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Understory terrain estimation using multi-source remote sensing data under 
different forest-type conditions

HUANG Jia-Peng*， FAN Qing-Nan， ZHANG Yue
（School of Geomatics， Liaoning Technical University， Fuxin 123000， China）

Abstract： Accurate estimation of understory terrain has significant scientific importance for maintaining ecosystem 
balance and biodiversity conservation.  Addressing the issue of inadequate representation of spatial heterogeneity 
when traditional forest topographic inversion methods consider the entire forest as the inversion unit， this study pro⁃
poses a differentiated modeling approach to forest types based on refined land cover classification.  Taking Puerto Ri⁃
co and Maryland as study areas， a multi-dimensional feature system is constructed by integrating multi-source re⁃
mote sensing data： ICESat-2 spaceborne LiDAR is used to obtain benchmark values for understory terrain， topo⁃
graphic factors such as slope and aspect are extracted based on SRTM data， and vegetation cover characteristics are 
analyzed using Landsat-8 multispectral imagery.  This study incorporates forest type as a classification modeling con⁃
dition and applies the random forest algorithm to build differentiated topographic inversion models.  Experimental re⁃
sults indicate that， compared to traditional whole-area modeling methods （RMSE=5. 06 m）， forest type-based classi⁃
fication modeling significantly improves the accuracy of understory terrain estimation （RMSE=2. 94 m）， validating 
the effectiveness of spatial heterogeneity modeling.  Further sensitivity analysis reveals that canopy structure parame⁃
ters （with RMSE variation reaching 4. 11 m） exert a stronger regulatory effect on estimation accuracy compared to 
forest cover， providing important theoretical support for optimizing remote sensing models of forest topography.
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针对不同森林类型条件下协同多源遥感数据估测林下地形

黄佳鹏*， 樊庆南， 张 玥
（辽宁工程技术大学 测绘与地理科学学院，辽宁 阜新 123000）

摘要：精确估算林下地形对维持生态系统平衡和生物多样性保护具有重要科学意义。针对传统森林地形反

演方法以整体森林作为反演单元时存在的空间异质性表征不足问题，本研究提出基于精细化土地覆盖分类

的森林类型差异化建模方法。以波多黎各地区和马里兰州为研究区，通过整合多源遥感数据构建多维特征

体系：采用 ICESat-2 星载激光雷达获取林下地形基准值；基于 SRTM 数据提取坡度和坡向等地形因子；结合

Landsat-8多光谱影像解析植被覆盖特征。本研究将森林类型作为分类建模条件，运用随机森林算法构建差

异化地形反演模型。实验结果表明，相较于传统全域建模方法（RMSE=5.06 m），本研究提出的森林类型分类

建模使林下地形估算精度显著提升（RMSE=2.94 m），验证了空间异质性建模的有效性。进一步敏感性分析发

现，冠层结构参数（RMSE变异达 4.11 m）相较于森林覆盖度对估算精度具有更强的调控作用，这为优化森林

地形遥感模型提供了重要理论依据。
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Introduction
As the largest terrestrial ecosystem on Earth， forests are the birthplace and habitat for the reproduction and de⁃velopment of many animals and plants， and thus occupy an irreplaceable position in the ecosystem.  Therefore， the modeling of forest ecosystems and the investigation of important resources are urgently needed， but they repre⁃sent challenges in the current research［1］.  Understory ter⁃rain is an important basis for estimating forest structural parameters， and its impact on forest ecosystems is ex⁃tremely multifaceted and far-reaching.  Understory ter⁃rain can have a significant effect on water circulation， soil conservation， climate environment， and forest struc⁃ture in forests［2］.  Therefore， how to obtain understory ter⁃rain rapidly and accurately has become a challenge.Measured data can be used for understory terrain measurement.  However， in the understory environment， where vegetation is lush， the usage of measuring instru⁃ments is greatly restricted in aspects of placement and normal operation［3］.  For instance， for complex understo⁃ry terrains， such as areas with dense vegetation， it is dif⁃ficult for surveyors to reach all the locations to be mea⁃sured， which can easily cause blank areas in data collec⁃tion and thus affect the reliability of terrain estimation.  At the same time， measured data can be obtained only at limited sampling points， making it difficult to estimate understory terrain from these data.  However， remote sensing data can also be used to estimate understory ter⁃rain.  These data can cover a large area， which is highly beneficial for understory terrain estimation.  Compared with traditional ground-based measurement methods， re⁃mote sensing can rapidly obtain information over a large range， saving much manpower， time cost， and many ma⁃terial resources［4］.  Nevertheless， using only a single type of remote sensing data poses certain limitations in reflect⁃ing the complex characteristics of understory terrain.  These limitations can be overcome using collaborative multi-source remote sensing data， which provides the possibility for a more accurate estimation of understory terrain.Currently， optical remote sensing technology plays an important role in forest surveys and forest parameter estimation.  The Landsat-8 data have certain advantages in estimating understory terrain； it can provide multi⁃spectral information， including band data such as visible light and infrared data［5］.  The texture and other charac⁃teristics of vegetation shown in an image are related to the topography to a certain extent.  However， optical re⁃mote sensing is severely affected by factors such as forest shielding and weather， which further affect the estima⁃tion result of forest structure parameters.  Optical remote sensing can perform well in estimating horizontal struc⁃ture parameters， but its ability to estimate forest vertical structure parameters is relatively weak.  Therefore， un⁃derstory terrain estimation cannot completely rely on opti⁃cal remote sensing data.  However， the synthetic aperture radar （SAR） data can be used for understory terrain esti⁃mation because SAR uses microwave frequency band de⁃tection， and microwaves have certain penetration charac⁃

