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Abstract. Fibroblasts support a broad range of essential organ functions via microarchitectural, biomechanical,
and biochemical cues. Despite great advances in fluorescence, photoacoustic conversion, and Raman scattering
over the past decades, their invasiveness and limited spatial resolution hinder the characterization of fibroblasts in
a single cell. Here, taking mouse embryonic fibroblasts (MEFs) as an example, we propose a novel noninvasive
approach to investigate the compositional distribution of MEFs at the single-cell scale via terahertz (THz) nanos-
copy. Compared to the topological morphology, THz nano-imaging enables the component-based visualization of
MEFs, such as the membrane, cytoplasm, nucleus, and extracellular vesicles (EVs). Notably, we demonstrate
the real-space observation of the influence of rapamycin treatment on the increase of EVs in MEFs. Moreover,
the line-cut and area-statistical analysis establishes the relationship between the topological morphology and the
THz near-field amplitudes for different cellular components of MEFs. This work provides a new pathway to char-
acterize the effects of pharmaceutical treatments, with potential applications in disease diagnosis and drug devel-
opment.
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Introduction

Terahertz (THz) waves refer to a broad frequency
range between 0. 1-30 THz, corresponding to a wave-
length between 10 and 3000 wm''. In past decades,
THz radiation has been widely used in scientific research
and technical applications, such as telecommunications,
security, and non-destructive imaging””. In these ar-
eas, the advantages of THz waves are mainly due to the
low energy of THz photons, and multitudinous vibration
and rotation frequencies are located in the THz range, in-
dicating that THz techniques are suitable for noninvasive
investigation and discrimination of various materials. No-
tably, milestones in the development of THz spectrosco-
py**" and THz imaging ™ have boosted the evolution of
THz techniques in material science”", molecular chem-
istrym' , and biomedical studies "

Despite the THz techniques are extensively utilized
in various scenes, the relatively low spatial resolution (~
100 wm) severely restricts both fundamental and engi-
neering applications ' Although researchers have pro-
posed several methods to break this limitation, for exam-
ple, aperture-based THz near-field techniques, their
highest spatial resolution is in the micrometer range''*"”".
Combined with the atomic force microscope (AFM), and
THz systems based on different sources and detectors,
THz nanoscopy could resolve the THz response of a sam-
ple under test at the nanoscale'*". Since its develop-
ment, THz nanoscopy has been broadly applied in con-
densed matter physics and material identifications, such
as ultrafast charge carrier dynamics in semiconduc-
tors 2 | polaritons in low-dimensional materials >?" |
and local permittivity of pigments”™ and dental car-
ies™™. Recently, several results of THz nanoscopy in
biomedical research have opened new avenues for nonin-
vasive characterization at the nanoscale”'?* , in which
the heterogeneity and distribution of proteins™**', bacte-
ria”¥, viruses™, and cells””” can be well captured and
analyzed.

Fibroblasts are one of the most common types to es-
tablish and maintain structural organization in several im-
mune responses . It is a malleable cell that enables
altering its function and transforming into other cell types
as required***'. Despite the various optical methods that
have been utilized for noninvasive imaging of fibroblasts,
for example, fluorescence microscopy, second harmonic
generation, optical coherence tomography, and photo-
acoustic microscopy, their current record spatial resolu-
tion is in the micrometer range“s’m. Therefore, the cellu-
lar components of fibroblasts have not been well resolved
at the single-cell scale, which is significant for fibroblast-

[48-49] d : h
and gene expression mecna-

based cell development
nismsm's'w.

To the best of our knowledge, the investigation and
identification of fibroblasts by THz nanoscopy is still un-
touched. Here, we realize the noninvasive THz near-
field nano-imaging of the mouse embryonic fibroblast
(MEFs) at the single-cell scale for the first time. We
compared and analyzed the difference between the topo-
logical morphology (AFM) and THz near-field ampli-
tude, the results indicate the ability of THz nanoscopy to
observe the cellular components of MEFs. Notably, the
number of EVs of MEFs in the experimental group is
much higher than that in the control group, which means
the rapamycin treatment may have positive effects on pro-
ducing more EVs. Based on the line-cut and area-statisti-
cal analytics, we further reveal the discrepancy of the
component-dependent THz near-field amplitudes in
MEFs. These results provide a potential pathway to inva-
sively study the compositional distribution and functional-
ities of fibroblasts including MEFs, at the nanoscale.

