文章编号:1001-9014(XXXX)XX-0001-16

DOI:10. 11972/j. issn. 1001-9014. XXXX. XX. 001

改进球形体素局部形状描述符的跨源点云配准

李 健1, 李焕涛1, 吴 浩2, 崔 昊1*

(1. 郑州大学 地球科学与技术学院,河南 郑州 450001;2. 华中师范大学 城市与环境科学学院,湖北 武汉 430079)

摘要:针对跨源点云配准中由于点云数据质量差异带来的诸多挑战,提出了一种改进球形体素局部形状描述符的 跨源点云配准方法。该方法的核心是设计了一个局部形状描述符,SVCD(Spherical Voxel Center Descriptor,球形体 素中心描述符)。通过使用双权重来计算局部参考框架(Local Reference Frame,LRF),并对局部曲面进行球形体素 分割,有效解决了跨源点云密度与分布差异的影响。此外,通过利用局部体素中心到关键点的距离进行特征编码, 增强了描述符的描述性和鲁棒性。最后采用最近邻相似比生成正确对应关系,并通过奇异值分解生成最终的刚性 变换矩阵,实现高精度跨源配准。在3DCSR和真实数据集上的实验结果表明,SVCD描述符具有较高的描述性和鲁 棒性,并显著提升了跨源配准精度,配准误差低至0.0048;并且在两个数据集上的召回率分别达到 82.83%和 83.45%,提高了10.24和11.16个百分点;此外,在所有对比算法中,SVCD取得了最高的F1-score,分别为0.803和 0.832,进一步验证了其优越性。同时,在应对高斯噪声的实验中,SVCD的平均召回率达76.54%,远高于其他描述 符,证明了其在复杂环境下的鲁棒性。

关 键 词:跨源点云配准;局部形状描述符;球形体素;体素中心;最近邻相似比 中图分类号:P237 **文献标识码:** A

Cross-source point cloud registration using an improved spherical voxel-based local shape descriptor

Li Jian¹, Li Huan-tao¹, Wu Hao², Cui Hao^{1*}

(1. The school of Geo-Science & Technology, Zhengzhou University, Zhengzhou 450001, China;2. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

Abstract: To address the challenges caused by variations in point cloud quality during cross-source registration, we introduce an improved local shape descriptor, termed the Spherical Voxel Center Descriptor (SVCD). This descriptor forms the foundation of a robust method designed to mitigate the effects of density and distribution disparities in cross-source point clouds. The core innovation lies in the design of a dual-weighted Local Reference Frame (LRF) computation combined with spherical voxel segmentation of local surfaces, effectively mitigating the impact of density and distribution discrepancies in cross-source data. SVCD enhances feature descriptiveness and robustness by encoding the distances from voxel centers to keypoints. Accurate correspondences are established using nearest neighbor similarity ratios, and the final rigid transformation matrix is derived via singular value decomposition. Experimental results on the 3DCSR and real-world datasets show that SVCD enhances cross-source registration accuracy, reducing errors to 0.0048. It achieves recall rates of 82.83% and 83.45%, improving by 10.24 and 11. 16 percentage points, respectively. SVCD also outperforms all compared algorithms with the highest F1-scores (0.803 and 0.832), demonstrating its effectiveness. Additionally, it achieves an average recall rate of 76.54% under Gaussian noise, confirming its robustness in complex environments.

收稿日期:2024-12-04,**修回日期**:2025-02-21 **基金项目**:国家自然科学基金(42241759);国家自然科学基金青年基金(42001405);河南省自然科学基金(242300420212);中国博士后科学 基金(2024M752938)

Foundation items: Supported by the National Natural Science Foundation of China (42241759); National Natural Science Foundation of China Youth Fund (42001405); The Natural Science Foundation of Henan Province (CN) (242300420212); The China Postdoctoral Science Foundation (2024M752938)

作者简介(Biography):李健(1983-),男,河南焦作人,教授,博士学位,主要研究领域为三维激光雷达遥感数据智能处理与应用. E-mail: lijian5277@163.com

^{*}通讯作者(Corresponding author): E-mail: cuihao@zzu. edu. cn

Key words: Cross-source point cloud registration, Local shape descriptor, Spherical voxel, Voxel center, Nearest neighbor similarity rate

PACS:

引言

随着三维观测设备的快速发展和普及,使得不 同观测平台在不同时段从不同传感器(地面和手持 激光扫描仪、深度相机等)获取大规模点云成为可 能11。然而由于不同传感器的成像机制不同,使得 每种传感器在捕捉3D场景时都有其特定的优势和 局限性。例如,激光雷达点云数据分辨率高但稀疏 且分布不均匀,而深度相机生成的点云密集但容易 受到反射率变化影响,产生噪声和数据空洞。此 外,不同视角和采集条件导致的重叠区域较少,进 一步增加了数据融合的难度。这些差异在跨源点 云配准中造成了巨大的挑战,影响了数据的统一表 示和进一步分析。通过多点云融合不仅可以大幅 提升对被测物体或场景的观测能力,整合多传感器 的优势,而且能提升对被测物体或场景的观测精 度^[2]。在此过程中,跨源点云配准^[3]作为多源点云 融合的核心技术,能够将不同来源的数据对齐,实 现统一的三维表示。这一技术在无人驾驶、遥感、 文物数字化保护、医学影像等领域展现了重要的应 用价值^[4],比如在无人驾驶中,激光雷达用于检测物 体的空间位置,而摄像头提供场景的纹理信息;在 遥感领域,融合地面激光扫描仪和手持设备采集的 数据能够更精确地还原地形;在北宋皇陵石刻数字 化保护中,地面激光扫描仪可捕捉高精度几何细 节,而手持SLAM设备能快速获取密集表面纹理,二 者配准后可将几何精度提升至亚毫米级,为文物修 复提供完整三维档案。然而跨模态点云数据固有 的质量差异给跨源点云配准带来了诸多挑战,包 括:(1)点云数据的密度和分布不一致;(2)噪声和 异常值的存在^[5];(3)视角差异导致的局部重叠和旋 转等。这些挑战增加了实现高精度跨源配准的 难度。

