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摘要：遥感多模态大语言模型融合了丰富的视觉语言模态信息，在遥感图像分析和解译等领域中展现出巨大潜力。

然而，现有的知识蒸馏方法多聚焦于单模态大语言模型的压缩，忽视了各模态间的特征对齐，因而阻碍了大语言模

型在跨模态任务中的性能表现。针对上述问题，提出一种基于知识蒸馏的遥感多模态大语言模型轻量化方法，通

过在特征层对齐各模态的输出，实现了多模态信息的有效对齐；通过引入反向Kullback-Leibler散度作为损失函数，

并结合教师混合采样和单步分解的优化策略，进一步提升了学生模型的泛化性与稳定性。实验结果表明，本文方

法在遥感图像的场景分类、视觉问答、视觉定位与图像描述四种下游任务上实现了更高的准确性与效率，同时显著

减少了模型参数量和对计算资源的需求，为多模态大语言模型在遥感领域的高效应用提供了新的解决方案。
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Abstract： Remote sensing multimodal large language models （MLLMs）， which integrate rich visual-linguistic modal in‐

formation， have shown great potential in areas such as remote sensing image analysis and interpretation.  However， exist‐

ing knowledge distillation methods primarily focus on the compression of unimodal large language models， neglecting 

the alignment of features across modalities， thus hindering the performance of large language models in cross-modal 

tasks.  To address this issue， a lightweighting method for remote sensing MLLMs based on knowledge distillation is pro‐

posed.  This method achieves effective alignment of multimodal information by aligning the outputs across modalities at 

the feature level.  By introducing the reverse Kullback-Leibler divergence as the loss function and combining optimiza‐

tion strategies such as teacher mixed sampling and single-step decomposition， the generalization and stability of the stu‐

dent model are further enhanced.  Experimental results demonstrate that the proposed method achieves higher accuracy 

and efficiency in four downstream tasks of remote sensing image scene classification， visual question answering， visual 

localization， and image description， significantly reducing the number of model parameters and the demand for computa‐

tional resources， thereby providing a new solution for the efficient application of MLLMs in the field of remote sensing.
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引言