1 Methods

Cell preparation, fixation, and treatments. MEFs
(purchased from ATCC) were cultured in high-glucose
Dulbecco’s modified Eagle” s medium (Gibco) supple-
mented with 10% fetal bovine serum (Gibco), 100 U/mL
penicillin, and 100 pg/mL streptomycin. Cells were in-
cubated at 37 °C with 5% CO, saturation in a humid at-
mosphere. Highly doped silicon (from SurfaceNet LLC,
p ~0.136 Q+cm), which has broad biological adaptabil-
ity and high near-field reflectivity, was chosen as the
substrate. Cells were seeded onto the substrates and
washed three times with phosphate buffer saline. The
cells were fixed with anhydrous ethanol for 10 minutes.
The cells were gently rinsed 3 times with ultrapure water
and dried slowly at room temperature. For the experimen-
tal group, MEFs were treated with 20 ng/mL rapamycin
for 24 h. The reason for treating MEFs with this concen-
tration is based on our previous preliminary experiment
to induce cell autophagy in MEFs and then increase the
number of EVs. Similar treatment can be found in previ-
ous works ",

THz near—field nano—imaging. We use commercial-
ly available low-temperature grown GaAs photoconduc-
tive antennas (PCAs, Fraunhofer Heinrich Hertz Insti-
tute) as the emitter and detector to form a THz time-do-
main spectroscopy based on a commercially available sys-
tem (TeraSmart, Menlo Systems GmbH). The PCA
emits a broadband sub-picosecond pulse with frequencies
from 0. 1-3 THz. This pulse is coupled to a metallic
AFM tip (Rocky Mountain Nanotechnology, LLC) of a
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commercially available system (Neaspec GmbH, Attocu-
be Systems AG). The light-matter interactions between
the incident THz wave and the sample at the nanoscale
are time-modulated when the AFM is in the tapping
mode, and then scattered by the AFM tip in the far-field
and finally detected by another PCA and demodulated in-
to different harmonic orders through lock-in detection
methods. In this experiment, we measure the peak am-
plitude of the scattered THz pulse and use it to realize
high-fidelity THz near-field nano-imaging. The schemat-
ic of the THz near-field nano-imaging experiments on
MEFs in this work is shown in Fig. 1 (a), similar experi-
mental set-ups can also be found in the work of previous
authors”*',

2 Results and Discussion

We first verify the ability of THz near-field nano-im-
aging to map the cellular components of MEFs at the na-
noscale, where the results for both the experimental and
control groups are shown. As shown in Fig. 1(b) and
Fig. 1(c), the curved surface is colored by the intensity
of the second-order THz near-field amplitude (s2) ,
while the height of this surface and the contour lines at
the bottom indicate the topological morphology (AFM).

In Fig. 1(b) and Fig. 1(c¢), the cellular compo-
nents of MEFs, such as the membrane, cytoplasm, and
nucleus are well captured by THz near-field nano-imag-
ing, where the S2 of MEFs for both the experimental and
control groups is much lower than that of the THz reflec-
tive type substrate (highly doped silicon). It can be ob-
served that the minimum values of S2 are concentrated in
the central region of MEFs, corresponding to the position
of the nucleus. Apart from these similar characteristics
for both the experimental and control groups, we notice
that the EVs are randomly distributed closely outside the
MEF only for the experimental group (Fig. 1(b)). How-
ever, there is hardly any obvious feature of this in Fig. 1
(c¢) for the control group.

To further compare the discrepancy between the
MEFs of the experimental and control groups, and the re-
lationship between the AFM and THz near-field ampli-
tudes of the first, second, and third order (S1, S2, and
S3), we randomly select two typical THz nano-imaging
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results of MEF cells for the experimental and control
groups respectively, which are shown in Figure 2.

As shown in Figure 2, the nanoscale morphology of
MEFs can be clearly distinguished from both the AFM
and THz near-field amplitudes. Compared with the AFM
images, which are only related to the relative heights of
MEF, different orders of THz near-field amplitudes for
(S1, S2, and S3) provide high-fidelity nano-contrast re-
vealing the cellular components of MEFs, including the
nucleus, membrane, cytoplasm, and EVs. For exam-
ple, the height of the nucleus is inhomogeneously distrib-
uted, e. g. Figure 2(m), which could lead to misunder-
standing the exact size and composition of the nucleus.
However, for the THz near-field nano-imaging, e. g. Fig-
ure 2(n) , it could not only determine the profile of the
nucleus but also visualize the cytoplasm attached to the
nucleus (left side of the nucleus). The reason for these
discrepancies is based on the light-matter interactions in
the near-field. Compared with the effects of heights, the
THz near-field amplitudes are strongly dependent on the
electromagnetic properties of the sample, such as the per-
mittivity function and the surface conductivity ™",