teristics.  Although microwaves are affected by vegetation scattering and absorption in the forest， they can still pen⁃etrate the vegetation layer， reach the understory ground， and reflect.  In addition， microwaves with different wave⁃lengths have different penetration capabilities［6］.  Liu et al.  ［7］ proposed an understory terrain estimation method based on dual-polarization PolInSAR data.  They conclud⁃ed that the accuracy of dual-polarization PolInSAR in es⁃timating understory terrain was close to that of full-polar⁃ization PolInSAR and was better than the estimation accu⁃racy of traditional InSAR technology； however， its pene⁃tration ability was limited.  Namely， the complex branch structure and dense leaf layer of trees in the forest pre⁃vent the SAR signals from penetrating the understory ter⁃rain ［8］.  Therefore， the effect of SAR data on understory terrain estimation is limited.In vegetation-covered areas， airborne light detection and ranging （LiDAR） can penetrate the vegetation cano⁃py and obtain topographic information under the vegeta⁃tion， ensuring high-precision understory terrain estima⁃tion［9］.  However， although airborne LiDAR has a certain ability to penetrate vegetation， it is suitable only for esti⁃mation on a small regional scale and is slightly insuffi⁃cient for large areas.Spaceborne LiDAR has good accuracy in estimating understory terrain.  Namely， this technology enables sat⁃ellites to obtain multiple observation footprints at the same time and penetrate vegetation more effectively for surface measurement.  The ICESat-2 has a horizontal ac⁃curacy of approximately 6. 5 m and a nominal vertical ac-curacy of about 0. 1 m， providing reliable data on forest areas under various terrain conditions［10］.  In Ref.［11］， the vertical accuracy of ASTER， SRTM， GLO-30， and ATLAS was evaluated using the digital terrain model 
（DTM） of the reference data set provided by the G-Li⁃HT.  The results showed that in the forest environment， the ICESat-2's ATL03 had the highest accuracy on the footprint scale， with a correlation coefficient （R²） close to 1 and a root mean square error （RMSE） of 1. 96 m.  In Ref.［12］， the DTM of the airborne G-LiHT system was used to evaluate the ICESat-2/ATLAS data， AW3D30 DEM data， and TanDEM-X data.  The results showed that at the footprint scale， the ATLAS data provided more accurate evaluation indicators than the AW3D30 DEM and TanDEM-X data products.  Although space⁃borne LiDAR can penetrate the canopy and obtain under⁃story terrain data， the ICESat-2 data start with spot-like data and can be discretely sampled only in space but can neither obtain planar understory terrain information nor fully cover the study area.  Therefore， how to use space⁃borne LiDAR data to estimate high-precision planar un⁃derstory terrain has become an important problem.  Zhang et al.  ［13］ analyzed the differences in estimation ac⁃curacy between ground elevation and vegetation canopy height under different beam intensities， times， slopes， and vegetation coverage using high-precision airborne Li⁃DAR data and plot measured data as references.  The re⁃sult indicated that the root mean square error （RMSE） of the estimation accuracy of the strong beam of ATL08 was 
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1. 9 m， and the mean absolute error （MAE） was 1. 1 m.  Zhang et al.  ［14］ developed a method for generating under⁃story terrain using the ICESat-2/ATLAS data and Tan⁃DEM-X DEM.  The experimental results showed that the accuracy of inverted understory terrain was 9. 14 m， which was 21. 2% higher than the accuracy of the origi⁃nal Tandem-X DEM.  In Ref.［15］， a mathematical mod⁃eling method based on the ICESat-2 data was proposed to interpolate and correct the SRTM DEM of understory ter⁃rain.  This method could significantly improve the accura⁃cy of SRTM DEM in understory terrain and reduce the root mean square error from 13. 40 m to 6. 74 m.  Al⁃though this method could effectively improve the estima⁃tion accuracy of understory terrain， relying only on math⁃ematical principles was not sufficient to adapt to different forest environments.  Namely， using only mathematical methods cannot ensure high estimation accuracy of under⁃story terrain for different forest types.Aiming to overcome the aforementioned limitations， this study uses the understory terrain data extracted from the ICESat-2's ATL03 data for modeling and combines the ATL03 understory terrain data of ICESat-2 with the Landsat-8 OLI remote sensing data and SRTM topograph⁃ic factors.  In addition， multiple regression models and random forest models are employed to construct accurate understory terrain elevation data models.  Moreover， the land cover type data are used to obtain data on different forest types and establish single-forest-type understory terrain estimation models to judge the accuracy differenc⁃es between different forest types when estimating under⁃story terrain.The main innovations of this study are as follows：
（1） This study uses the forest type as a distinguish⁃ing condition and the ICESat-2/ATLAS ATL03 product as a research object.  Also， it combines the slope aspect parameters and relevant parameter data extracted from the Landsat-8 optical remote sensing images to construct an understory terrain estimation model for the estimation of different forest types in the study area， which compen⁃sates for the deficiency of the ICESat-2 data that cannot achieve accurate understory terrain estimation at the wall-to-wall scale and realizes a high-precision understory ter⁃rain elevation model in the study area.
（2） The impacts of forest canopy height and forest coverage on understory terrain estimation are evaluated.

1 Study material 
1. 1　Study area　The research area in Puerto Rico has a latitude be⁃tween 17. 97° N and 18. 34° N and a longitude between 66. 31° W and 66. 83° W and experiences a tropical ma⁃rine climate.  The research area’s topography includes hills and mountains， having mainly sloping understory terrain.  The mountain slopes are relatively steep， and the plains are nearly flat ［16］.  The slopes of forest areas are mainly concentrated between 8˚ and 45˚， and the ele⁃vation ranges from 106 m to 744 m.  The vegetation cover⁃age ranges from 25% to 66%， and the main vegetation types include tropical broad-leaved forests and shrubs.  