大语言模型（Large Language Model， LLM）是一

种基于深度学习的自然语言处理技术，通过学习大

规模的文本数据并利用大量参数来理解和生成人类

语言，在文本生成、语言翻译、对话系统等多种任务

中有广泛应用。近年来，各种具有出色性能的 LLM
相继被提出，特别是基于 Transformer架构的生成式

预训练模型GPT［1］和LLaMA［2］系列、双向编码器表示

模型BERT［3］等发展迅速且影响深远。然而，传统的

LLM只能处理文本数据，无法有效整合其它类型的

信息（如图像、视频等），这些局限于单一模态的模型

架构在面对复杂的多模态任务时存在明显不足。

为克服这一限制，多模态大语言模型（Multi⁃
modal Large Language Model， MLLM）应运而生，并

在多个应用领域展现出巨大潜力。不同于单一模

态语言模型，MLLM通过融合视觉与语言模态信息，

从文本、图像等多种模态数据中提取特征，以实现

对多模态任务的全面理解与精准响应，此特性使得

MLLM在跨模态问答、图像分类、目标检测等下游任

务上取得了显著成果，为遥感、医学成像、智能驾驶

等领域的智能化应用提供了坚实的技术基础［4］。

遥感 MLLM（如 GeoChat［5］、RemoteCLIP［6］、RS⁃
GPT［7］和 GRAFT［8］等）通过结合遥感图像的视觉特

征与语言信息，能有效应对遥感数据中的多样化信

息和复杂场景，高效处理遥感图像中的目标检测、

场景分类、变化检测等关键任务，从而实现了对大

规模高分辨率遥感图像数据的智能化分析与理

解［9］。然而，能够处理多模态数据的模型通常规模

庞大，包含了大量参数，并对计算资源的需求极高，

导致其推理速度较慢，在存储与部署方面也面临显

著瓶颈。在遥感应用中，由于遥感数据通常包含了

大量高分辨率图像以及其类内类间的特征差异信

息，其处理难度和资源消耗更为显著，上述问题表

现得更为突出［10］。为了解决上述瓶颈，知识蒸馏作

为一种模型压缩方法，能够有效降低模型规模，为

计算资源受限条件下的模型轻量化部署提供支持。

该方法通过引入轻量化的学生模型，使其从高性能

的教师模型中学习知识，从而在保证性能的前提

下，显著减少模型规模并提升推理速度［11］。

当前的大模型轻量化研究主要集中在处理单

模态信息的 LLM 的压缩上［12］。尽管知识蒸馏在压

缩 LLM方面取得了一定的进展，但在MLLM中应用

知识蒸馏以实现模型轻量化的技术尚未得到深入

探索。由于多模态任务需要融合多个模态的信息，

语言模态与视觉模态之间的特征一致性对于模型

的整体性能具有重要影响［13］。然而，当前使用知识

蒸馏进行模型轻量化的方法通常将 LLM 的蒸馏过

程与其它模态模块相互独立，这使得学生模型难以

达到教师模型在跨模态任务中的表现水平。这种

独立的蒸馏策略导致模态信息融合不足，限制了

MLLM在多模态任务中的应用和性能表现。

为解决上述问题，本文提出一种基于知识蒸馏

的遥感多模态大语言模型轻量化方法，旨在实现多

模态任务中各模态特征的对齐，在满足模型轻量化

部署需求的同时，能高精度地处理遥感领域中的高

分辨率图像分析与解译任务。具体而言，所提出方

法在特征层面对齐来自语言与其它模态的输出，确

保学生模型在学习过程中能有效捕获并融合多模

态信息。我们以遥感 MLLM 的 GeoChat［5］为研究基

础，以充分挖掘遥感数据的视觉与语言信息，并通

过知识蒸馏的方法将其传递给一个更小的学生模

型，使学生模型能更好地理解和处理遥感多模态任

务。更进一步，为了提高蒸馏过程的效率和效果，

我们引入了反向 Kullback-Leibler（KL）散度［14］作为

蒸馏损失函数，并结合教师混合采样和单步分解的

优化策略［15］，以增强学生模型的泛化能力和稳定

性。在公开的 AID、UCMerced、RSVQA-HRBEN 和

RSVQA-LRBEN 数据集［16］［17］［18］以及四种特定的遥

感任务（场景分类、视觉问答、视觉定位和图像描

述）上的实验结果表明，所提出方法取得了优异的

定量结果，并显著减小了模型的参数量和运算量。

本文的主要贡献总结如下：

1） 提出一种适用于遥感 MLLM 的知识蒸馏方

法，解决了各模态特征之间的对齐问题，从而提升

了模型对多模态信息的理解能力；

2） 在蒸馏过程中，通过引入反向KL散度，并采

用教师混合采样和单步分解的优化策略，提高了学

生模型的泛化性与稳定性；

3） 在遥感图像的场景分类、视觉问答、视觉定

位和图像描述四种多模态任务上进行了性能验证

实验，定量结果表明，所提出方法不仅显著减少了

模型参数量和对计算资源的需求，还实现了超越教

师模型的高准确率。

1 相关工作 

1. 1　遥感多模态大语言模型　

MLLM 是以 LLM 为基础，通过融入其它非文本
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的模态信息，实现多模态任务处理的模型。如图 1
所示，典型的MLLM架构主要包含三个模块：1）LLM
骨干，对输入的各模态特征进行处理，并输出下游

任务所需的 Token；2）视觉编码器，编码输入图像的

特征；3）视觉-语言适配器，映射视觉特征到语言空

间 的 模 块 。 现 有 的 通 用 MLLM，如 LLaVA［19］和

MiniGPT［20］，已经在自然语言领域数据上展现了强

大的多模态任务处理能力。然而，通用 MLLM 在特

定领域（如遥感、医学等）中的表现仍存在局限性，

因此，针对特定领域需求的研究逐步兴起，从预训

练的LLM开始，结合特定领域的数据（如遥感图像、

医学影像等）对现有模型进行微调［21］。

遥感MLLM通过利用大量未标注的遥感图像训

练深度学习模型，旨在提取遥感图像中的通用特征

表示，提升遥感图像分析任务的性能、效率和通用

性［22］。GeoChat［5］是专为遥感领域高分辨率图像分

析和解译任务设计的遥感 MLLM，克服了传统

MLLM 在遥感领域面临的挑战，如图像分辨率多样

性、遥感领域数据稀缺等问题［23］。它基于 MLLM 的

LLaVA-v1. 5［24］架构，增加了任务提示以指明所需任

务类型，并允许在输入和输出中包含空间位置，支

持视觉提示输入和视觉定位输出，并通过低秩自适

应策略（LoRA）［15］进行高效微调，使得它在保留LLa⁃

VA［25］对话和指令跟随能力的同时，扩展了其遥感任

务领域知识。

GeoChat 的核心组件包括可自由调整权重的

LLM Vicuna-v1. 5［26］，冻结的对比语言-图像预训练

模 型 （Contrastive Language-Image Pre-training， 
CLIP）［27］作为视觉编码器，以及多层感知机作为视

觉-语言适配器以对齐视觉特征与文本特征。此结

构设计使得 GeoChat 具备多任务对话能力，能够基

于图像或特定区域回答问题、识别和描述目标，并

通过坐标实现图像中的视觉定位，是能同时解决所

有任务并具备对话能力的遥感领域通用模型。

1. 2　知识蒸馏　

知识蒸馏是一种模型压缩技术，旨在通过将大

型且复杂的教师模型中的知识传递给较小的学生

模型，以提高学生模型的性能。其核心思路是，利

用教师模型的输出作为学生模型的训练目标，最小

化教师模型和学生模型的输出概率分布间的差异

以对齐两者的输出，从而使学生模型能够在保持较

小规模的同时，获得更强的泛化能力［28］，其基本架

构如图2所示。

对于教师模型输出概率分布 pT ( x ) 以及学生模

型输出概率分布 pS ( x )，为使两者的输出概率分布更

具灵活性和代表性，通常会引入一个温度参数T［29］，

图1　通用MLLM的结构图

Fig.  1　The structure diagram of general MLLM

105



45 卷 红 外 与 毫 米 波 学 报

此时，教师和学生模型的输出经过 softmax操作后分

别为：

piT = exp ( )ZTi /T
∑
k = 1

C exp ( )ZTk /T
, piS = exp ( )ZSi /T

∑
k = 1

C exp ( )ZSk /T
, (1)