Moreover, EVs are distributed outside the MEFs in
both the experimental and control groups. However, the
number of EVs in the experimental group (Fig. 2(b) and
2(f) ) is much higher than that in the control group (Fig.
2(j) and 2(n)). In Fig. 2(i)-2(p), some EVs also ap-
pear in the MEF's of the control group, but the number of
EVs here is much lower than that of the experimental
group (Fig. 2(a)-2(h) ). In the panels of Fig. 2(i)-2
(1), some features originate from the uneven surface mor-
phology of the silicon substrate, such as defects and im-
purities, and the sizes of these features are much smaller
than the size of the EVs in Fig. 2(a)-2(h). Very few
EVs can be observed within the scan range (40 X 40
pum?) of the results of control group 2. Despite the signal-
to-noise ratios of S3 are apparently worse than those of S1
and S2, where the subtle near-field contrasts of the cellu-
lar components of MEFs are no longer observable, these
results shown in Figure 2 unfold the remarkable ability of
THz nanoscopy to characterize the cellular components of
MEFs.

To interpret the qualitative discrepancy in the num-
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Schematic of THz near-field nano-imaging experiments on MEFs. : (a) experimental set-up; (b, ¢) topological morphology
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Fig. 2 Details of topological morphology and THz near-field amplitudes of MEFs. : (a-d) Height, S1, S2, and S3 of experimental
group 1; (e—h) Height, S1, S2, and S3 of experimental group 2; (i-1) Height, S1, S2, and S3 of control group 1; (m—p) Height, SI,
S2, and S3 of control group 2. (The marked line cuts in Figure 2(a), 2(e), 2(i), and 2(m) are used for line—cut analysis in Figure 3. The
marked circles in Figure 2(h), 2(f), 2(]) , and 2(n) indicate the position of EVs)
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ber of EVs between the experimental and control groups,
we would infer that the significant increase in the number
of EVs in the rapamycin-treated MEFs is likely related to
the inhibition of the mTORC1 pathway, which is known
to modulate autophagy and cellular stress responses ™.
By promoting autophagy and altering cellular metabolic
states, rapamycin might drive cells to release more EVs
as a mechanism to maintain intracellular homeostasis or
improve intercellular communication. A similar role for

mTORCI also appears in exosome release, where the ra-

pamycin treatment significantly increased the number of
exosomes, suggesting that mMTORC1 inhibition delays se-
nescence through increased release of exosomes™"".
Next, we perform the line-cut (Figure 3) and area-
statistical (Figure 4) analysis to establish the relation-
ship between the topological morphology and THz near-
field amplitudes and to obtain the correspondence of THz
near-field amplitudes for different cellular components of

MEFs. Figure 3 shows the line-cut profiles of AFM and
THz near-field amplitudes of MEFs for the experimental
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and control groups, respectively. These profiles capture
information from the nucleus and cytoplasm of MEFs and
correspond to the marked dashed and dot-dashed lines
shown in Figure 2(a), 3(e), 3(i), and 3(m), respec-
tively. The heights of MEFs, as shown in Figure 3(a), 3
(e), 3(i), and 3(m) are similar, suggesting compara-
ble cellular morphology in terms of overall size and
height. Compared with Figure 2, we can infer that the
height ranges for the nucleus, cytoplasm, EVs, and sub-
strate are approximately 800-1 300 nm, 400-800 nm,
200-400 nm, and 0-200 nm respectively. Moreover, the
overall range of the near-field amplitudes is similar be-
tween the experimental and control groups (e. g. , Figure
3(b), 3(1), 3(]) ,and 3(n)), reflecting consistent THz
dielectric properties. These similarities indicate that the
overall cellular morphology and THz electromagnetic
properties of MEFs are preserved despite the rapamycin
treatment.

As shown in Figure 3, the height and THz near-field
amplitude are negatively correlated overall, with the
higher part corresponding to a weaker near-field ampli-
tude. For example, the values of S1 for the nucleus in all
MEFs are around 0. 4-0. 6, while the values for the cyto-
plasm, EVs, and substrate are within the range of 0. 6-

1.0, 0.9-1.2, and 1. 2-1. 5, respectively. According to
the principles of the tip-sample near-field responses in
weakly absorbing samples''*'**" | such as molecular ma-
terials and biomedical samples, the near-field amplitude
of cellular components is approximatively proportional to
their dielectric permittivity via the reflection coefficient.
Moreover, a recent experimental work has proposed that
the high cell nucleus density enhances the absorption
and/or scattering of the THz waves™. Therefore, we
could infer that the THz permittivity of the nucleus is low-
er than that of the cytoplasm. Notably, we have also no-
ticed that a recent work has established a systematic theo-
retical method to describe the THz near-field response of
a complex morphological structure of protein based on
the finite dipole model for multilayer samples™ , where
the response depends on the thickness and permittivity of
the sample, and the amplitude and distribution of the tip-
localized near-field. Therefore, more care should be tak-
en to distinguish the contribution from different cellular
components of MEFs.

