卫星辐射信号大气正压较小。

2000年 - 2001年在青海湖对 FY-2A、FY-2B 进行了水面辐射同步测量。同时在上海和岳阳进行空地联合测量。测量仪器包括了测量水面辐射的 CE-312 便携式高温红外辐射计、BOMEM MR-154 中红外傅里叶变换光谱仪及其它各种辅助仪器。

2.1 辐射定标原理

地球观测卫星对地观测时，卫星热红外辐射計入瞳处的单一波长（在红外波段用波数 cm⁻¹）的辐亮度 R，可表示为

\[R(\nu) = R_s(\nu) \cdot \tau_s(\nu) + \int_0^w B[T(z)] \cdot \frac{\partial \tau_s}{\partial z} dz, \]

式(9)中 R_s 为地目标向上传播辐亮度，这里指青海湖水体光谱辐亮度，\(\nu \) 为波数，\(\tau_s \) 为大气光谱透射率，B[T(z)] 为大气普朗克函数，将光谱辐亮度与卫星光谱响应函数乘积积分，就得到卫星某一通道的辐亮度。

\[R_n = R_w \cdot \tau_w + R_u, \]

式(10)中 R_u 是卫星入瞳处辐亮度，R_w 为模拟卫星通道大气光谱透射率，R_n 为卫星观测路径大气气径辐射。

利用辐射传输模式 MODTRAN3.7，输入卫星过境时大气探测数据和卫星观测路径数据，就可以计算出卫星观测路径大气透射率和大气气径辐射。这项工作直接影响卫星观测的地表温度信号。

卫星通道辐亮度与卫星数辐射关系为

\[R_n = G_r \cdot DC_f + I, \]

式(11)中 DC_f 为同时测量时卫星扫描青海湖测量点的红外通道数辐射，G_r 为卫星通道定标斜率，I 为截距。要得到定标系数 G_r 和 I，必须有两组 R_n 和 DC_f，卫星观测青海湖和冷空间会得到两组数辐射，冷空间的辐亮度为 0。
表 4 2000年、2001年FY-2B卫星利用青海湖目标得到的定标斜率和截距（斜率 (mW/m²·sr·cm⁻¹) /DC，截距 mW(m²·sr·cm⁻¹)）

<table>
<thead>
<tr>
<th>日期</th>
<th>斜率</th>
<th>截距</th>
<th>亮温</th>
<th>大疆饱和度</th>
<th>计数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-8-24</td>
<td>-0.5768</td>
<td>147.0828</td>
<td>286.8461</td>
<td>96.3248</td>
<td>88</td>
</tr>
<tr>
<td>2000-8-26</td>
<td>-0.5668</td>
<td>149.6321</td>
<td>287.5529</td>
<td>97.4076</td>
<td>89</td>
</tr>
<tr>
<td>2000-8-28</td>
<td>-0.5833</td>
<td>148.7357</td>
<td>287.5527</td>
<td>97.4073</td>
<td>88</td>
</tr>
<tr>
<td>2000-8-30</td>
<td>-0.5764</td>
<td>146.9872</td>
<td>287.5578</td>
<td>97.4151</td>
<td>86</td>
</tr>
</tbody>
</table>

2001年定标结果（100 K幅冷）

<table>
<thead>
<tr>
<th>日期</th>
<th>斜率</th>
<th>截距</th>
<th>亮温</th>
<th>大疆饱和度</th>
<th>计数值</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-8-11</td>
<td>-0.6375</td>
<td>16265633</td>
<td>288.4650</td>
<td>98.8130</td>
<td>100</td>
</tr>
<tr>
<td>2001-8-13</td>
<td>-0.6432</td>
<td>164.0094</td>
<td>288.6167</td>
<td>99.0488</td>
<td>101</td>
</tr>
</tbody>
</table>

100 K时，两线更为相近，而此时卫星已在轨一年多，如果两年辐冷温度一致，还可计算出一年间红外通道探测器的性能衰减。

青海湖场地辐射点标为卫星在轨绝对定标。由于FY-2B为自旋稳定卫星，其红外通道的星上黑体定标无法与目标同光路，只能定期地从后光路插入进行定标——不是绝对定标。实验室定标加上星上电子标签的量化关系得到的FY-2B红外通道的定标结果与青海湖定标结果如此接近，说明FY-2B红外探测器性能非常稳定，同时也验证了实验室定标方法科学有效，定标数据测量结果准确。因FY-2B红外通道的定标精度为2 K，两年的场地定标结果表明，红外通道探测器达到了设计的定标精度要求。

REFERENCES
[1]《THE GMS USERS' GUIDE》second edition march 1989; Tokyo, Published by Japanese meteorological satellite center.