其中，zTi和 zSi分别是教师和学生模型输出层的 logits
值，C为类别总数。对应地，知识蒸馏的损失 LKD可
表示为：

LKD = T 2KL ( pT||pS ) = T 2∑
i = 1

C

piT log piT
piS

, (2)
其中，KL (•) 为 KL散度。最后，知识蒸馏损失 LKD结
合学生模型预测和真实标签之间的交叉熵损失 LCE
构成了最终损失函数：

L = αLKD + (1 - α )LCE , (3)
其中，α是一个权重参数，用于平衡知识蒸馏损失与

真实标签预测损失之间的重要性。这样，在训练学

生模型时，既可学习到教师模型中的知识，又能结

合真实标签进行预测训练。

2 模型构建 

本文旨在设计并实现一种基于知识蒸馏的遥

感多模态大语言模型轻量化方法，其整体结构如图

3 所示，主要由三部分构成：教师模型、学生模型和

知识蒸馏模块。下面，首先介绍作为教师模型和学

生模型的遥感MLLM；然后，对遥感MLLM知识蒸馏

的设计与具体实现进行详细描述和分析，并给出蒸

馏过程中的损失函数和优化策略。

2. 1　教师和学生模型架构

在构建适用于遥感图像领域的 MLLM 框架时，

我们精心设计了教师模型与学生模型，它们均遵循

GeoChat［5］的模型架构，包含了 3 个主要组件：LLM、

视觉编码器与视觉语言适配器。

对于教师模型，我们选取 Vicuna-13B-v1. 5［26］

作为 LLM，并结合视觉主干编码器 CLIP-ViT（L-
14）［30］和跨模态适配器多层感知机进行训练，最终

得到 GeoChat-13B。教师模型凭借其高达 130 亿的

参数量，拥有强大的知识存储与表征能力，在处理

遥感图像中的复杂视觉信息及多样化任务需求时，

它能够充分发挥Vicuna-13B-v1. 5强大的语言理解

与生成能力。

学生模型则以 Vicuna-7B-v1. 5［26］作为 LLM，搭

配视觉主干编码器 CLIP-ViT（L-14）和跨模态适配

器多层感知机进行训练得到 GeoChat-7B。该学生

模型仅具有 70 亿参数量，在确保一定性能的前提

下，有效降低了对计算资源的需求。在知识蒸馏过

程中，其主体Vicuna-7B-v1. 5能够充分利用教师模

型传递的知识，在不过度消耗计算资源的情况下，

有效地从教师模型学习到知识和表征能力，实现模

型的轻量化与高效部署，以满足实际应用中的多样

化需求。

教师模型与学生模型采用GeoChat模块化架构

设计，以实现灵活处理高分辨率遥感图像信息的能

力，并与自然语言生成模型相结合，从而可支持多

任务对话需求。与此同时，相同的架构使学生模型

能高效继承教师模型的知识，提升学生模型对遥感

图像的描述和场景理解能力，优化区域级别的交互

和视觉定位表现，进一步增强学生模型在遥感任务

中的表现力与适应性。

2. 2　损失函数与优化策略

在 GeoChat 模型的训练过程中，我们采用了知

识蒸馏策略以实现教师模型与学生模型之间的有

效知识传递。模型蒸馏框架的核心在于通过教师

模型提供的软标签来指导学生模型的学习，使学生

模型能够在较少参数量的情况下达到或接近教师

图2　知识蒸馏架构图

Fig.  2　The framework of knowledge distillation
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模型的性能水平。

在此过程中，视觉特征、语言特征以及 LLM 输

出的对齐关系是我们需要考虑的内容。对于文本

输入，无论是来自训练数据中的提示还是真实响

应，都经过相应的文本预处理后，与视觉特征一同

进入LLM中。

2. 2. 1　损失函数　

在蒸馏过程中，教师模型 GeoChat-13B 和学生

模型 GeoChat-7B 的架构相似性确保了知识传递的

可行性。具体而言，教师模型的输出分布作为学生

模型学习的目标，学生模型通过调整自身参数，以

在相同输入下生成与教师模型相似的输出，从而实

现对教师模型知识的模仿。这种模仿不仅局限于

最终的预测结果，还延伸至模型内部的各层特征。

对于从遥感数据分布 px采样得到的提示 x以及

对应产生的响应 y，教师模型的输出分布为 p ( y|x )，
学生模型的输出分布由参数 θ表示为 qθ ( y|x )。在多

模态信息的特征对齐过程中，多层感知机将视觉模

态表示映射到语义空间，学生模型通过学习教师模

型融合视觉特征与文本特征的信息，从而有效掌握

处理多模态信息的能力。

假定经过多层感知机融合后的教师模型表示

为 zT ( x )，学生模型表示为 zS ( x； θ )，可采用均方误差

（Mean Squared Error， MSE）衡量两个特征向量的相

似性，对齐跨模态特征表示，通过最小化该对齐损

失 Lalign，可使学生模型逐步逼近教师模型的多模态

特征融合效果，从而有效完成知识蒸馏任务：

Lalign = - 1
2  zT ( x ) - zS ( x ;  θ ) 2 , (4)