Further, the response of EVs is also captured, e.
g. , sharp peaks in Figure 3(b) and 3(f). Although the
height of EVs is small, which is buried in Figure 3 (a)

and 3(e) , the corresponding response of THz near-field
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Fig. 3 Line-cut analysis of THz near-field amplitudes. : (a-d) Height, S1, S2, and S3 of experimental group 1(These data correspond to
the blue dashed line marked in Figure 2(a)); (e—h) Height, S1, S2, and S3 of experimental group 2 (These data correspond to the blue
dot—dashed line marked in Figure 2(e)); (i-1) Height, S1, S2, and S3 of control group 1 (These data correspond to the black dashed line
marked in Figure 2(i) ) ; (m—p) Height, S1, S2, and S3 of control group 2 (These data correspond to the black dot—dashed line marked in

Figure 2(m))

3 KFZ MR EL AL AT - (a-d) SCBAH 19 B2, — B, — B, =B (m 5 G EERdi 09 HUEL 7 068 I P8 2 () P i i
L) 5 (e=h) SCHGLH 2 B L, — B, — B, Bt g5 o Gk Se s it SR B X0 N 18] 2 (e) PP AR €0 S R 2R 5 (1) oF A 1 )
R — B, B, SBnE g E S (RSBl i U E A R 2D B BB EELR ) 5 (e—h) XFTHRZH 2 BRI, — B, By, =il

el Eb SR AC RO IA S PACDL i SE SEN R U )



54

ZHONG Qin-Yang et al: Noninvasive terahertz near-field nano-imaging of mouse embryonic fibroblasts

731

amplitude is quite sharp from 1. 2-1. 5 of the substrate to
0.9-1. 2 of the EVs (Figure 3(b) ). These results indi-
cate the ability of THz near-field nano-imaging to charac-
terize MEFs based on near-field electromagnetic interac-
tions in terms of the permittivity function. It is worth not-
ing that only the combination of AFM and THz near-field
amplitudes could provide an accurate description of cells
at the nanoscale.

To further analyze the correlation between the
heights and near-field amplitudes observed in Figure 3,
without loss of generality, further area-statistical statis-
tics were performed based on the data of experimental
group 2 (Figure 2 (f) and 2 (g) ) and control group 2
(Figure 2(n) and 2(0) ), as shown in Figure 4. By com-
bining the area-statistical statistics of the AFM height
with the THz near-field amplitudes (S1 and S2), the re-
lationship between the topological morphology and the
near-field amplitude distribution is analyzed for both the
experimental group (Fig. 4 (a)) and the control group
(Fig. 4 (b) ). This approach allows a comprehensive
comparison of the structural and dielectric properties be-
tween the two groups. In both groups, the near-field am-
plitudes (S1 and S2) exhibit an exponential decay with
increasing heights, consistent with the near-field interac-
tion model that is analyzed above. This trend highlights
the expected physical correlation between the height of
MEFs and the localized near-field amplitudes.

In the experimental group, most points are primarily
located around 100 nm, with corresponding near-field
amplitudes concentrated around 1.2-1.4 (S1) and 0. 3-
0.4 mV (S2), respectively. For the control group, the

near-field amplitudes are also concentrated around 1. 25-
1.35mV (S1) and 0. 32-0. 4 mV (S2) when the heights
are around 200 nm. This region corresponds to the sub-
strate. For the experimental group, another peak appears
at lower near-field amplitudes 0.4-0.6 mV (S1) and
0.02-0. 1 mV (S2), which mainly corresponds to the nu-
cleus, while this feature is absent in the control group
(Figure 4 (b) ). We conclude that this difference de-
pends on the depth of the nucleus. The entire nucleus is
located at the top of the cell in experimental group 2 (Fig-
ure 2(f) ), while the left part of the cell in control group
2 is covered by the overlying cytoplasm. These results in-
dicate that the method proposed in this work, which is
based on the combination of AFM and THz near-field na-
no-imaging, could be used to secure the morphology and
components of MEF's.

3 Conclusions

In conclusion, we propose a novel pathway to inves-
tigate and distinguish a typical fibroblast, MEFs, in a
non-destructive manner at the nanoscale using THz na-
noscopy. Our methods and results reveal that the THz
near-field nano-imaging has an outstanding ability to un-
cover the components and morphology of MEFs. We
characterize the MEFs for both the experimental and con-
trol groups, using the number of randomly distributed
EVs as the criterion for distinguishing these two types of
MEFs. Looking ahead, the research of THz nanoscopy in
biomedical and biological fields is promising but also
challenging, especially for understanding and identifying
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the bio-mechanisms at the nanoscale.
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