The main forest types are closed evergreen broad-leaved forests and closed mixed forests， and the tree species mostly include Tabebuia heterophylla， palm trees， and 
kapok trees； the canopy height ranges from zero to 34 m.The research area in Maryland has a latitude be⁃tween 37°53'N and 39°43'N and a longitude between 75°03'W and 79°31'W.  It is located on the east coast of the United States， bordering the Atlantic Ocean， and has a unique geographical location.  In the western and north⁃ern parts of the research area， there is a part of the Appa⁃lachian Mountains， presenting undulating hills and mountainous terrain.  The terrain undulates severely； the mountains are steep， and the slopes reach an inclination of 30°-60° or more.  The mountainous areas are relatively high in elevation and have complex terrain with many steep slopes and valleys.  The Appalachian Mountains in the west have relatively high elevations， with the highest point exceeding 1，000 m.  In contrast， the Atlantic Coastal Plain in the east has a lower elevation， close to the sea level； in some places， the elevation value is from a few meters to several tens of meters above the sea lev⁃el.  Maryland has vast forests and a wide variety of vegeta⁃tion.  The canopy height is mainly concentrated between 4 m and 35 m.  The main forest types include open decid⁃uous broad-leaved forests， closed deciduous broad-leaved forests， open evergreen coniferous forests， closed evergreen coniferous forests， and closed mixed forests.  In addition， the main tree species are white oak， Ameri⁃
can beech， and eastern white pine［17］. The schematic dia⁃gram of the study area is shown in Fig.  1， （a） is the fine land types of Maryland， （b） is the fine land types of Puerto Rico.
1. 2　ICESat-2/ATLAS data product　The ICESat-2/ATLAS was launched at Vandenberg Air Force Base in the United States for the purpose of continuously measuring changes in the ice sheets， land and sea ice， collecting information on sea and land eleva⁃tions.  The ICESat-2 system is equipped with a new gen⁃eration of single-photon， multi-beam laser altimeter sys⁃tem， whose ranging principle is defined by the round-trip time of photons.  The ATLAS system uses single-photon detection technology and emits green laser pulses with a wavelength of 532 nm at a frequency of 10 kHz.  Each la⁃ser pulse contains more than 100 trillion photons.  The pulses are divided into three pairs and six beams by a spectroscope to obtain photon point cloud data ［10］.  This system has two lasers， but they generally do not operate simultaneously ［18］.  This study used the ATL03 and ATL08 data for analysis.  The ATL03 data are also known as global geolocated photon data and provide information on five different surface types： land， ocean， sea ice， in⁃land water， and land ice.  These data include detailed in⁃formation on the longitude， latitude， and surface eleva⁃tion of each photon event.  In addition， the ATL03 data provide a rough distinction between potential signals and background events， as well as other parameters that are helpful for advanced processing.  The ATL08 data are the level 3A data product of ICESat-2， and these data con⁃tain the elevation information of each photon classifica⁃
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tion and 100-m data along the track section， as well as the estimation data about understory terrain and canopy height［19］.
1. 3　SRTM data product　The shuttle radar topography mission （SRTM） data⁃set represents the result of a collaborative effort between the National Aeronautics and Space Administration 
（NASA）， the National Geospatial-Intelligence Agency 
（NGA）， and the space agencies of Germany and Italy.  This international space cooperation has yielded an al⁃most global digital elevation model of the Earth， obtained using radar interferometry techniques ［20］.  The SRTM in⁃strument consists of a modified manned spaceborne imag⁃ing radar （SIR-C） hardware suite， a space station-de⁃rived mast with a 60 m baseline and additional antennas used to form an interferometer.  In addition， SAR is used as a side-looking instrument to acquire data along contin⁃uous swaths.  The SRTM swath extends from about 30° from the off-track point to about 58˚ from the off-track point and has a height of 233 km； thus， it is about 225 km wide.  During the data flight， the instrument was al⁃ways running when the orbit flew over land and acquired about 1，000 individual swaths within ten days of map⁃ping operations ［21］.  The length of the acquired swaths varies from a few hundred kilometers to several thousand kilometers.  Each individual data acquisition is called a "data take. " This international space cooperation gener⁃ated an almost global digital elevation model of the Earth.
1. 4　Landsat-8 data product　The Landsat-8 was developed and constructed by NASA in cooperation with the U. S.  Geological Survey.  It represents the eighth satellite in the U. S.  Landsat sat⁃ellite program.  It carries two sensors， namely the opera⁃tional land imager （OLI） and the thermal infrared sensor 
（TIRS）［22］.  The Landsat-8 is mostly consistent with 

Landsat 1-7 in terms of spatial resolution and spectral characteristics.  The satellite has a total of 11 bands.  The spatial resolution of bands 1-7 and 9-11 is 30 m， and band 8 is a pan-chromatic band with a resolution of 15 m.  The satellite can achieve global coverage once every 16 days.  This study used the Landsat-OLI satellite data covering the study area from June 1， 2020 to October 1， 2020［23］.  Considering the spectral characteristics of vege⁃tation， different bands have different absorption and re⁃flection capabilities.  Therefore， this study aimed to use the corresponding spectral factors related to understory vegetation.
1. 5　GLC_FCS30 data product　The GLC_FCS30 data include indispensable and im⁃portant basic information for climate change research， ecological environment assessment， and geographical na⁃tional condition monitoring.  It is generated from the Landsat satellite data （Landsat TM， ETM+ ， and OLI） collected from 1984 to 2020.  Covering the period from 2015 to 2020， the spatial scope is global.  These data contain a total of 29 surface cover types， including culti⁃vated land， forest， grassland， shrubland， wetland， wa⁃ter body， artificial surface， and bare land［24］.  Based on the global 30-m fine surface cover classification product in 2020， an automated surface cover dynamic monitoring scheme combining change detection and dynamic update is designed.  In addition， using the full-time series Land⁃sat satellite data from 1984 to 2020， independent model⁃ing and dynamic update are performed region by region to obtain the global 30-m fine surface cover dynamic moni⁃toring product from 1985 to 2020.  The resolution of 30 m is selected because it can provide relatively fine surface classification results and can accurately present the de⁃tailed characteristics of surface cover.

 

(a)
(b)

Fig.  1　The schematic diagram of the study area： （a） the fine land types of Maryland； （b） the fine land types of Puerto Rico
图1　研究区域示意图：（a）马里兰州的精细土地类型；（b）波多黎各的精细土地类型
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1. 6　Canopy height data product　Canopy height data mainly originate from high-reso⁃lution LiDAR measurements and provide global informa⁃tion on tree canopy height and forest structure.  By ana⁃lyzing laser echoes from different ecosystems， these data can achieve accurate estimations of the height and cover⁃age of trees， providing important support for forest ecolo⁃gy， carbon cycle research， and biodiversity protection 
［25］.  The generation process of this dataset includes the processing and analysis of laser echoes and the combina⁃tion of various remote sensing data， such as terrain and vegetation index to ensure the accuracy and reliability of data.  The NASA's canopy height data provides an impor⁃tant tool for researchers to monitor forest changes， assess ecosystem health， and support sustainable management.
1. 7　Forest cover data product　In NASA's GFC product， vegetation coverage is a key indicator that reflects the vegetation cover status of the Earth's surface and is of great significance for under⁃standing the global ecosystem.  NASA mainly uses satel⁃lite remote sensing data to obtain relevant information.  Sensors such as the moderate-resolution imaging spectro⁃radiometer （MODIS） use the reflection and absorption characteristics of vegetation in different spectral bands to infer vegetation coverage.  It also integrates multi-source satellite data to improve accuracy.  In the GFC product， it plays a central role in the forest definition.  According to the International Geosphere-Biosphere Programme 
（IGBP） standard， land with an area of at least 0. 27 hect⁃ares and a tree vegetation coverage of at least 30% is de⁃fined as forest.  Changes in vegetation coverage denote the key factors for determining forest increase and de⁃crease and can reflect the health status and changes in the forest ecosystem.  It should be noted that higher cov⁃erage indicates a healthier and more stable ecosystem ［26］.
2 Method 