该 对 齐 损 失 关 于 学 生 模 型 参 数 θ 的 梯

度 δalign为：

δalign = ∇θ Lalign = -(zS ( x ;  θ ) - zT ( x ) ) ⋅ ∂zS ( x ;  θ )
∂θ ,(5)

对于 LLM 的输出对齐，我们采用了基于反向

KL散度的方法。与传统的前向KL散度KL [ p||qθ ]相
比，反向KL散度KL [ qθ||p]更适用于生成式语言模型

的知识蒸馏［31］。传统的前向 KL散度在处理文本生

成任务时，容易导致学生模型对教师模型输出分布

中的低概率区域产生过高估计，从而产生低质量的

文本。而反向KL散度能引导学生模型关注教师模

型输出分布中的主要模式，避免过度关注低概率区

域，从而提高生成内容的准确性和可靠性。具体来

说，不同于KL [ p||qθ ]，最小化KL [ qθ||p]会使得学生模

型分布 qθ寻找教师模型分布 p的主要模式，并为 p的

图3　本文方法的整体框架

Fig.  3　The overall framework of our method
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空白区域分配低概率。因此，这里我们采用反向KL
散度作为蒸馏损失L (θ )，其可表示为

L (θ ) = KL [ qθ||p] = Ex ∼ px, y ∼ p' log qθ ( y|x )
p ( y|x ) , (6)

其中，p'为真实数据分布。

为了保证学生模型在标准自然语言处理基准

上的性能，我们还需考虑语言建模损失 LPT［32］，采用

交叉熵损失梯度来更新语言模型参数：

∇LPT = - 1
|| y ∑
k = 1

|| y

∇ log qθ( yk| x< k ) , (7)
2. 2. 2　优化策略　

为了提高蒸馏训练的效率和稳定性，我们在优

化算法中采用了策略梯度方法［33］。然而，由于策略

梯度仍会受到高方差和奖励黑客攻击的影响［34］，因

此，在计算蒸馏损失对学生模型参数的梯度时，引

入教师混合采样和单步分解策略［15］。

具体而言，教师混合采样策略在每个时间步通

过一定概率将教师模型和学生模型的预测进行混

合，从而生成新的采样分布。这种方法平衡了教师

模型与学生模型的预测输出，避免了学生模型对教

师模型的过度依赖，有效提升了模型的鲁棒性。另

一方面，单步分解策略则通过将梯度计算分解为当

前步的生成质量 (∇L ) Single和长期生成趋势 (∇L ) Long两
部分（见公式（8）），以减少训练过程中的方差并加

速模型的收敛。这一分解使得学生模型能够更高

效地从教师模型中学习，逐步提升自身性能，从而

达成优化模型的目标。

(∇L )
Single = - E

x ∼ px,y ∼ p'
é

ë

ê
êê
ê∑
t = 1

|| y

wt∇ E
yt ∼ qθ ( t ) [ rt ]

ù

û

ú
úú
ú , (∇L ) Long =

- E
x ∼ px,y ∼ p'

é

ë

ê
êê
ê∑
t = 1

|| y

wtRt + 1∇ log qθ( yt,x)ù
û

ú
úú
ú , (8)

其中，wt为重要性权重；rt为单步生成质量，其累加

Rt + 1 用于衡量所有步生成质量，它们分别可根据下

式计算求得：

wt = ∏
k = 1

t qθ( )yk|y< k,x
p ( )yk|y< k,x , Rt + 1 = ∑

k = t + 1

|| y

log p ( )yk| y< k,x
qθ( )yk| y< k,x

, (9)
结合上述策略，我们得到最终的优化梯度

目标：

∇L (θ ) = - E
x ∼ px,y ∼ p'

é

ë

ê
êê
ê∑
t = 1

|| y

wt[ ](∇L ) Single + (∇L )NormLong + δalign ù

û

ú
úú
ú +

∇LPT , (10)