为解决上述问题,近年来出现了许多跨源点云 配准算法^[6]。Peng等人^[7]率先将来自不同传感器的 点云与真实街道视图融合,提出了一种两阶段方法 来对齐激光点云和运动结构点云,为跨源点云配准 研究奠定了基础。Huang等人^[8]通过基于高斯混合 模型缩放的样本实现精细化匹配,从粗到精地完成 跨模态点云的对齐。然而,这些方法在处理点云密 度和分布差异问题时表现有限。Yan等人阿通过提 取点云的宏微观结构来构建一种新的2线5点结 构,并结合仿射不变性、角度不变性、长度不变性和 全局基线不变性四个约束条件完成虚拟与现实对 象的配准,这种方法提升了特征匹配的精度,但对 于高噪声数据的适应性仍显不足。Jia等人^[10]考虑 到图模型的结构表示能力,设计了稳健的特征描述 符来描述局部节点,并从位置和方向上捕获空间关 系来描述全局边,通过构建新颖的图模型来表示异 构点云,但该方法在点云分布稀疏的场景中表现有 限。随着深度学习技术的发展,基于神经网络的跨 源点云配准方法得到了广泛关注。Zhao 等人^[11]将 跨模态配准问题表述为一致性聚类过程,基于自适 应模糊形状聚类研究不同模态之间的结构相似性 进行对齐。FF-LOGO^[12]通过跨模态特征相关性过 滤模块提取几何变换不变的特征以实现点选择,并 采用局部自适应关键区域聚合模块和全局模态一 致性融合优化模块进行局部到全局的联合优化。 Zhao 等人^[13]提出了一种基于体素表示和分层对应 关系过滤的跨源点云配准方法 VRHCF,利用球形体 素增强描述符的鲁棒性,并通过自适应对应关系过 滤提高匹配精度。然而,该方法在处理点云严重稀 疏或局部几何信息缺失的情况下,匹配精度有所下 降,且体素划分策略在高噪声环境下可能引入额外 误匹配。Cross-PCR^[14]采用密度鲁棒特征提取和松 弛到严格匹配策略,实现了跨源点云的高效对齐, 能够较好地应对点云密度和分布不均的挑战。然 而,该方法在特征提取过程中对局部几何细节的敏 感度较低,可能影响精细结构匹配的准确性,且在 极端视角差异下,其特征匹配阶段的错误对应率较 高。尽管基于深度学习的跨源配准方法在结构化 场景中表现优异,但其依赖大规模标注数据的特点 限制了在文化遗产等小样本场景中的应用。此外, 跨模态配准中的噪声和密度变化会影响深度特征 提取,使得基于深度学习的方法发展受阻[15]。相比 之下,基于传统优化的方法通过设计鲁棒的描述符 来进行跨源点云配准具有重要的研究价值。故本 文采用基于传统优化的算法进行跨源配准,相比于 基于深度学习的方法,本文所提方法无需大量的数 据进行预训练,不依赖于跨源数据集,配准效率更高,更具有适用性。

尽管上述提到的算法在一定程度上可以有效 应对跨源挑战,但跨源配准中仍普遍存在大量不准 确的点对点对应关系,使得找到最优解变得仍极具 挑战性^[16]。考虑到跨源点云虽然存在很大差异,但 人类的视觉系统通常能够毫不费力地以高精度对 齐它们。这得益于人类利用的是两个跨源点云形 状之间的相似性而不是详细的点[17]。而局部形状 描述符(Local Shape Descriptor, LSD)已被广泛用于 描述局部曲面,进而建立对应关系,是基于传统优 化点云配准算法的重要组成部分[18]。其核心是通 过在关键点处构建局部参考框架或局部参考轴(Local Reference Axis, LRA)来将局部表面中的几何信 息编码为特征向量表示,并通过特征匹配搜索出正 确的对应点对。SHOT^[19]是第一个消除轴符号模糊 性的LRF方法,基于邻域法向量与z轴偏差角的余 弦值生成直方图,通过串联形成最终的特征向量, 但其易受点密度变化的影响。 Malassiotis 和 Strintzis^[20]将局部点云从单个视图投影到LRF的XY 平面上,提出了Snapshots描述子。然而,仅对单个 视图的局部邻域信息进行编码,导致大量信息丢 失。为此, Yang等^[21]提出了一种名为TOLDI的描述 符,利用多视图机制对局部邻域信息进行编码。Tao 等^[22]考虑了局部表面的自遮挡,从五个视图对局部 邻域信息进行编码,提出了TriLCI描述符。多视图 策略虽然使得这两个描述子包含更多的局部信息, 但是在一定程度上增加了算法复杂度。为了进一 步提高描述符效率,许多学者提出了二进制描述符 (BSC^[23]、LOVS^[24])。其中LOVS仅使用点空间位置 将局部形状结构编码为二进制位串,而无需在特征 表示阶段计算复杂的几何属性(例如法线和曲率)。 LOVC^[25]是对LOVS的一种改进,通过对称局部体素 编码更多表面信息。LVC^[26]是一种用于地面点云配 准的新型LSD,通过开发高重复性的LRF和基于体 素中心的三维空间编码来增强描述符的描述性和 稳健性。然而,该描述符仅适用于地面点云,且性 能依赖于LRF的重复性,限制了其应用范围。受制 于跨源点云固有的密度和分布差异等影响,使得在 构建跨源配准描述符时通常存在描述性不足、可重 复性差及鲁棒性弱的问题,导致在捕捉跨源点云之 间的几何和结构特征时存在局限性,增加了跨源配 准的复杂性和不确定性。

基于上述跨源点云配准的固有挑战及LSD在 跨源匹配中存在的问题,论文提出了一种改进球形 体素局部形状描述符的跨源点云配准方法,具体来 说是设计了一个用于跨源配准的局部形状描述符, 即SVCD。论文通过优化LRF构建和特征编码方 法,可以有效应对不同传感器数据的密度、分布和 视角差异带来的影响,增强配准的鲁棒性和准确 性。具体来说,算法首先引入双权重来构建具有高 重复性的LRF。然后采用球形体素划分策略对关键 点处的局部曲面进行分割。之后,采用局部体素中 心到关键点的距离来编码特征,以获取关键点处的 准确特征表示。其次,论文采用最近邻相似比 (Nearest Neighbor Similarity Rate, NNSR)^[27]来过滤 错误对应,以生成高质量对应关系。最后基于正确 对应的局部参考框架构建协方差矩阵,并通过奇异 值分解(Singular Value Decomposition, SVD)^[28]求解 配准变换矩阵参数,实现了更稳健、更准确的配准。 实验证明所提方法在3DCSR 跨源公开数据集^[29]和 真实数据集中都表现出色。

1 算法原理及步骤

本文主要提出了一个用于跨源点云配准的局 部形状描述符SVCD。算法流程如图1所示,主要包 含四个部分:关键点提取、LRF构建、SVCD描述符 构建、特征匹配。更具体地说,本文首先对输入点 云进行体素下采样,以提取关键点。然后采用高效 稳健的LRF构建方法,构建适用于跨源局部曲面特 征表示的LRF。在此基础上,构建SVCD描述符,具 体包含两个步骤:球形体素划分和特征编码,以获 取特征向量表示。之后采用NNSR算法进行对应过 滤,以去除跨源配准之间的大量错误对应点对。最 后,对正确对应点对的LRF组成的矩阵进行奇异值 分解完成跨源配准。

1.1 关键点提取

论文首先通过体素下采样提取候选关键点,采 样间隔为7mr。其中mr代表点云分辨率,即点与其 最近点之间距离的平均值^[30]。为尽可能捕获更多 的邻域信息以及考虑到跨源点云分辨率不同,本文 选取点云密度较低的mr作为输入。其次,为避免平 坦区域处的关键点特征描述符高度相似而产生误 匹配问题,去除平坦区域候选关键点。最后,过滤 掉包含点数较少的体素,进一步降低后续配准所需 时间。最终剩下的候选关键点即为最终关键点。

图 1 算法流程图

Fig. 1 Algorithm flowchart

1.2 LRF构建

LRF通过构建完整的局部参考坐标系可以提供 包括径向、方位角和仰角方向在内的整个三维空间 信息。然而由于受到跨源挑战的影响,导致LRF的 x轴和y轴的可重复性和稳定性通常较差,不利于跨 源特征表示。为此,本文引入双权重来构建LRF。 首先,给定一个点云 $P = \{p_1, p_2, \dots, p_s\}$,S代表点云 数量,关键点p通过上述方法获取。则关键点p处的 局部参考框架L(p)和其临近点集 $N_{g}(p)$ 分别为:

$$L(p) = \left[\overrightarrow{x(p)} \quad \overrightarrow{x(p)} \times \overrightarrow{z(p)} \quad \overrightarrow{z(p)}\right] \#(1)$$
$$N_{R}(p) = \left\{ p_{i} \in Pl \| p_{i} - p \| \leq R \right\} \#(2)$$