The accuracy of understory terrain estimation has al⁃ways been an important factor but is challenging to achieve.  In this study， the ICESat-2 data are used as a dependent variable， and the elevation， slope， and as⁃pect values in the SRTM data， as well as different bands， combined bands， and different vegetation indices in the Landsat-8 data are used as independent variables.  In addition， the land cover data are used to distinguish and select different forest types.  Moreover， different for⁃est types are selected to estimate the understory terrain maps for different forest types by multiple linear regres⁃sion models and RF random forest models.  This study aims to analyze differences in influencing factors in the understory terrain estimation process for different forest types while improving the overall accuracy of understory terrain estimation.  The entire analysis process conducted in this study is presented in Fig.  2， where specific data extraction and modeling processes are shown.
2. 1　Data preprocessing　The data preprocessing conducted in this study in⁃cludes the following steps：1.  The ATL03 and ATL08 products provided by IC⁃

ESat-2/ATLAS were used in this study， where ATL08 da⁃ta were employed to provide corresponding label informa⁃tion for ATL03 data［27］.  ATL03 data offers high-precision photon detection information， enabling accurate identifi⁃cation of ground reflection signals.  ATL08， after process⁃ing the original photon data， generates surface elevation data at a specific geospatial resolution.  By combining them， using ATL03's high-precision photon detection in⁃formation to calibrate and optimize ATL08's elevation calculation can reduce errors and enhance terrain mea⁃surement accuracy.  Using the PhoREAL software， rele⁃vant data segments were extracted to associate these data⁃sets.  This process enabled the extraction of various pa⁃rameters from ATL03 data products， including latitude 
（"lat_ph"）， longitude （"lon_ph"）， elevation （"h_ph"）， and geoid correction information （"geoid"）.  Additional⁃ly， based on ATL08's classification parameter "Classed_pc_flag，" ground photons were filtered from ATL03's photon cloud data （Classed_pc_flag=1） to rep⁃resent ground photons in the understory terrain.2.  The spatial resolution of ATL03 photons is 17 m， while the other three datasets have a spatial resolution of 30 m.  Therefore［28］， we utilized ArcGIS software Nearest Neighbor Search （NNS） method to resample the spatial resolution of ATL03 data to 30 m.  Subsequently， using the latitude and longitude information extracted from ATL03， it was matched with the corresponding footprint’s latitude and longitude from the data set， generating un⁃derstory terrain data.  Subsequently， the obtained under⁃story terrain data is divided into two parts： one part is ap⁃plied to the accuracy evaluation of the regression model， the other part is used as validation data to verify the accu⁃racy of the estimation results.3.  In this study， Landsat 8 OLI band combinations were utilized to quantify and maximize the contrast in the 
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selected spectral regions， enhancing the correlation with vegetation characteristics.  This approach aids in improv⁃ing pixel contrast and the ability to estimate forest param⁃eters.  Extracted vegetation indices in the study include： NDVI， GRVI， RVI， DVI， EVI， SAVI， OSAVI.  Addi⁃tionally， to enhance the experiment's accuracy， the fol⁃lowing band combinations were introduced： a： SWIR 1 + NIR + red， b： green + NIR + red， c： NIR + SWIR1 + blue， d： SWIR 2 + NIR + green， e： SWIR 2 + NIR + coastal.  Furthermore， using ArcGIS software， factors such as elevation， slope， and aspect of the SRTM DEM product within the study area were considered.4.  This study selected 7 vegetation indices， 5 band combinations， 7 individual bands， as well as elevation， slope， and aspect provided by SRTM， as factors.  Before utilizing these 22 factors for estimating understory ter⁃rain， a T-test was conducted using SPSS software to de⁃termine the correlation between these 22 factors and the understory surface elevation provided by the processed ATL03 data.  Meanwhile， to study the impact of various factors on the results under different forest type condi⁃tions， this study conducted separate correlation analyses for different forest types during the correlation analysis.  In this study， factors that were not significantly correlat⁃ed at the 0. 05 significance level were excluded， retain⁃ing only those factors correlated at the 0. 01 significance level.
2. 2　Cooperative multi-source remote sensing data 
for understory terrain estimation　Using the preprocessed data， this study obtains the understory terrain modeling data.  The modeling data are used to construct the multiple linear regression model and random forest model and improve the modeling accu⁃racy.
2. 2. 1　Multiple linear regression model　The multiple linear regression model denotes a lin⁃ear regression model containing multiple explanatory vari⁃ables and represents a commonly used regression analy⁃sis method in the field of statistics.  The overall idea of es⁃tablishing a multiple regression model is to construct a dataset containing feature variables and target variables.  Before model training， necessary preprocessing on the dataset， including separating feature and target variables and dividing the data into training and test sets， is per⁃formed.  The training dataset is used to train a multiple linear regression model and find the linear relationship between the feature and target variables.  The feature variable data of the test dataset are input to the model to estimate the target variable’s value.  In this study on esti⁃mating the understory terrain by integrating multi - source remote sensing data under different forest - type conditions， using the multiple linear regression model has certain feasibility.The study integrates multi-source remote sensing da⁃ta.  For example， ICESat-2 is used to obtain the bench⁃mark values of the understory terrain， SRTM is used to extract topographic factors， and Landsat-8 is used to ana⁃lyze vegetation cover characteristics.  These rich data pro⁃vide sufficient independent variables for the multiple lin⁃