其中，(∇L )NormLong 为进行归一化后的 (∇L ) Long，以提高模

型在处理不同长度序列时的稳定性和准确性。

通过上述蒸馏框架和优化目标设定，教师模型

GeoChat-13B 生成高质量的软标签，这些标签包含

了丰富的跨模态信息，涵盖了视觉特征与语言输出

之间的细粒度关系。学生模型 GeoChat-7B 在学习

过程中，通过最小化与教师模型输出之间的差异，

逐步优化自身的参数，以学习到与教师模型相似的

特征表达和推理能力，从而在遥感图像的多模态处

理任务中表现出更好的性能，同时还具备了轻量化

和高效推理的特点，满足了遥感图像分析在实际应

用中资源受限条件下的需求。

2. 2. 3　算法总结　

表 1 给出了本文算法的训练过程伪代码。首

先，设置学生模型和教师模型的架构及相关参数，

确保知识传递的有效性。在蒸馏训练中，循环执行

一系列步骤，包括数据采样和梯度计算，通过多重

梯度综合更新学生模型参数，逐步优化学生模型的

多模态理解与生成能力，最终构建出具备高效性能

的蒸馏遥感MLLM模型。

表1　所提出算法训练过程的伪代码

Table 1　The pseudocode for the proposed algorithm 
in training process

算法训练过程的伪代码：遥感MLLM的知识蒸馏

输入：遥感多模态指令微调数据集D，包含提示和真实响应对；

预训练语料库DPT，包括视觉和文本；

教师模型，具有输出分布 p；

学生模型，预训练于DPT，具有输出分布 qθ0；

学习率η；批处理大小M。

在遥感多模态指令数据集D上对学生模型进行微调，以教师模型

输出和真实响应同时作为指导，

从 qθ0 开始，选择验证损失最小的 θ。

重复执行以下步骤，直至收敛并返回 qθ：

步骤1：从数据集D中采样一个小批次的提示，得到响应集合S =
{( xm，ym )}M

m = 1；

步骤2：从DPT中采样一个小批次D'PT = {dm}M
m = 1；

步骤3：在集合S上，根据式（5）计算跨模态的对齐损失梯度 δalign；

步骤4：在D'PT上，根据式（7）计算语言建模损失梯度∇LPT；
步骤5：在集合S上，根据式（8）计算单步梯度 (∇L ) Single和长序列梯

度 (∇L ) Long，以及相应

的规范化长序列梯度 (∇L )NormLong；

步骤6：更新模型参数：

θ - η[ (∇L ) Single + (∇L )NormLong + δalign + ∇LPT ] → θ

输出：一个具有输出分布 qθ的学生模型
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3 实验结果与分析 

3. 1　遥感多模态指令数据集

为了应对遥感领域缺乏多模态指令跟随数据

集的问题，我们通过遥感多模态指令数据集［5］，结合

遥感图像与多样化的文本指令，以支持模型在遥感

任务中的训练与轻量化。

该数据集［5］包含 318，000对图像-指令配对，涵

盖多种任务。为了增强数据集的多样性，从多个来

源整合了不同类型的遥感图像，涉及多种场景、天

气条件和地理特征，从而提升 GeoChat 模型在不同

遥感任务中的适应性和泛化能力。

表 2具体展示了遥感多模态指令跟踪数据集的

指令类型和格式。为了消除任务之间的歧义，每个

任 务 分 配 了 唯 一 的 任 务 标 识 符 ，分 别 为

t ∈ {grounding， identify， refer}，对应于视觉定位、图

像描述和引用理解。对于视觉问答和场景分类，模

型以单个单词或短语输出答案。对于与视觉无关

的命令，则无需任务标识符。同时，在视觉定位任

务中，模型需要准确识别参考对象的空间位置。为

此，我们将边界框的区域位置表示为文本格式：

b = {bx_left, by_top, bx_right, by_bottom | θ} , (11)
其 中 ，(bx_left， by_top ) 表 示 边 界 框 的 左 上 角 坐 标 ，