其中 $\overline{x(p)}$ 和 $\overline{z(p)}$ 表示L(p)的x轴和z轴,×表示叉 乘, p_i 是关键点p的邻域点,R代表邻域点搜索半径。 为了实现对杂波和遮挡的鲁棒性,本文只使用局部 表面中的一小部分点,即使用距离关键点小于 $r_s = R/3$ 的邻近点构建协方差矩阵,详细计算如下:

$$\boldsymbol{M} = \sum (p_i - p) (p_i - p)' \#(3)$$

通过对 *M* 进行特征值分解,得到三个特征值 ($\zeta_1 > \zeta_2 > \zeta_3$)和相应的三个特征向量($\vec{v}_1, \vec{v}_2, \vec{v}_3$)。 为了消除 LRF 轴符号的歧义,z 轴朝向向量的多数 方向,则z 轴定义为:

$$\overrightarrow{z(p)} = \begin{cases} \overrightarrow{v_3} & \text{if } \overrightarrow{v_3} \cdot \sum_{i=1}^k p_i p \ge 0, \\ -\overrightarrow{v_3} & \text{otherwise} \end{cases} \#(4)$$

其中p是关键点, p_i 是p的邻居点, p_ip 是从 p_i 到p的 向量,k是邻居点的数量。则x轴的定义如下:

$$\omega_{i1} = \left(r_s - \left\|p - p_i\right\|\right)^2 \#(6)$$
$$\omega_{i2} = \left(pp_i \cdot \overline{z(p)}\right)^2 \#(7)$$

权重 ω_a 用于增强对遮挡和杂波的鲁棒性,权重 ω_a 用于增加平坦区域的可重复性。其中,距离权重 ω_a 反映了邻居点到关键点距离的重要性,距离关键 点越近的邻居点越能体现关键点的局部几何结构, 其对 LRF构建的贡献越大,有效降低了远离关键点 的噪声点影响,增强了对遮挡和杂波的鲁棒性;法 向一致性权重 ω_a 则反映了邻居点相对于关键点的 法向一致性,邻居点与LRF的 轴方向越一致,越 能准确反映局部表面的主方向特性,其权重越高, 有效增强了平坦区域LRF的稳定性并抑制异常点 的干扰。最后,y轴被计算为x轴和z轴的叉积。通 过该方法,获得的LRF是唯一且可重复的。最终 LRF可用3×3正交矩阵表示。其表达式如下:

$$LRF = \begin{bmatrix} \overline{x(p)} & \overline{x(p)} \times \overline{z(p)} & \overline{z(p)} \end{bmatrix} \# (8)$$

1.3 SVCD特征描述符

本节详细介绍了 SVCD 描述符的技术细节,如 图 2 所示。具体来说,生成 SVCD 描述符的过程包 含两个主要部分:球形体素分割和特征编码。首先 给定一个点云或表面,邻域点由关键点p和支持半 径 R 确定。将关键点p处的局部曲面定义为 P_{L} = { $p_{1}, p_{2}, ..., p_{n}$ }。首先对局部曲面 P_{L} 进行坐标变换, 将其变换到 LRF 下,以实现旋转和平移不变性。旋 转后的局部曲面 P'_{L} 表示为 P'_{L} = { $p'_{1}, p'_{2}, ..., p'_{n}$ }。

1.3.1 球形体素分割

受地球地理坐标系的启发,本文偏离了常规的 立方体体素化和八叉树方法,并沿经度、纬度和半 径三个维度对P_l进行球形体素分割。在跨源点云 配准任务中,由于传感器种类、采样方式及视角不 同,不同点云数据间往往存在尺度、密度和分布差 异。直角坐标系划分方式在面对这些变化时可能 会引入特征不稳定性,特别是在旋转或尺度变化较 大的情况下,固定网格划分可能导致不同点云间的

图 2 SVCD 描述符构建流程 Fig. 2 SVCD descriptor construction process

体素索引不一致,影响匹配精度。相比之下,球坐 标系体素划分天然具备旋转不变性和尺度自适应 性,能够保证同一物体在不同点云中的局部结构划 分方式一致,从而提升匹配的稳定性。此外,球坐 标体素能够更合理地适应点云数据的几何分布,避 免直角坐标划分可能出现的空体素过多或密集区 域划分不均的问题,提高空间利用率和计算效率。 通过球形体素分割,能够在高密度区域提供更精细 的特征表达,而在稀疏区域减少不必要的划分,从 而在保证描述能力的同时优化存储开销。该方法 不仅提高了跨源点云配准的匹配鲁棒性,同时也减 少了点云数据的冗余信息,使得后续特征计算更加 高效。具体步骤如下:首先将 P'_L的笛卡尔坐标变换 成极坐标。其中极坐标系的极轴方向为Z轴正方 向。坐标变换如下:

 $\left[\varphi,\theta,r\right] = f\left(p'_{x},p'_{y},p'_{z}\right) \#(9)$

其中, (p'_{*}, p'_{*}, p'_{*}) 为变换到LRF下的邻居点坐标, $f(\cdot)$ 为极坐标变换函数, (φ, θ, r) 为邻居点的极坐标。方位角 φ 和俯仰角 θ 分别表示为从正X轴逆时针旋转的角度以及从正Z轴向下旋转的角度,径向r表示为从原点(关键点)到邻居点的距离,其范围分别为[0, 2 π]、[0, π]、[0, R]。然后,分别沿着方位角、俯仰角和径向三个维度对球形体素进行等间隔划分,每个维度分别被划分成N、M和K个体素。因此,生成了以关键点p为中心的 $N \times M \times K$ 个球面体素 $V = \{V_{\mu}\}$,其中 $i \in [0, N]$ 、 $j \in [0, M]$ 、 $k \in [0, K]$ 表示三维球体中每个球面体素沿着方位角、俯仰角和径向方向的索引值,且均为正整数。通过将所有邻居点的坐标换算成极坐标,以计算出每个邻居点所在球形体素中的索引值。

$$\varphi_{bins} = INT (\varphi N/2\pi) \# (10)$$

$$\theta_{bins} = INT (\theta M/\pi) \# (11)$$

$$r_{bins} = INT (rK/R) \# (12)$$

其中,INT是取整函数, r_{bins} 、 θ_{bins} 和 φ_{bins} 表示每个邻居

点所处的球面体素在三个维度上的索引值。在获 得每个邻居点所在的球形体素索引之后,便可以计 算球形特征表示。

1.3.2 特征表示

SVCD 采用球形体素中心距离来进行特征表示,这一特征独立于原始点分布,可以有效消除跨源点云密度和分布差异的影响。为了确保特征计算的数值稳定性,在特征编码阶段,本文仍然转换回直角坐标系进行欧氏距离计算,以充分利用直角坐标的计算优势,避免球坐标系在极点附近可能出现的不稳定问题。具体来说,对于体素 V_{μ} ,为计算其中心坐标,首先需要根据其体素索引值计算出每个体素中心点在极坐标系下的坐标($\varphi_{e}, \theta_{e}, r_{e}$),如下所示:

$$\varphi_{c} = 2\pi (i - 1/2) / N \# (13)$$

$$\theta_{c} = \pi (j - 1/2) / M \# (14)$$

$$r_{c} = R (k - 1/2) / K \# (15)$$

其中,*i*,*j*,*k*为球面体素的索引号。进一步将其转换 为局部笛卡尔坐标系下的中心坐标。则其LRF中 的体素中心坐标分别为:

$$x_{c} = r_{c} \cdot \sin(\theta_{c}) \cdot \cos(\varphi_{c}) \# (16)$$
$$y_{c} = r_{c} \cdot \sin(\theta_{c}) \cdot \sin(\varphi_{c}) \# (17)$$
$$z_{c} = r_{c} \cdot \cos(\theta_{c}) \# (18)$$