ear regression model.  Moreover， there are certain linear correlation trends among some of the data.  For instance， in some areas， there is an approximate linear feature be⁃tween the slope in SRTM data and the elevation change of the understory terrain obtained from ICESat-2 data.  Some vegetation indices in Landsat - 8 data also show a certain linear relationship with the degree to which the understory terrain is affected by vegetation.  This meets the basic requirements of the multiple linear regression model for variable relationships and lays a data founda⁃tion for model construction.
2. 2. 2　Random forest model　With the development of remote sensing technolo⁃gy， multi-source remote sensing data can provide rich surface information from different perspectives， which creates conditions for accurately extracting the understo⁃ry terrain.  Different types of remote sensing data， such as the high-precision elevation information provided by ICESat-2， the terrain data from SRTM， and the vegeta⁃tion cover information from Landsat-8， each have their unique advantages.  Fusing these data can comprehen⁃sively utilize their strengths and describe the understory terrain and its surrounding environment more comprehen⁃sively.The random forest model， due to its powerful char⁃acteristics， becomes an ideal choice for handling such complex data.  The forest terrain is comprehensively af⁃fected by multiple factors， and the relationships among these factors are highly non-linear， with noise and uncer⁃tainties possibly existing in the data［29］.  The random for⁃est model has the ability to handle complex non-linear re⁃lationships.  By constructing multiple decision trees and performing random sampling and feature selection for each decision tree， it can not only effectively capture the complex patterns in the data but also reduce the overfit⁃ting risk of the model and enhance its generalization abili⁃ty.  At the same time， it has good robustness to noise and outliers in the data and can maintain high accuracy with⁃out complex data pre-processing.In this study， the understory terrain is complexly in⁃fluenced by multiple factors such as forest type， topogra⁃phy， and vegetation cover.  These factors are inter⁃twined， forming highly non-linear relationships.  For ex⁃ample， the differences in vegetation structures of differ⁃ent forest types can lead to different degrees of obstruc⁃tion of terrain measurement signals， thus affecting the ac⁃curate acquisition of the understory terrain.  Traditional methods have difficulty fully considering these complex factors and their interactions.  The combination of multi-source remote sensing data fusion and the random forest model provides a possible solution to this problem.The understory terrain elevation information provid⁃ed by ICESat-2 data was used as the dependent variable， and the relevant factors obtained from SRTM and Land⁃sat-8 data were used as independent variables.  After re⁃moving the points with blank values， reliable modeling data were obtained.  Random sampling with replacement was performed on the original data to construct multiple training subsets.  The purpose of this operation was to in⁃
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crease the diversity of the data， enabling the model to learn more comprehensive features.  For each training subset， some features were randomly selected to con⁃struct decision trees.  Node splitting was carried out ac⁃cording to splitting criteria such as the Gini index until stop conditions such as reaching the tree depth limit or too few node samples were met， finally forming a random forest composed of multiple decision trees.  This construc⁃tion method allows the random forest model to automati⁃cally capture the complex non-linear relationships in the data， which is exactly the characteristic of the relation⁃ship between the understory terrain and various influenc⁃ing factors.Sampling was carried out using the land cover type data， with the center of each pixel set as a sampling point.  Ensuring that the sampling points did not overlap and the resolution was fixed at 30 m was to guarantee the scientificity and consistency of sampling， enabling the model to accurately reflect the topographic features under different forest types.  The corresponding values of each factor were extracted through the longitude and latitude coordinates of the sampling points and input into the ran⁃dom forest model for estimation， thus determining the es⁃timated understory terrain value of each point.  Finally， the point-to-raster tool was used to convert the point ele⁃vation values and their corresponding longitude and lati⁃tude coordinates into raster data to obtain an intuitive un⁃derstory terrain estimation result.  Compared with the multiple linear regression model， the random forest mod⁃el performs better in handling complex relationships.  Its estimation results can more accurately reflect the actual situation of the understory terrain， providing strong sup⁃port for studying the understory terrain under different forest types.
2. 3　Evaluation metrics　The modeling data corresponding to different forest types are separated to obtain the modeling data of the un⁃derstory terrain estimation model under different forest-type conditions.  To construct and verify the model， this study randomly extracts 30% of the data as verification data， and the remaining 70% as modeling data.  The ran⁃dom forest model is used to establish understory terrain estimation models for different forest types.The 30% randomly extracted verification data are used to calculate the accuracy of the original SRTM， the overall understory terrain modeling estimation result， and the understory terrain estimation result for different forest types relative to the ICESat-2 data to obtain propa⁃gation accuracy.  This accuracy evaluation process can comprehensively evaluate the accuracy of different mod⁃els and data in understory terrain estimation and provide a reliable evaluation basis for research.Finally， 30% verification data are used to verify the understory terrain estimation result， thus determining the understory terrain estimation accuracy.  In this study， the 
R2 and RMSE metrics are selected to evaluate the accura⁃cy and error distribution of the models in understory ter⁃rain estimation［30］.  To investigate the estimation results for unclassified forest types and classified forest types， 

this study employs two methods， namely method 1 and method 2， respectively.  Method 1 is the RF model with⁃out forest type classification， and method 2 is the RF model with forest type classification.The R2 metric， also known as the coefficient of de⁃termination， is a commonly used statistic in statistics.  It represents an index used to evaluate the performance of regression models and represents the proportion of a de⁃pendent variable that can be explained by an indepen⁃dent variable.  The calculation formula of R2 is given by：
R2 = 1 - ∑i( )yi - yi

2

∑i( )yi - ȳ
2 , (1)

where yi is the true value， yi is the predicted value corre⁃
sponding to true value yi， and ȳ is the average value.

The RMSE metric is a commonly used error index to measure the error between the estimated and true values， and it is defined as follows：
RMSE = ∑i - 1

m ( )yi - yi

2

m , (2)
where m is the number of samples， yi is the true value， 
and yi is the estimated value corresponding to true val⁃
ue yi.The smaller the RMSE value is， the better the esti⁃mated ability of the model and the smaller the error.  The RMSE metric is sensitive to errors and can better reflect the degree of deviation between estimated values and true values and can intuitively show the average error size of predicted values.
3 Results and discussions 
3. 1　Results of understory terrain estimation using 
multi-source remote sensing data　The modeling accuracy results of the multiple linear regression model and random forest model are shown in Table 1.Although the multiple linear regression model could improve the accuracy of understory terrain estimation， its improvement range was limited.  This was because the multiple linear regression model assumed a linear rela⁃tionship between the dependent and independent vari⁃ables.  However， the relationship between understory ter⁃rain and influencing factors may be nonlinear.  For in⁃stance， the influence of factors such as canopy height and forest cover on the understory terrain estimation re⁃sult might not be a simple linear superposition but a com⁃plex， nonlinear relationship.  In this case， linear models could not accurately capture these complex relation⁃ships， resulting in inaccurate estimations.  In addition， the results indicated that compared to the multiple linear regression model， the modeling accuracy of the random forest model was significantly improved.  This was be⁃cause the random forest model was composed of multiple decision trees and could automatically capture nonlinear relationships in the data.  The relationship between the understory terrain and various influencing factors could be complex and nonlinear， so the random forest could 
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better adapt to this complexity than the multiple linear re⁃gression model.  Therefore， the random forest model was selected as an understory terrain estimation model.
3. 2　 The estimation results of understory terrain 
under the random forest model　The estimation map of the understory terrain ob⁃tained through the random forest method in this paper is shown in the Fig.  3.The comparison of the verification accuracy results obtained when the understory terrain was estimated as a 

whole， without classification， using the random forest model and when it was estimated with classification of dif⁃ferent forest types also using the random forest model is presented in Table 2.The experimental results show that in the study ar⁃ea， the understory terrain estimation relying on multi-source remote sensing data was more accurate than the traditional SRTM in terms of the understory terrain type.  
R2 was increased from 0. 98 to 0. 99， and RMSE was in⁃creased from 10. 86 m to 5. 06 m.  This indicates that 