(bx_right， by_bottom ) 表示边界框右下角的坐标，θ则为边

界框的旋转角度。

3. 2　实验设置　

本文的教师模型和学生模型均在 Pytorch 框架

上构建，使用配备 6 个 Nvidia-A100 GPU（每个 GPU
内存80GB）的设备进行训练。

教师模型利用预训练的 CLIP-ViT 作为视觉编

码器和 Vicuna-v1. 5 初始化模型权重，应用低秩自

适应策略（LoRA）对 Vicuna-v1. 5 特定参数微调，通

过调整权重矩阵（指定秩为 64）减少训练参数量以

提高训练速度与效率。模型训练全程维持 504×504
图像分辨率，此分辨率利于捕捉遥感图像细节，处

理大尺度图像。每次训练步骤结合多模态指令模

板优化多种视觉-语言任务训练效果，使用自适应

矩 估 计 优 化 器（Adaptive moment estimation with 
Weight decay， AdamW）［36］和余弦学习率调度器，全

局批量大小设为 144，训练分为两阶段：先使用全部

数据集训练 1个周期（约 2 400步），再基于遥感多模

态指令跟踪数据集中的定位数据训练 1 600 步，以

优化模型在特定任务上的性能。

学生模型的蒸馏训练过程建立在教师模型的

训练基础之上。在蒸馏训练过程中，教师模型的参

数被完全冻结，不参与梯度计算和参数更新，仅用

于指导学生模型的训练。

3. 3　不同任务下的模型性能对比与分析　

在场景分类、视觉问答、视觉定位与图像描述

四种下游任务中，为验证所提出方法的性能，我们

主要选取了三种模型进行性能对比与分析：初始模

型 GeoChat-7B、教师模型 GeoChat-13B 和经所提出

算法知识蒸馏优化后的学生模型GeoChat-7B模型。

1） 初始模型 GeoChat-7B ，是以 Vicuna-7B-
v1. 5作为微调起点，结合视觉编码器CLIP-ViT和跨

模态适配器多层感知机，基于遥感多模态指令数据

集［5］进行训练而得到的具有 70 亿参数量的遥感

MLLM，我们以该模型作为基准对比模型［5］。

2） 对于教师模型 GeoChat-13B，与学生模型具

有相同的基础结构，以 Vicuna-13B-v1. 5 为微调起

点，以确保其具有高质量的多模态理解与生成能

力，同样基于遥感多模态指令数据集［5］进行训练而

得到的具有130亿参数量的遥感MLLM。

3） 经所提出算法知识蒸馏优化后的学生模型

GeoChat-7B①，是在教师模型GeoChat-13B的指导下

进行蒸馏训练，通过继承教师模型的特征表示和生

成能力，得到一个更为高效的具有 70亿参数量的学

生模型，用于多模态遥感任务。为了便于使用，经

所提出算法蒸馏后得到的学生模型 GeoChat-7B 可

①https://github.com/I3ab/GeoChat-KD

表2　遥感多模态指令跟踪数据集的指令类型和格式

Table 2　Instruction types and format of remote sens⁃
ing multimodal instruction dataset

数据集

NWPU-RESISC-45 ［17］

RSVQA-LRBEN ［18］

Floodnet ［35］

Detailed Description
Multi-Round Conversa⁃

tion
Complex Questions

Grounding Description
Region Captioning

Referring Expression

大小

31. 5k
56k
4k

30k
65k
10k
45k
40k
25k

响应格式提示

用一个单词或短语回答问题

详细描述图片

-
-

［grounding］详细描述图片

［identify］b =
{bx_left， by_top， bx_right， by_bottom | θ}
［refer］< p > Object < /p >
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从本文所提供的网址进行下载和获取。

3. 3. 1　场景分类　

1）实验数据集

实验数据采用了 AID ①和 UCMerced ②两个经典

的遥感图像数据集合［16］［17］，它们采集于不同的场景

区域，包含了丰富的场景类别。这两个数据集中的

图像空间信息丰富、地物分布复杂，在遥感图像分

类领域均具有重要的学术价值与应用潜力。

AID数据集是一个用于遥感图像分类的重要基

准数据集，包含 10，000 张高分辨率航空图像，覆盖

30 个类别，如河流、城市区域和森林等。该数据集

主要来源于Google Earth，旨在评估机器学习和深度

学习模型在土地利用和自然景观识别任务中的性

能。每张图像的尺寸为 600×600 像素，其高分辨率

特性使得细节信息丰富，适用于深度学习模型的训

练与评估。

相较于AID数据集，UCMerced数据集在多个方

面具有显著差异。它包含 2，100张图像，涵盖 21个

土地利用类别，主要聚焦于城市与乡村场景。该数

据集的图像有相对较低的分辨率，每张图像的尺寸

为 256×256像素，其细节的提供弱于AID，因而更具

挑战性。在数据来源方面，UCMerced主要来自美国

地质调查局的航空影像，专注于特定土地利用类型

的分类研究。

2）实验结果与分析

我们为模型提供所有类别，并要求仅用一个词

或短语来分类图像，例如：“将图像分类为：学校、公

园等”。在实验中，采用零样本场景分类整体精度

（Overall Accuracy， OA）和零样本场景分类平均精度

（Average Accuracy， AA）作为模型评价指标，同时利

用混淆矩阵提供可视化分类结果。其中，OA 通过

计算模型正确分类样本数与总样本数的比例评估

模型在没有见过目标类别样本的情况下，对新类别

场景正确分类的能力，评估模型的泛化性能；AA是

对各类别准确率进行平均得到的指标，可更全面地

评估模型的性能优劣；混淆矩阵则以矩阵形式展示

模型的预测结果和真实标签之间的对比，能够直观

地反映模型的分类能力。

表 3 和表 4 展示了不同模型在 AID 数据集和

UCMerced数据集上的定量结果，最佳结果用粗体标

记。蒸馏后的学生模型 GeoChat-7B 在 AID 数据集

和UCMerced数据集上的OA分别达到了 67. 30%和

91. 24%，尤其是在UCMerced数据集上，显著超越了

主流 MLLM（MiniGPTv2［20］、LLaVA-1. 5［24］和 Qwen-
VL［37］）以及初始模型 GeoChat-7B的精度，甚至超越

了教师模型 GeoChat-13B 的精度，展现了更强的泛

化能力。同时，AA 也进一步反映了蒸馏后模型的

精度提升。我们考虑，这主要是因为在知识蒸馏过

程中，采用了反向 KL 散度使得学生模型关注教师

模型输出分布中的主要模式，在特征提取和模态信

息对齐上得到增强，更好地模仿教师模型的行为，

从而更全面地理解遥感多模态大模型的模态

信息。

除了上述结果，混淆矩阵进一步验证了我们的

模型在场景分类任务中的性能。图 4展示了蒸馏后

的模型在 AID 和 UCMerced 数据集上的零样本场景

分类混淆矩阵。从图 4（a）可以看出，我们的模型在

AID数据集的多数场景类别上均取得了比较优异的

分类性能，部分类别由于模型训练数据集的类别分

布偏斜，导致模型没有学习到足够的特征，无法进

行精准分类，但整体准确率仍然达到了可接受的分

①https://captain-whu.github.io/AID/
②http://weegee.vision.ucmerced.edu/datasets/landuse.html