其中, x_e, y_e, z_e 分别为体素中心在局部参考框架下的 坐标,则体素 $V_{i\mu}$ 的体素中心坐标为 $V_{i\mu}^e = (x_e, y_e, z_e)$ 。 由于在局部参考坐标系下,关键点p即为坐标原点, 故体素中心到关键点的距离 $d_{i\mu}$ 为:

$$d_{ijk} = \|V_{ijk}^c\| \#(19)$$

∥·**∥**表示欧氏距离。进一步可以获得球形体素 的距离特征值。

$$f_{d\,ijk} = d_{ijk}/R \,\#(20)$$

其中,*f*_{di}表示球形体素中心到关键点的归一化距离,*R*为搜索半径。通过遍历整个局部领域,可获得

所有球面体素的特征值,表达式如下:

$$F(V_{ijk}) = \begin{cases} \begin{bmatrix} f_{d\ ijk} \end{bmatrix} & \text{if } |C_{ijk} > 0| \\ 0 & \text{otherwise} \end{cases}$$

其中,*C*_#表示球形体素分割后的所有局部体素。如 果有点落在体素中,则其体素特征值为*f*_{d#}。如果体 素为空,则其体素值为0。所有体素值被连接起来 以得到关键点处的SVCD描述符,其特征维度为*N*× *M*×*K*。通过采用局部体素信息而不依赖于局部体 素中的单一邻居点坐标来计算特征向量,使得特征 表示不受点密度和分布的影响,提高了跨源点云特 征表示的鲁棒性和准确性。

1.4 对应关系过滤和匹配

跨源点云固有的密度和分布差异导致配准点 云之间通常不存在同名特征,使得特征匹配结果往 往会出现大量虚假对应关系。为了克服这一挑战, 本文采用最近邻相似比匹配进行对应过滤。具体 公式如下所示。

 $\left\|F_{i}^{P}-F_{j}^{Q}\right\|\left\|F_{i}^{P}-F_{k}^{Q}\right\| \leq \varepsilon \#(22)$

 F_i^p 表示源关键点的描述子, F_i^q 和 F_k^q 表示与源 关键点最接近的两个目标关键点描述子,其中 F_j^q 为 最接近的描述子, F_k^q 为第二接近的描述子。本文设 置 ε =0.9,以获得正确对应 C_0 。在获得正确对应后, 本文利用源关键点和目标关键点的LRF来计算旋 转矩阵。首先构造两个矩阵如下:

$$A_{3m \times 3} = \begin{bmatrix} (V_1^P)^T \\ (V_2^P)^T \\ \vdots \\ (V_m^P)^T \end{bmatrix} \quad B_{3m \times 3} = \begin{bmatrix} (V_1^Q)^T \\ (V_2^Q)^T \\ \vdots \\ (V_m^Q)^T \end{bmatrix} \# (23)$$

其中m是正确对应的个数,*V^P*_i和*V^Q*分别表示源关键点和目标关键点处的LRF。将上述两个矩阵相乘,并执行SVD。

$$\begin{bmatrix} U & S & V \end{bmatrix} = SVD(A^TB) \# (24)$$

则旋转矩阵计算如下:

$$R = V \Sigma U' \# (25)$$

其中 $\Sigma = diag \begin{bmatrix} 1 & 1 & det(UV^{T}) \end{bmatrix}$ 是对角矩阵, $det(\cdot)$

表 1 真实数据集相关参数

Tab 1 Real-world dataset parameters

为矩阵的行列式。平移向量计算如下:

$$t = \bar{q} - R\bar{p}\#(26)$$

其中*p*和*q*分别是正确对应关系所对应的源关键点和目标关键点的平均值。

2 实验和讨论

在本节中,首先介绍实验数据集和评估标准。 然后设置 SVCD 描述符的参数,并报告本文测试的 所有描述符的参数值。最后将提出的方法与几种 最先进的描述符方法(包括 LVC、LOVS、LOVC、 TOLDI、TriLCI)以及经典配准算法(ICP^[28]、FGR^[31]) 和目前主流的跨源配准算法(VRHCF、Cross-PCR) 进行比较来测试所提描述符的鲁棒性和跨源点云 配准精度。该算法基于 MATLAB 实现,所有实验均 在配备 Intel i7-12700H CPU 和 16 GB RAM 的笔记 本上进行测试。

2.1 数据集

实验在两个跨源点云数据集上进行,包括真实 数据集和3DCSR数据集。其中真实数据集包含各 种类型的北宋皇陵石刻文物点云,如"瑞禽"、"门 狮"、"文官"、"角端"等,这些点云分别由法如地面 激光扫描仪和GeoSLAM手持激光扫描仪获得,其中 不同传感器获取的"瑞禽"点云数据及真实数据集 传感器相关参数如图 3 和表 1 示。3DCSR 数据集中 的点云来自三种不同的模态:激光雷达(LiDAR)、 Kinect 红外深度传感器和相机传感器(SFM)。Li-DAR产生的点云相对稀疏,而Kinect深度相机产生 的点云密集且均匀。第三种模态数据是使用运动 结构(SFM)方法从一系列室内二维图像构建的。该 数据集提供了地面真实变换,用于将LiDAR或SFM 数据与密集的 Kinect 数据对齐,其中"lab1"数据及 3DCSR数据集中的传感器相关参数分别如图 4 和 表2所示。

2.2 评价标准

2.2.1 特征描述符性能

为了定量评估SVCD的描述性和鲁棒性,采用 召回率与精度曲线(Recall vs. Precision curve, RP

仪器	测距子外	最大测量距 最大扫描速率		测距精度	视场角	"瑞禽"数据	"瑞禽"数据点分
	侧맫刀法	离(m)	(points/s)	(mm)	(°)	点数量	辨率(m)
FARO S350	FARO \$350 相位式 350		2000000	±1	H:360 V:300	54853	0.0117
GeoSLAM ZEB Horizon	脉冲式	100	300000	$\pm 10 - 30$	H:360 V:270	1,031,633	0.0012

图 3 不同传感器获取的"瑞禽"点云数据

Fig. 3 'Auspicious poultry ' point cloud data acquired by different sensors

图 4 不同传感器获取的"lab1"点云数据

Fig. 4 'lab1' point cloud data acquired by different sensors

仪器	测距方法	最大测量 距离(m)	最大扫描速率(points/s)	测距精度(mm)	视场角 (°)	"lab1" 数据点 数量	"lab1" 数据点 分辨率 (m)
SFM	多视图几何重建	视场依赖	依赖输入图像数量	精度依赖于相机标定和场景	视场依赖	65,470	0.0028
Kinect	结构光深度测量	0.5–5	30 帧/秒(点云实时生成)	±2	H:70 V:60	15,031	0.0053

表 2 3DCSR数据集相关参数 Tab 2 3DCSR dataset parameters

曲线)^[32]。RP曲线是通过计算不同阈值ψ下的召回 率和准确率得到的。这两个指标定义为:

(1)精度计算为正确特征匹配的数量与总特征 匹配的数量之比:

$$precision = \frac{\#correct \, feature \, matches}{\#feature \, matches} \#(27)$$

(2) 召回率的计算方法是正确特征匹配的数量 与相应关键点对的数量之比: $recall = \frac{\#correct\,feature\,matches}{\#corresponding\,keypoint\,pairs} \#(28)$