Table 1　The results of modeling accuracy of the three methods
表1　三种方法建模精度的结果

Study area

Puerto Rico

Maryland

Forest type

Closed evergreen broad-leaved forest
Closed mixed forest

Open deciduous broad-leaved forest
Closed deciduous broad-leaved forest

Evergreen coniferous forest
Closed mixed forest

Multiple linear
regression model

R2

0. 99
0. 99
0. 99
0. 99
0. 99
0. 98

RMSE/m
6. 81
8. 04
2. 21
6. 18
4. 23
5. 29

Method 1
R2

0. 99

0. 99

RMSE/m
2. 28

1. 66

Method 2
R2

0. 99
0. 99
0. 99
0. 99
0. 99
0. 99

RMSE/m
1. 64
3. 64
1. 47
0. 82
0. 54
1. 26

 
Fig.  3　Understory terrain estimation map
图3　林下地形估算图

Table 2　The estimation accuracy of different methods using the random forest model
表2　基于随机森林模型的不同方法的估算精度

Study area

Puerto Rico

Maryland

Average value
* is accuracy evaluation indicators of SRTM data in different study areas
** is accuracy evaluation indicators of SRTM data in different study areas under vegetation type

Method
Method 1

Method 2

Method 1

Method 2

Method 1
Method 2

Vegetation type

Closed evergreen broad-leaved forest
Closed mixed forest

overall accuracy

Open deciduous broad-leaved forest
Closed deciduous broad-leaved forest

Closed Evergreen coniferous forest
Closed mixed forest

overall accuracy

SRTM
R2

0. 98*
0. 99**
0. 99**
0. 99**
0. 98*

0. 99**
0. 99**
0. 75**
0. 98**
0. 98**
0. 98*

RMSE/m
13. 06*

13. 29**
12. 87**
13. 06**

8. 67*
2. 78**
9. 50**
7. 17**
9. 37**
8. 67**
10. 86*

This study
R2

0. 99
0. 99
0. 99
0. 99
0. 99
0. 99
0. 99
0. 99
0. 99
0. 99
0. 99
0. 99

RMSE/m
4. 58
2. 91
5. 59
3. 58
5. 55
1. 20
2. 53
1. 86
1. 99
2. 29
5. 06
2. 94
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combining the ICESat-2， SRTM， and Landsat-8 data in understory terrain estimation could provide high credibili⁃ty， and this method could be used for understory terrain research.Further， based on the results， when the understory terrain was estimated considering a single forest type， the accuracy of modeling estimation was higher than the overall modeling estimation accuracy without classifica⁃tion according to the forest types.  R2 still remained at 0. 99， but RMSE decreased from 4. 58 m to 3. 58 m in the Puerto Rico research area， and from 5. 55 m to 2. 29 m in the Maryland research area.  This indicated that the classification according to the forest type could increase the accuracy of understory terrain estimation.  The aver⁃age value of the root mean square error （RMSE） for un⁃derstory terrain estimation in the two study areas has in⁃creased from 5. 06 m （Method 2） to 2. 94 m （Method 1）.  The research results indicate that modeling by distin⁃guishing forest types contributes to improve the accuracy of understory terrain estimation.In Puerto Rico， Method 1 showed significant im⁃provements for individual forest types.  For example， the Closed Evergreen Broad-Leaved Forest RMSE decreased from 13. 29 m to 2. 91 m， and the Closed Mixed Forest RMSE reduced from 12. 87 m to 5. 59 m.  The overall ac⁃curacy without classification was notably higher than the classified results， further supporting the necessity of for⁃est type-specific modeling.  Similarly， in Maryland， Method 1 demonstrated enhanced precision across all vegetation types.  The Open Deciduous Broad-Leaved Forest RMSE dropped from 2. 78 m to 1. 20 m， while the Closed Deciduous Broad-Leaved Forest RMSE improved from 9. 50 m to 2. 53 m.  Even the Closed Mixed Forest RMSE showed a marked reduction from 9. 37 m to 1. 99 m.  The overall accuracy RMSE was higher than most classified forest types， reinforcing the advantage of forest type distinction.  The RMSE differences between classi⁃fied and unclassified modelings highlight that forest type-specific approaches reduce terrain estimation errors more effectively than generalized models.The comparison between Method 1 and Method 2 re⁃veals a significant improvement in understory terrain esti⁃mation accuracy when using Method 2.  The average RMSE for Method 1 across both study areas is 5. 06 m， while the overall accuracy RMSE for Method 2 is 2. 94 m.  This indicates that Method 2 reduces estimation er⁃rors by approximately 42% compared to Method 1.  This substantial improvement can be attributed to the forest type-specific modeling approach employed in Method 2.  By distinguishing between different forest types， Method 2 captures the unique structural and ecological character⁃istics of each vegetation type， leading to more precise ter⁃rain estimation.  In contrast， Method 1， which does not classify forest types， likely struggles to account for the variability in canopy structure and terrain complexity， re⁃sulting in higher RMSE values.The consistent reduction in RMSE across both study areas （Puerto Rico and Maryland） further validates the robustness of Method 2.  For example， in Puerto Rico， 