表 3　不同模型在AID数据集和UCMerced数据集上的零

样本场景分类整体精度比较

Table 3　Zero-shot scene classification OA comparison 
of different models on AID dataset and UC⁃
Merced dataset

模型

MiniGPTv2 ［20］

LLaVA-1. 5 ［24］

Qwen-VL ［37］

GeoChat-7B
GeoChat-13B

Ours （GeoChat-7B）

AID
12. 90
51. 00
52. 60
67. 20
69. 53

67. 30

UCMerced
4. 76

68. 00
62. 90
84. 43
90. 43
91. 24

表 4　不同模型在AID数据集和UCMerced数据集上的零

样本场景分类平均精度比较

Table 4　Zero-shot scene classification AA comparison 
of different models on AID dataset and UC⁃
Merced dataset

模型

GeoChat-7B
GeoChat-13B

Ours （GeoChat-7B）

AID
55. 88
56. 59

55. 96

UCMerced
84. 48
90. 43
91. 24
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类结果（67. 30%）。从图 4（b）中可以看出，尽管UC⁃
Merced 数据集分辨率相对较低，更具挑战性，导致

模型在类别“agricultural”和“dense residential”上，由

于与“runway”以及“medium residential”类别在结构

特征上的相似性，取得了低于平均结果的精度，我

们模型仍然能够在其他所有类别上取得优异的分

类结果，总体准确率达到 91. 24%。这是由于在模

态信息对齐过程中采用的反向KL散度加强了学生

模型对教师模型主要模态特征分布的学习，从而超

越了教师模型GeoChat-13B的90. 43%分类精度。

综合分析，混淆矩阵结果表明，蒸馏后的 Geo⁃
Chat-7B模型在场景分类任务中不仅在整体准确率

上表现优异，同时能够有效应对遥感图像的类间相

似性和类内多样性，进一步验证了本文提出的知识

蒸馏方法在多模态任务中的有效性。

3. 3. 2　视觉问答

1）实验数据集

我们采用了 RSVQA-HRBEN ①和 RSVQA-LR⁃
BEN②两个用于遥感视觉问答（Remote Sensing Visu⁃
al Question Answering， RSVQA）任务的基准数据

集［18］，旨在评估模型对遥感图像的理解和在自然语

言指令下生成准确答案的能力。RSVQA-HRBEN
数据集包含 10，569张高分辨率遥感图像，配有超过

1，066，316 个多样化的问题-答案对，涵盖存在性、

比较性及计数问题，旨在考察模型对高分辨率图像

的细粒度理解与推理能力。RSVQA-LRBEN 则包

含 772张低分辨率图像和 77232个问题-答案对，问

题类型包括存在性、比较性、乡村/城市分类以及计

数任务，适用于测试模型在低分辨率条件下的泛化

能力。

2）实验结果与分析

我们通过计算模型回答正确的问题数量占总

问题数量的整体精度OA以及不同任务类别下整体

精度的平均值（mean Overall Accuracy， mOA）来衡

量模型在视觉问答任务中的准确性。在 RSVQA-
HRBEN 和 RSVQA-LRBEN 数据集中，分别针对不

同模型计算其在不同场景（如存在性、比较性、城乡

等）下的准确率，以评估模型对问题的理解和回答

能力。

表 5展示了不同模型在 RSVQA-HRBEN 和 RS⁃
VQA-LRBEN 数据集上的定量结果，最佳结果用粗

体标记。在该视觉问答任务中，通过向模型添加适

当的提示，将答案限制为简单的“是/否”和“城市/乡
村”形式。总体而言，蒸馏后的学生模型 GeoChat-
7B 在 RSVQA-HRBEN 和 RSVQA-LRBEN 上显著超

越了初始模型GeoChat-7B以及其他MLLM的精度，

甚至超越了教师模型 GeoChat-13B 的精度，展现了

其强大的推理能力，能有效回答与遥感图像相关的

①https://zenodo.org/records/6344367
②https://zenodo.org/records/6344334

（a）

（b）

图 4　我们模型在AID和UCMerced数据集上的零样本场景

分类混淆矩阵: (a) AID数据集，(b) UCMerced数据集

Fig. 4　 Zero-shot scene classification confusion matrix of 

Ours (GeoChat-7B) on AID and UCMerced datasets: (a) AID 

dataset, (b) UCMerced dataset
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问题，验证了蒸馏算法的有效性。