通过改变阈值ψ,可以获得一组精确度和召回 率值来生成RP曲线。通过真实变换对源关键点进 行变换后,如果变换后的源关键点与其目标关键点 之间的距离小于0.5 mr,则认为该对应是正确的。 如果该特征同时具有高召回率和精确度,则RP曲 线将落在图的左上角。

为了更全面地衡量特征描述符的匹配能力,本

文进一步引入 F1-score 作为评价指标, F1-score 结 合了 精度(Precision)和召回率(Recall), 用于衡量 匹配性能的综合表现。其表达式如下:

$$F1 = 2 \cdot \frac{precision \cdot recall}{precision + recall} \#(29)$$

F1-score 的取值范围为0到1,其值越大,表示 匹配效果越优,说明该描述符在确保高召回率的同时,也具备较高的匹配精度,从而提升整体匹配性 能。F1-score 作为 RP 曲线的补充指标,能够有效 反映精度与召回率之间的平衡关系,特别适用于召 回率较高但精度略低的描述符,使得对比分析更加 全面。

2.2.2 配准精度

论文采用两个标准来定量评估配准精度^[26],即 估计的旋转矩阵 R_E 与地面真实值 R_{cr} 之间的旋转误 差 *ErrorR* 以及估计的平移向量 t_E 与地面真实值 t_{cr} 之间的平移误差 *Errort*。具体表达式如下:

$$ErrorR = \arccos\left(\frac{trace(R_{GT}R_{E}^{-1}) - 1}{2}\right)\frac{180}{\pi}\#(30)$$
$$Errort = ||t_{GT} - t_{E}||\#(31)$$

其中,其中 R_{ε} 是估计的旋转矩阵, t_{ε} 是估计的平移向量, R_{cr} 表示真实旋转矩阵, t_{cr} 表示真实平移向量。所有点云对的真实变换均通过手动配准获得。 通过综合分析旋转误差(*ErrorR*)和平移误差 (*Errort*),能够全面量化点云配准的精度,确保所提 算法在跨源点云配准中的准确性和鲁棒性。

2.3 参数设置与敏感性分析

SVCD 描述符需要设置的参数共有4个,分别为

始退化。并随着K的值越来越大,性能持续降低。 综上,本文取K值为5,以获得一个紧凑且高效的描述子。

2.4 对比方法

本文将 SVCD 与几个典型的描述符进行了比较,以评估所提描述符较其他描述符的描述性,包

图 5 真实数据集中不同K值下的RP曲线

Fig 5 RP Curves under different K values in Real-World datasets

图 6 3DCSR数据集中不同K值下的RP曲线 Fig 6 RP curves under different K values in 3DCSR datasets

括LVC,LOVC、LOVS、TriLCI、TOLDI。这些描述符 的参数设置列于表 3。为了公平比较,这些描述符 中使用的LRF及对应过滤和变换估计方法均采用 本文所介绍的算法。此外我们额外对比了经典的 点云配准算法(ICP、FGR)以及目前主流的跨源配准 算法(VRHCF、Cross-PCR)来评估SVCD 在跨源配 准中的性能。通过将上述算法分别应用到公开数 据集和真实数据集中,从多方面来验证所提算法在 跨源点云配准中的精度和有效性。

表 3 六个描述符的信息

Tab. 3 Information on six descriptors

描述符	支撑半径	维度	长度/(bit)
TriLCI	15 mr	18×18×5	972
TOLDI	15 mr	18×18×3	972
LOVC	15 mr	15×15×15	3375
LOVS	15 mr	15×15×15	3375
LVC	15 mr	10×10×10	1000
SVCD	15 mr	18×18×5	1620

2.5 结果与评估

2.5.1 SVCD 描述符性能评估

(1)描述性:图 7 和图 8 展示了六个描述符在八 个场景中的 RP 曲线,其中前四个为在真实数据集 中的实验结果,后四个为 3DCSR 数据集实验结果。 实验结果表明,SVCD 描述符在真实数据集和 3DC-SR 数据集上的 RP 曲线均位于左上角,表明其在具 有高召回率的同时保持了较高的精度,具有优越的 描述性和匹配性能。在所有实验场景中,SVCD 的

召回率均超过75%,并在多个数据集上展现出稳定 性和泛化能力。相比之下,LVC、LOVS和TOLDI的 描述性要低于SVCD,匹配性能较弱。TriLCI在部分 场景下表现良好但整体稳定性不足,而LOVC的表 现最差,在多个场景下的RP曲线均落在图上的右 下角,表明其在两个数据集上的描述性均较差。

表 4 定量描述了六种描述符在真实数据集和 3DCSR数据集上的召回率,从中可以看出,SVCD在 两个数据集上的召回率分别达到了83.45%和 82.83%,远高于其他描述符。结果表明SVCD在编 码具有密度和分布差异的跨源数据时,仍能保持较 好的描述性。SVCD通过对局部曲面进行球形体素 分割,并采用局部体素中心距离特征对局部曲面进 行编码,而不依赖于体素中的点分布情况,可以有 效的应对跨源点云固有的密度和分布差异等挑战。 LVC描述符在真实数据集上的描述性是第二好。 但其在 3DCSR 数据集上的描述性极差。LOVS 和 LOVC 也采用局部体素信息来编码特征,但由于其 均采用立方体体素分割,易受到跨源点云密度和分 布差异的影响,进而使得描述性较低。尤其是 LOVC,其通过对称体素来编码局部曲面,增加了其 受影响程度。TOLDI和TriLCI采用多视角投影策略 来描述局部曲面,虽然对跨源点云具有一定的鲁棒 性,但由于投影操作易导致存在信息丢失的情况, 使得其描述性整体上不是很高。

表 5 定量描述了六种描述符在真实数据集和 3DCSR 数据集上的 F1-score。实验结果表明, SVCD 在真实数据集和 3DCSR 数据集上的 F1-

图 7 真实数据集上的 RP 曲线 Fig. 7 RP curves on Real-World datasets

score 均显著优于其他描述符,展现出卓越的匹配性能和跨源点云鲁棒性。其高匹配精度和稳定性证明了其在不同点云密度、分布及传感器数据质量差异下的广泛适用性。相比之下,LVC在真实数据集上表现良好,但在3DCSR数据集上的匹配性能明显下降,表明其对点云密度变化较为敏感,泛化能力不足。LOVS、TriLCI和TOLDI处于中等水平,虽在特定情况下有所优势,但整体匹配性能仍不及SVCD。LOVC表现最差,F1-score 远低于其他描述符,说明其编码方式难以应对跨源点云的密度和几何分布差异。

(2)鲁棒性:通过计算不同高斯噪声水平下的 RP曲线来评估表 3列出的6个描述符的鲁棒性。 为了评估这些描述符在高斯噪声下的鲁棒性,在两 个跨源数据集中添加了不同级别的噪声,这些噪声 的标准差分别为0.1 mr,0.5mr和0.9 mr。其中,在 "瑞禽"数据上的定量实验结果如表6所示。从表中 可以看出,随着高斯噪声的增加,所有描述符的匹 配性能都有所下降,但下降程度不同。其中,SVCD 描述符在不同高斯噪声水平影响下的召回率分别 达到了81.99%、76.70%和70.93%,均远高于其他 描述符。并且随着高斯噪声标准差从 0.1 mr 增加 到 0.9 mr,其召回率仅下降了 11.06个百分点,下降 趋势较为平缓。此外,SVCD 的平均召回率也较其 他描述符高。上述结果表明 SVCD 描述符受高斯噪 声的影响最小,具有极高的鲁棒性。该鲁棒性主要 取决于两方面因素。一方面,得益于所采用的 LRF 构建方法,通过引入双权重来计算 LRF 的三个轴, 降低了高斯噪声的影响。另一方面通过采用球形 体素分割法,并且使用局部体素中心距离进行特征 编码,进一步提高了所提描述符对高斯噪声的鲁棒 性。从表中还可以看出,LOVC 是最差的描述符,这 是由于其采用对称体素来编码特征向量,较依赖于 原始数据的质量,易受高斯噪声的影响,进而导致 其召回率下降程度较大。