Method 2 achieved an overall RMSE of 3. 58 m， while in Maryland， it reached an even lower RMSE of 2. 29 m.  These results demonstrate that Method 2 not only outper⁃forms Method 1 but also provides reliable and accurate terrain estimation across diverse forest ecosystems.  In conclusion， the lower average RMSE of Method 2 high⁃lights the importance of incorporating forest type classifi⁃cation into modeling approaches.  This strategy enhances the precision of understory terrain estimation and pro⁃vides a more reliable foundation for ecological and envi⁃ronmental applications.The scatter plots of understory terrain for different forest types obtained by the original SRTM digital eleva⁃tion model and the understory terrain estimation model developed using multi-source remote sensing data are presented in Fig.  4.The accuracy of the original SRTM data was signifi⁃cantly lower， whereas for the estimation with multi-source remote sensing data， the accuracy was significant⁃ly improved.  In general， it showed good consistency with the verification data.  The possible reasons could be as follows.The ICESat-2， SRTM， and Landsat-8 data were ob⁃tained using sensors of different types， and these types of data can provide multiple-aspect information about the understory terrain.  The ICESat-2 data directly measured the three-dimensional structure of the ground and vegeta⁃tion and were highly accurate in capturing the details of the understory terrain.  The optical images provided rich information on surface texture and color， which was help⁃ful for identifying different geomorphic features.  In con⁃trast， the SRTM data mainly relied on a single radar mea⁃surement technology， and these data were relatively sin⁃gle， making it difficult to fully reflect the complex char⁃acteristics of the understory terrain.Multi-source remote sensing data could be integrat⁃ed using data fusion technology， thus fully leveraging the advantages of different data sources while compensating for their respective deficiencies.  Namely， the SRTM and Landsat-8 data could compensate for the defect of the IC⁃ESat-2 data that could not be promoted in a planar man⁃ner.  At the same time， the ICESat-2 data had a stronger penetrating effect compared to the SRTM and Landsat-8 data.Figure 5 presents the comparison of the estimation results obtained with the classification according to the forest type， independently modeling and inverting each type， and those of the overall terrain evaluation without the forest type classification.  The comparison results in⁃dicated that the accuracy was improved when the classifi⁃cation was used， and good consistency with the verifica⁃tion data was achieved.There could be many reasons for such results.  Among all forest types， the improvement of the RMSE metric was most obvious for closed mixed forests， rising from 9. 37 m to 1. 99 m.  Closed mixed forests usually have a complex canopy structure.  In addition， the heights and foliage distributions of different tree species are diverse， enabling the canopy to form multi-level shad⁃
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ing.  Such a complex structure can reduce the interfer⁃ence of external factors （e. g. ， direct sunlight and atmo⁃spheric scattering） on the understory terrain measure⁃ment and make the lighting conditions under the forest more diverse.  Moreover， the shadows and reflections formed by light with different intensities and incident an⁃gles on the understory terrain are also different.  This in⁃formation can provide more reference bases for terrain es⁃timation.  At the same time， mixed forests contain multi⁃ple tree species， which bring multiple advantages.  The root distributions of different tree species are different； some tree species have deep and widely distributed roots， whereas other tree species have shallow roots but large lateral expansions.  This diversity in terms of root distribution can result in different degrees of influence on the understory terrain， posing more challenges to terrain estimation.  In addition， the growth rates and life cycles of different tree species are also different， making the changes in understory terrain more complex and diverse.  Therefore， when estimating terrain， by analyzing the growth characteristics of different tree species and their influence on terrain， the changing trend of understory ter⁃rain can be more accurately determined.The vegetation coverage and growth characteristics of different forest types are different.  For instance， broad-leaved forests have dense shrub and herb layers， which will interfere with the signals of terrain measure⁃ment equipment； coniferous forests have relatively small leaves and are relatively sparse， so their impact on ter⁃rain measurements is relatively small.  Hence， distin⁃guishing different forest types and considering vegetation influence factors in a targeted way could improve estima⁃tion accuracy.  The influence of vegetation on different 

forest types is also different.  In addition， different forest types are often associated with specific terrain condi⁃tions.  Namely， broad-leaved forests are more inclined to grow in mountainous areas， whereas coniferous forests and mixed forests are suitable for growing in plains or hilly areas.  Thus， understanding this correlation when estimating understory terrain can ensure that the terrain characteristics corresponding to certain forest types are combined and reasonable terrain models and parameter settings are selected.  Finally， in the correlation analy⁃sis， the results of different forest types in screening mod⁃eling factors can differ.  Furthermore， different forest types might face different interference factors.  For in⁃stance， broad-leaved forests might be more susceptible to natural disturbances， such as fires， pests， and diseases， whereas coniferous forests might be more affected by hu⁃man activities， such as logging and reclamation.  Conse⁃quently， interference factors will have different degrees of influence on understory terrain.
3. 3　Analysis of canopy height impact on estimation 
result　To explore the impact of canopy height on the accu⁃racy of understory terrain estimation， this study used the ICESat-2 data to extract values for canopy height data.  In this analysis， areas of 0-10 m， 10-20 m， and greater than 20 m were distinguished， and different canopy height areas were verified separately.  The verification re⁃sults are shown in Fig.  6.The results showed that as the canopy height in⁃creased， the estimation accuracy of understory terrain de⁃creased.  R2 remained at 0. 99， and RMSE decreased from 3. 35 m to 7. 46 m.  It becomes evident that during the process where changes in canopy height influence the 

 
Fig.  4　The classified and unclassified results of the two study areas： （a） Method 1， Puerto Rico； （b） Method 2， Puerto Rico； （c） 
Method 1， Maryland； （d） Method 2， Maryland
图4　两个研究区域的分类和未分类结果：（a） 方法1，波多黎各；（b） 方法2，波多黎各；（c） 方法1，马里兰州；（d） 方法2，马里兰州
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estimation accuracy， RMSE exhibits a remarkable varia⁃tion of 4. 11 m.  This clearly indicates that canopy height， being a crucial element within the canopy struc⁃ture parameters， has a substantial impact on the estima⁃tion accuracy.The canopy height in the range of 0-10 m provided better accuracy for several reasons.  First， the signal pen⁃etration for this height range was better than for the other ranges.  Namely， for commonly used terrain estimation technologies， such as LiDAR， when the emitted laser pulses pass through the forest canopy of 0-10 m， there will be relatively less occlusion and attenuation.  There⁃fore， most laser pulses can reach the forest floor and be reflected and received by the receiver.  The abundant and accurate reflected signals provide sufficient data for accu⁃rately estimating the understory terrain.  Second， vegeta⁃

Fig.  6　 The analysis results of the canopy height influence on 
the estimation result
图6　树冠高度对估算结果的影响分析结果

 

 