2.5.2 跨源点云配准性能

为了评估SVCD描述符在跨源点云配准中的性能,本文分别使用LVC、LOVS、LOVC、TriLCI、TOLDI 描述符来替换配准流程中的SVCD描述符。通过插 入到所提出的跨源配准流程中,从侧面论证了所提 算法流程及描述符在跨源配准中的有效性。此外 为了进一步说明SVCD的跨源配准性能,本文还采

图 8 3DCSR数据集上的RP曲线

Fig. 8 RP curves on the 3DCSR dataset

表 4 六种描述符在真实数据集和 3DCSR 数据集上的召回 率(%)

Tab. 4 Recall of six descriptors on Real–World and 3DCSR datasets(%)

方法	真实数据集	3DCSR	平均值
LOVS	58.16	66.76	62.46
LOVC	33. 57	47.68	40. 62
LVC	73.21	40.17	56.69
TriLCI	48.66	62.71	55.68
TOLDI	59.85	71.67	65.76
SVCD	83.45	82. 83	83.14

表 5 六种描述符在真实数据集和 3DCSR 数据集上的 F1-score

Tab. 5 F1-scorel of six descriptors on Real-World and 3DCSR datasets

方法	真实数据集	3DCSR	平均值
LOVS	0.472	0.403	0. 438
LOVC	0.238	0.210	0. 224
LVC	0.781	0.683	0.732
TriLCI	0. 523	0.483	0.503
TOLDI	0. 594	0.541	0.568
SVCD	0.832	0.803	0.818

表 6 六种描述符在不同高斯噪声水平下的"瑞禽"数据上 的召回率(%)

Tab. 6	Recall of six descriptors on the ' Auspicious
	poultry ' data under different levels of Gauss
	ian Noise(%)

方法	0.1 mr	0. 5 mr	0. 9 mr	平均值	
LOVS	63.34	52.58	43.87	53.26	
LOVC	42.74	29.70	19.81	30.75	
LVC	75.47	64.39	54.92	64.93	
TriLDI	50.13	41.39	35.61	42.37	
TOLDI	52.85	44.07	40.44	45.78	
SVCD	81. 99	76. 70	70. 93	76. 54	

用了经典配准算法(ICP、FGR)以及目前主流的跨源 配准算法(VRHCF、Cross-PCR)与论文算法进行对 比。通过计算SVCD和上述十种算法在两个跨源数 据集(3DCSR和真实数据集)中八个场景上的旋转 误差和平移误差来定量评估SVCD在跨源配准中的 性能。

图 9 和图 10 分别展示了上述十个算法在真实 数据集和公开数据集中的配准结果,并分别将旋转 和平移误差列于表 7 和表 8 中。从配准结果中可以

看出.SVCD在"瑞禽"和"lab1"上的配准结果与真实 变换最为相近,配准效果最好,得益于SVCD采用球 形体素分割策略和中心特征来编码局部曲面,该编 码策略独立于体素中的点分布,可以消除跨源点云 密度和分布差异的影响。VRHCF采用球面体素表 示与分层对应关系过滤的策略来生成高质量对应 关系,能够在不同传感器生成的点云之间提取鲁棒 的局部特征,有效降低了密度变化、遮挡和噪声对 匹配精度的影响,其配准效果仅次于SVCD。Cross-PCR的配准效果略差于VRHCF,其通过引入密度鲁 棒特征提取编码器来提取特征,并采用一对多策略 来松散地生成初始对应关系。随后,通过稀疏匹配 和密集匹配严格选择高质量的对应关系以实现鲁 棒配准。从图中还可以看出,其他算法的配准结果 均存在一定偏差。其中,LVC虽然也采用了局部体 素信息对跨源局部曲面进行编码,但由于其采用立 方体体素分割,导致存在误划分的情况,使得其配 准效果较差。且其在3DCSR数据集中"lab1"数据上 的配准效果进一步下降,偏差较大。该现象与前面 章节所描述的情况相符,是由于其易受到点云空洞 的影响,敏感性较高。

表 7 和表 8 结果表明 SVCD 较其他九种算法相 比在真实数据集和 3DCSR 数据集中均获得了最高 的配准性能,实现高精度跨源配准。其中在真实数 据集中,SVCD 的旋转误差和平移误差分别达到了 0.056°和 0.0396 m。在 3DCSR 数据集中的"sofawhole"数据上的平移误差甚至高达 0.0048 m,远 高于其他对比算法。这表明球形体素分割和中心 特征策略的引入有效的提高了 SVCD 的跨源配准精 度和鲁棒性。VRHCF 的配准精度达到了 0.7539°和 0.0512 m,仅次于 SVCD 描述符,其在两个数据集中 均获得了较高的配准精度。Cross-PCR 在两个数据

表 7 十个算法在真实数据集中的配准精度

Tab.	7	Registration	accuracy	of	ten	algorithms	on	the	Real-World	dataset	
------	---	--------------	----------	----	-----	------------	----	-----	------------	---------	--

集中的配准精度与VRHCF相当。LVC在跨源数据 中的配准精度处于中等水平。LOVS和TOLDI在两 个数据集上的配准精度均不理想,具体表现为:在 真实数据集中,整体配准精度较低。而在3DCSR数 据集中,匹配性能有所提高,并在部分数据中取得 了不错的配准结果,如"chair2"数据中LOVS描述符 的平移误差高达0.042。在所有基于描述符的算法 中,TriLCI和LOVC描述子表现最差。它们分别通 过多视图投影和对称体素的方式来编码特征信息, 其中投影操作会导致信息丢失,而对称体素易受到 密度和分布差异的影响,导致它们在两个数据集中 的配准精度始终较低。此外,表7和表8还显示出 基于描述符的配准算法在跨源配准中的表现均要 高于经典的配准算法。其中ICP算法在跨源配准中 的表现最差。这是由于ICP算法对初始位姿和密度 均匀性要求高,而论文所采用的不同源点云存在较 大的密度差异和噪声(尤其在真实数据集中),导致 配准效果不佳。FGR算法的性能较 ICP 相比,性能 有所提升,但整体精度仍低于基于描述符的配准算 法。这是由于FGR算法通过优化全局一致的特征 匹配来实现高效配准,减少了对初始位姿的依赖, 但对噪声和特征提取质量仍较为敏感,整体配准精 度较低。

综上所述, SVCD 描述符与其余九个算法相比, 在两个数据集中的均取得了最好的匹配性能,这主 要得益于稳健的 LRF 构建方法和独特的球形体素 划分策略提高了 SVCD 应对跨源点云密度和分布差 异的鲁棒性,并且通过采用局部体素中心距离来编 码特征,而不是采用单一的点特征进行编码,可以 有效提高对跨源点云的描述能力和鲁棒性,进而实 现了高精度跨源配准。

数据	精度	ICP	FGR	LOVS	LOVC	LVC	TriLCI	TOLDI	Cross- PCR	VRHCF	Ours
~ 🕁	ErrorR	135. 9921	10.4626	3.1733	6.1319	1.4068	4.2421	3.0815	1.2103	1.0539	0. 5367
	Errort	9.0724	7.8276	4.2498	6.1127	1.5332	4.4989	3. 3261	0.0623	0.0512	0.0396
بنيد عم	ErrorR	159.7179	4.0368	3.9288	7.1958	1.7140	4.4637	3. 5752	1.5134	1.2045	0.0560
用垧	Errort	240. 4820	12.8121	4.3272	6.5626	1.6827	4.7067	4.1850	0. 8962	0. 7945	0. 2141
出合	ErrorR	175. 5272	17.6424	4.0947	7.4073	2.1758	5.5539	3.8000	1.4541	1.2044	0.8128
- 両 岡	Errort	78.3539	9.3123	5.2664	8.5735	0. 9823	6.4186	6.9567	0.9533	0.8424	0.1524
计划用	ErrorR	112. 5229	7.0308	3.6274	6.6343	1.5795	5.4899	2.1637	0.8453	0.7539	0.3165
1 1 304	Errort	271.2570	9. 5053	4.2193	7.7902	1.7018	5.5658	3. 4331	1.9842	1.8642	0.9005

图 9 十种算法在"瑞禽"数据下的配准结果

Fig. 9 Registration results of 'Auspicious poultry ' data using ten algorithms

2.5.3 算法复杂度分析

SVCD描述符的时间和空间复杂度主要由球形体素分割和特征编码两个核心步骤决定。在球形体素分割阶段,首先需要将邻域点转换至局部参考坐标系,并进行极坐标转换,其时间复杂度为O(S),其中S代表输入点云的总点数。随后,SVCD采用三维球形体素划分,每个关键点的邻域点需进行O(N×M×K)次索引计算(其中N,M,K分别为球形体素沿方位角、俯仰角和径向方向的划分数量)。由于该操作仅针对选定的n个关键点执行,因此球形体素分割的总体时间复杂度为O(n×N×M×K)。在特征编码阶段,需遍历所有球形体素,并计算其中心至关键点的距离,其计算复杂度同样为O(n×N×

M×K)。综合来看,SVCD 描述符的总时间复杂度可 表示为O(n×N×M×K),即其计算开销主要由体素划 分总数 V=N×M×K线性决定。在空间复杂度方面, SVCD 主要包括输入点云存储、球形体素索引和特 征描述符存储。输入点云数据的存储需求为O(S), 球形体素索引存储需求为O(n×N×M×K),特征描述 符存储需求与体素划分总数一致,因此同样为O(n× N×M×K)。因此,SVCD 描述符的总空间复杂度为O (S+n×N×M×K),即主要受输入点云规模和关键点特 征描述向量的大小影响。相比传统描述符,SVCD 通过球形体素划分增强了特征表达能力,尽管存储 需求相对较高,但这一策略有效提升了描述符的鲁 棒性和匹配精度,使其在跨源点云配准任务中表现

图 10 十种算法在"lab1"数据下的配准结果

Fig. 10 Registration results of ' lab1 ' data using ten algorithms

Tab. 8 Registration accuracy of ten algorithms on the 3DCSR dataset

数据	精度	ICP	FGR	LOVS	LOVC	LVC	TriLCI	TOLDI	Cross- PCR	VRHCF	Ours
Chair2	ErrorR	28.6930	10.0802	2.5365	6.2133	6.0768	4.6103	3.8517	2. 2313	2.0634	1.8450
	Errort	10.7155	7.3803	0.0420	5.1557	4.1599	2. 1928	2. 1941	0.0683	0.0632	0.0471
	ErrorR	35.9128	9.0798	3.7553	4.9797	3.9179	3.7262	1.9179	1.9034	1.8563	1.2282
LaDI	Errort	15.0775	7.2143	3.1145	6.0326	4. 5327	3.0332	1.0327	0. 0944	0.0842	0.0282
S - f h - 1 -	ErrorR	23.6566	9.2108	3.0224	4.8506	3.4767	3.0828	2.0974	1.7834	1.5032	0.5128
Solawhole	Errort	10. 7956	5.8057	2.1312	2.1363	2.0552	3.0293	0.0763	0.0612	0.0543	0.0048
Computercluster1	ErrorR	27.9918	8.5445	1.7078	3.8748	5.7020	3.0556	1.9803	1.8031	1.7312	1.5264
	Errort	13.4785	9.3510	2.5469	4. 1061	6. 1391	0.0953	2.0731	0. 1041	0. 0831	0.0324

更优。

表9定量显示出测试的十个算法在两个数据集中的配准时间对比,从表中可以看出,SVCD算法在计算时间上处于中等水平,表现出较为均衡的计算效率。在真实数据集上,其计算时间为120.58s,远低于ICP(476.3s),但高于Cross-PCR(40.65s)和VRHCF(28.86s);在3DCSR数据集上,其计算时间为23.01s,优于ICP(49.99s)和LOVC(41.77s),但仍高于VRHCF(8.32s)和Cross-PCR(13.42s)。

SVCD计算时间略高的主要原因在于其采用了球形体素分割和体素中心距离特征编码,尽管这增加了一定计算开销,但有效增强了特征表达能力和匹配鲁棒性。相比于FGR等全局匹配方法,SVCD在计算时间上要较高一些,但在跨源点云配准的精度和稳健性上具有明显优势。因此,SVCD通过适度增加计算成本,在精度、鲁棒性和计算效率之间取得了良好的平衡,使其在跨源点云配准任务中具备较高的应用价值。

Tab. 10	Comparison	of registr	ation tin	ne for ten	algorithn	ns on the	e Real–W	orld and	3DCSR da	itasets	
***	数据集	ICD	ECD	LOVS	LOVC	LVC	TriLCI		Cross-		0
效平		ICP	rGn					TOLDI	PCR	VALUE	Ours
Time/(s)	真实数据	476.3	48.69	261.26	299.63	33.72	142.37	112.24	40.65	28.86	120. 58
	3DCSR	49.99	4.04	37.27	41.77	9.41	19.80	19.24	13.42	8.32	23.01

表 9 十个算法在真实数据集和 3DCSR 数据集上的配准时间对比

3 结论和未来工作

本文提出了一种改进球形体素局部形状描述 符的跨源点云配准方法,算法核心是设计了一个用 于跨源配准的局部形状描述符,SVCD,以实现稳健 且准确的配准。SVCD采用双权重来构建LRF,以 提高在不同源数据间的可重复性,并且通过引入球 形体素来对局部曲面进行体素划分,可以有效解决 跨源数据中密度和分布差异带来的挑战。基于球 形体素分割结果,使用局部体素中心到关键点的距 离来编码局部曲面,进一步提高了对密度和分布差 异的鲁棒性。此外,为了解决匹配跨源点特征困难 的影响,本文采用最近邻相似比来进行对应过滤, 可以有效去除大量错误匹配,从而实现更稳健的高 精度配准。分别在公开数据集和真实数据集上进 行了实验,并与一些优秀的描述符、经典配准算法 以及目前先进的跨源配准算法进行了对比,以严格 评估其性能。结果表明,SVCD 描述符表现出了高 描述性以及对噪声和密度变化的强鲁棒性,其性能 在所有数据集上明显优于其他描述符。并且所提 出的算法流程实现了高精度的跨源配准,在所有对 比算法中均取得了最高的配准精度。具体来说, SVCD在两个数据集上分别实现了最高 82.83% 和 83.45%的召回率,提高了10.24和11.16个百分 点。并在跨源配准中获得了高达0.0048的配准误 差。此外,在应对高斯噪声的影响时,SVCD的平均 召回率为76.54%,远高于其他描述符,证明了 SVCD的鲁棒性。然而我们的描述符也存在一定的 局限性,即其特征向量的长度过大,效率不高。未 来,我们计划应用降维技术以减少特征向量的 长度。

References

- [1] WANG Y, BU S, CHEN L, et al. HybridFusion: LiDAR and Vision Cross-Source Point Cloud Fusion [J/OL] 2024, arXiv:2304.04508.
- Wang Peng, Gao Yin-Hui, Wang Ping, et al. Infrared and visual image point set registration based on sensor parameters and refined CPD algorithm. [J]. J. Infrared Millim. Waves, 31(2): 171-6.