Fig. 5　The scatter plots of the estimation results for different forest types: (a) open deciduous broad-leaved forest; (b) closed deciduous 
broad-leaved forest; (c) closed evergreen coniferous forest; (d) closed mixed forest; (e) closed evergreen broad-leaved forest; (f) closed 
mixed forest
图 5　不同森林类型估计结果的散点图：(a) 开放落叶阔叶林；(b) 封闭落叶阔叶林；(c) 封闭常绿针叶林；(d) 封闭混交林；(e) 封闭常
绿阔叶林；(f) 封闭混交林
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tion interference is less than in other height ranges.  Within this height range， the vegetation hierarchical structure is relatively simple， and there is no multi-layer complex canopy formed by tall trees， which reduces the interference to the terrain estimation signal.  In taller for⁃ests， branches and leaves at different heights can cause multiple reflections and scatterings of the laser signal， re⁃ducing the accuracy of terrain estimation.  In addition， data processing is relatively easy.  The amount of data collected for forest heights from zero to 10 m is small and simple， making data processing less challenging and the processing process more efficient.  Also， errors are less likely to occur， and the algorithm runs faster， enabling a more accurate terrain estimation result to be obtained more rapidly.  Moreover， terrain features are more obvi⁃ous.  Namely， in shorter forests， there is less vegetation occlusion， and terrain undulations， slopes， and other features are more easily observed； also， small hills， gul⁃lies， and other terrains are easier to identify.  In con⁃trast， in tall and dense forests， the terrain may be cov⁃ered by vegetation.  Therefore， the forest height of 0-10 m can more accurately capture terrain details and im⁃prove estimation accuracy compared to the other height ranges.The accuracy of understory terrain estimation in high canopy areas is poor for multiple reasons.  First， sig⁃nal occlusion is severe； the dense tree crowns in high canopy areas cause laser pulses to be reflected， refract⁃ed， and absorbed multiple times by layers of branches and leaves during signal propagation.  Therefore， the ef⁃fective signals reaching the forest floor are significantly reduced， and the received reflected signals of the under⁃story terrain are weak and incomplete， making it chal⁃lenging to reflect the true situation of the understory ter⁃rain accurately.  In addition， there are complex multiple reflections in high-canopy forests.  The lush foliage and complex hierarchy lead to multiple reflections of the mea⁃surement signal in the canopy layer.  This makes the sig⁃nal path difficult to determine and the intensity and time information distorted， generating a large amount of noise and interference and thus increasing the difficulty of data processing， which can easily lead to errors in terrain esti⁃mation； also， terrain features in high canopy areas are blurred.  Tall trees and dense foliage cover the terrain un⁃dulations， gullies， and other features under the forest and may also cause shadow areas， affecting the accurate judgment of the understory terrain.  Namely， even if un⁃derstory signals are received， it can be difficult to extract terrain information accurately.  Finally， the ecosystem is unstable.  The ecosystem in high canopy areas is com⁃plex， and tree growth， lodging， and changes such as foli⁃age shedding and renewal are frequent.
3. 4　Analysis of forest coverage impact on estima⁃
tion result　To explore the impact of forest coverage on the accu⁃racy of understory terrain estimation， this paper used the ICESat-2 data to extract the forest coverage data.  In this analysis， areas with forest coverage of 0-25%， 25%
-50%， and greater than 50% were distinguished， and dif⁃

ferent forest coverages were verified separately.  The veri⁃fication results are shown in Fig.  7.

The results in Fig.  7 show that in the same study ar⁃ea， the forest coverage had a slight effect on the accuracy of understory terrain estimation， and there was no regular change.The LiDAR could accurately determine terrain height by emitting laser pulses and measuring their re⁃turn time.  This was because this technology mainly re⁃lied on physical principles and was not sensitive to chang⁃es in forest coverage.  In both sparse and dense forests， as long as the laser could penetrate a certain degree of canopy to reach the ground， relatively accurate terrain data could be obtained.However， considering the terrain characteristics， the understory terrain was mainly formed by long-term natural processes， such as geological structure， soil ero⁃sion， and water flow.  These factors had no direct causal relationship with the forest coverage.  Even if the forest coverage changed， the basic terrain structure under the forest would not change significantly in a short period of time.  For instance， terrain features， such as ridges and valleys of a mountain， would not change fundamentally if the forest became denser or sparser.From the perspective of the time scale of terrain changes， changes in forest coverage are usually relatively slow and may take several years or even decades to show obvious changes.  The changes in understory terrain are often caused by longer term geological actions or sudden natural disasters （e. g. ， earthquakes and landslides）.  Therefore， in a shorter time range， the impact of changes in forest coverage on understory terrain is minimal； thus， when estimating the terrain， the relationship of forest cov⁃erage compared with canopy height is not significant for estimated accuracy.
4 Conclusions 

This study aims to address the shortcomings of the ICESat-2 data of not being able to perform planar under⁃story terrain estimation and the problem of a low accuracy of the Landsat-8 data and SRTM data in understory ter⁃

Fig.  7　The analysis results of forest coverage influence on the 
estimation accuracy
图7　森林覆盖率对估算精度的影响分析结果
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rain estimation.  To this end， it conducts research on un⁃derstory terrain estimation using multi-source remote sensing data， combining the ICESat-2， Landsat-8， SRTM， and land cover data.  The study areas include Puerto Rico and Maryland.  The multiple linear regres⁃sion model and random forest model are used for model⁃ing to realize understory terrain estimation.Based on the obtained results， the following conclu⁃sions are drawn：1.  Compared to the traditional SRTM， using multi-source remote sensing data in understory terrain estima⁃tion， the RMSE metric is improved from 10. 86 m to 5. 06 m， and the R2 value is improved from 0. 98 to 0. 99.  This indicates that the proposed method shows less fluctuation when facing understory terrain changes， increasing model stability.  Thus， it is more suitable for accurate prediction of understory terrain than traditional SRTM.2.  By regarding forest types as distinguishing condi⁃tions， this study constructs understory terrain estimation models for different forest types in the study area and finds that the understory terrain estimation accuracy un⁃der the condition of a single forest type is better than that without classification.  The RMSE value of the understory terrain estimation is improved from 5. 06 m to 2. 94 m， and the R2 value remains at 0. 99.  This indicates good re⁃liability in understory terrain estimation under various forest types.3.  The analysis of the impact of canopy height and forest coverage on the understory terrain estimation per⁃formance shows that as the canopy height increases， the accuracy of understory terrain estimation decreases.  The 
R2 value remains at 0. 99， and the RMSE value of the un⁃derstory terrain estimation is 3. 35 m in the low canopy area， 5. 58 m in the medium canopy area， 7. 46 m in the high canopy area and the RMSE value exhibits a remark⁃able variation of 4. 11 m.  The results indicate that cano⁃py height has more impact than forest coverage on under⁃story terrain estimation.Currently， although we have completed the research on this method， the study area is only a partial region of the United States.  This to some extent limits the practica⁃bility of the method.  In the follow-up， the study area should be expanded.  Regions with different geographical environments and climatic conditions can be selected， such as countries and regions in different continents such as Europe， Asia， and Africa.  This can test the applica⁃bility of the method in different natural environments.  At the same time， it can also better understand the charac⁃teristics and needs of different regions.  Then， the meth⁃od can be optimized and adjusted to make it more univer⁃sal and give full play to the value of this method.
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