(王鹏,高颖慧,王平,等.基于传感器参数和改良CPD 算法的红外与可见光图像点云配准 [J]. 红外与毫米波 学报), 31(2): 171-6.

- [3] HUANG X, MEI G, ZHANG J J N. Cross-source point cloud registration: Challenges, progress and prospects [J]. 2023, 548: 126383.
- [4] Zhang Wen-Hao, Li Song, Ma Yue, et al. Photon-counting lidar simulation method based on three dimensional sea surface. [J]. J. Infrared Millim.Waves, 39(4): 483-90.
 (张文豪,李松,马跃,等. 星载光子计数激光雷达海面 点云仿真方法 [J]. 红外与毫米波学报), 39(4): 483-90.
- [5] He Guang-Hui, Wang Hong, Fang Qiang, et al. Spaceborne photon counting lidar point cloud denoising method with the adaptive mountain slope. [J]. J. Infrared Millim. Waves, 42(2): 250-9.
 (何光辉, 王虹,方强,等.山地坡度自适应星载光子计数激光雷达点云去噪方法 [J]. 红外与毫米波学报), 42 (2): 250-9.
- [6] Lai Xu-Dong, Pian Wei-Ran, Bo Li-Ming, et al. A building extraction method based on IGA that fuses point cloud and image data.
 [J]. J. Infrared Millim. Waves, 43(1): 116-25.
 (赖旭东, 骈蔚然, 薄立明,等. 一种基于IGA 的融合点 云和影像的建筑物提取方法 [J]. 红外与毫米波学报),

43(1): 116-25.
[7] PENG F, WU Q, FAN L, et al. Street view cross-sourced point cloud matching and registration; proceedings of the point cloud matching and registration.

- 2014 IEEE International Conference on Image Processing (ICIP), F 27-30 Oct. 2014, 2014 [C].
 [8] HUANG X, ZHANG J, WU Q, et al. A Coarse-to-Fine Algorithm for Matching and Registration in 3D Cross-Source
- gorithm for Matching and Registration in 3D Cross-Source Point Clouds [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(10): 2965–77.
- [9] ZHANG Y, ZHANG L, ZHAO X, et al. Automatic Point Cloud Registration for 3D Virtual-to-Real Registration Using Macro and Micro Structures [J]. IEEE Transactions on Multimedia, 2024, 26: 6566-81.
- [10] JIA S, LIU C, WU H, et al. Incremental registration towards large-scale heterogeneous point clouds by hierarchical graph matching [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 213: 87-106.
- [11] ZHAO M, HUANG X, JIANG J, et al. Accurate Registration of Cross-Modality Geometry via Consistent Clustering
 [J]. IEEE Transactions on Visualization and Computer Graphics, 2024, 30(7): 4055-67.
- [12] MA N, WANG M, HAN Y, et al. FF-LOGO: Cross-Modality Point Cloud Registration with Feature Filtering and Local to Global Optimization [J/OL] 2023, arXiv: 2309. 08966.

- [13] ZHAO G, DU Z, GUO Z, et al. VRHCF: Cross-Source Point Cloud Registration via Voxel Representation and Hierarchical Correspondence Filtering [J]. 2024.
- [14] ZHAO G, GUO Z, DU Z, et al. Cross-PCR: A Robust Cross-Source Point Cloud Registration Framework [J]. 2024.
- [15] CUEVAS-VELASQUEZ H, GALáN-CUENCA A, GAL-LEGO A J, et al. Global Point Cloud Registration Network for Large Transformations [J/OL] 2024, arXiv: 2403. 18040.
- [16] ZHAO M, HUANG X, JIANG J, et al. Accurate Registration of Cross-Modality Geometry via Consistent Clustering [J]. 2023, 30: 4055-67.
- [17] HUANG X, ZHANG J, FAN L, et al. A Systematic Approach for Cross-Source Point Cloud Registration by Preserving Macro and Micro Structures [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3261-76.
- [18] WANG Z, FANG Q, WANG Y, et al. Double-layer Descriptors and High-dimensional Search Mechanisms for Partial Point Cloud Registration; proceedings of the 2023 China Automation Congress (CAC), F 17-19 Nov. 2023, 2023 [C].
- [19] SALTI S, TOMBARI F, DI STEFANO L. SHOT: Unique signatures of histograms for surface and texture description
 [J]. Computer Vision and Image Understanding, 2014, 125: 251-64.
- [20] MALASSIOTIS S, STRINTZIS M G. Snapshots: A Novel Local Surface Descriptor and Matching Algorithm for Robust 3D Surface Alignment [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (7): 1285-90.
- [21] YANG J, ZHANG Q, XIAO Y, et al. TOLDI: An effective and robust approach for 3D local shape description [J]. Pattern Recognition, 2017, 65: 175–87.
- [22] TAO W, HUA X, YU K, et al. A Pipeline for 3-D Object Recognition Based on Local Shape Description in Cluttered Scenes [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 801-16.
- [23] DONG Z, YANG B, LIU Y, et al. A novel binary shape context for 3D local surface description [J]. ISPRS Jour-

nal of Photogrammetry and Remote Sensing, 2017, 130: 431-52.

- [24] QUAN S, MA J, HU F, et al. Local voxelized structure for 3D binary feature representation and robust registration of point clouds from low-cost sensors [J]. Information Sciences, 2018, 444: 153-71.
- [25] TAO W, XU S, HUANG W, et al. A Distinctive Binary Descriptor and Two-Point RANSACWC for Point Cloud Registration [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 7529-42.
- [26] TAO W, LU T, CHEN X, et al. A Local Shape Descriptor Designed for Registration of Terrestrial Point Clouds [J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1–13.
- [27] SUN J, SHEN Z, WANG Y, et al. LoFTR: Detector-Free Local Feature Matching with Transformers [J/OL] 2021, arXiv:2104.00680.
- [28] BESL P J, MCKAY N D. A method for registration of 3-D shapes [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-56.
- [29] HUANG X, MEI G, ZHANG J, et al. A comprehensive survey on point cloud registration [J/OL] 2021, arXiv: 2103.02690.
- [30] Wang Zhen-Hua, Yang Wu-Zhong, Liu Xiang-Feng, et al. An adaptive denoising of the photon point cloud based on two-level voxel. [J]. J. Infrared Millim. Waves, 43 (6): 832-45.
 (王振华,杨武钟,刘向锋,等.利用两级体素的光子点云自适应降噪 [J]. 红外与毫米波学报),43(6): 832-45.
- [31] ZHOU Q-Y, PARK J, KOLTUN V. Fast Global Registration; proceedings of the Computer Vision - ECCV 2016, Cham, F 2016//, 2016 [C]. Springer International Publishing.
- [32] ZHAO B, WANG Z, CHEN X, et al. FApSH: An effective and robust local feature descriptor for 3D registration and object recognition [J]. Pattern Recognition, 2024, 151: 110354.