与此同时，所测试的数据集分别聚焦于低分辨

率航空图像和高分辨率遥感图像的视觉问答任务，

在此任务中，蒸馏后的模型展现出了卓越的适应

性，在不同数据集中均能有效学习知识。在测试环

节，蒸馏后的模型针对相关问题的回答具有较高准

确性。这表明模型可成功地将训练数据中所获取

的知识迁移至未曾见过的测试数据中，为蒸馏模型

在复杂多样的遥感图像视觉问答应用场景中的有

效性提供了有力证据。

3. 3. 3　视觉定位与图像描述　

1）实验数据集与评价指标

为评估视觉定位任务，使用遥感图像分割数据

集 SAMRS①及与遥感多模态指令跟踪数据集相同的

构建方法所生成的测试基准［38］。测试基准包括

7653 个引用问题（refer）、758 个定位问题（ground⁃
ing）和 555个定位描述问题。使用 accuracy@0. 5和

accuracy@0. 25作为评价指标，具体而言，若预测的

边界框与真实边界框的重叠度（Intersection over 
Union， IoU）分别超过0. 5和0. 25，则判定为准确。

对于图像描述任务，ROUGE-1 衡量生成文本

与参考文本中共同的一元组（单个单词）的比例，

ROUGE-L 关注最长公共子序列的长度；METEOR
则综合考虑多种因素，如精确率、召回率和词干提

取等，从而更全面地评估模型生成的描述与参考描

述在语义和词汇上的匹配程度，以比较不同模型在

该任务上的表现。通过上述这些指标来评估图像

描述任务中模型生成的区域描述与参考描述之间

的相关性和质量。

2）　实验结果与分析　

视觉定位任务，即在给定特定区域情况下，模

型能提供关于该区域的详细信息。从表 6可见，蒸

馏后的学生模型 GeoChat-7B 在视觉定位任务上显

著优于 MiniGPTv2［20］、初始模型 GeoChat-7B 与教师

模型GeoChat-13B。

表 7展示了不同模型在图像描述任务上性能比

较的定量结果，其最好结果用粗体标记。可以发

现，在区域级别的描述任务中，蒸馏后的学生模型

GeoChat-7B在ROUGE和METEOR分数方面均优于

MiniGPTv2［20］、初始模型 GeoChat-7B 与教师模型

GeoChat-13B。

上述结果表明，蒸馏后的学生模型GeoChat-7B
能够成功进行更精确的视觉定位与描述生成，与目

标区域的特征完美匹配，进一步验证了本文所提议

的蒸馏算法在遥感图像分析中的有效性，展示了其

在多模态任务中的应用潜力。

我们考虑，在训练过程中确保视觉和语言模态

特征在同一语义空间中有效对齐，这使得我们模型

能够更好地理解图像与文本之间的关系，弥补了特

征对齐不足可能导致的学生模型在处理多模态任

①https://github.com/ViTAE-Transformer/SAMRS

表7　不同模型在图像描述任务上的区域级描述性能比较

Table 7　Region level captioning performance compari⁃
son of different models

模型

MiniGPTv2 ［20］

GeoChat-7B
GeoChat-13B

Ours （GeoChat-7B）

ROUGE-1
32. 10
86. 64
87. 10
87. 80

ROUGE-L
31. 20
86. 59
87. 05
87. 75

METEOR
10. 00
62. 27
63. 18
63. 55

表 5　不同模型在RSVQA-HRBEN和RSVQA-LRBEN数

据集上的定量结果

Table 5　Quantitative results of different models on RS⁃
VQA-HRBEN and RSVQA-LRBEN dataset

模型

MiniGP⁃
Tv2［20］

LLaVA-
1. 5［24］

Qwen-VL ［37］

GeoChat-7B
GeoChat-13B

Ours （Geo⁃
Chat-7B）

HRBEN
存在

40. 79

69. 83

66. 44
57. 65
56. 05
60. 03

比较

50. 91

67. 29
60. 41
80. 84
83. 02
83. 30

mOA

46. 46

68. 40
63. 06
70. 63
71. 15
73. 06

LRBEN
存在

55. 16

55. 46
38. 57
90. 86
91. 20
91. 91

比较

55. 22

68. 20
67. 59
90. 25
91. 75
92. 88

城市/
乡村

39. 00

59. 00
61. 00
94. 00
97. 00

95. 00

mOA

54. 96

62. 77
55. 35
90. 59
91. 60
92. 50

表6　不同模型在视觉定位任务上的性能比较

Table 6　Performance comparison of different models 
on visual grounding task

模型

MiniGPTv2 ［20］

GeoChat-7B
GeoChat-13B

Ours （GeoChat-7B）

accuracy@0. 5
10. 8
11. 2
14. 1
14. 4

accuracy@0. 25
30. 9
33. 9
35. 7
35. 9
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务时表现不稳定的问题，从而使蒸馏后模型在视觉

定位和图像描述任务中表现更为优异。

另外，我们对视觉定位任务的效果进行可视化

展示与分析。图 5展示了三种模型在视觉定位任务

中几种不同图像上的目标检测边界框输出。其中，

图 5的第一列来自测试数据集中的原始图像，第二、

三和四列分别展示了初始模型、教师模型以及蒸馏

后的学生模型所对应的视觉定位边界框输出。

通过对比图 5 中的各图片，可观察到不同模型

在视觉定位任务上边界框输出的表现差异。具体

而言，教师模型 GeoChat-13B 通常能够生成较为精

确的边界框，反映出其在特征提取和视觉定位方面

的优势。而初始模型 GeoChat-7B 的边界框输出可

能存在一定的偏差，尤其在复杂场景中的目标定位

上表现不足，显示出其特征提取能力的局限性。蒸

馏后的学生模型 GeoChat-7B 在教师模型 GeoChat-
13B 和初始模型 GeoChat-7B 上表现出改进，在 Air⁃
plane、Baseball field等遥感图像上，可直观清晰地看

到蒸馏后的学生模型 GeoChat-7B 的边界框定位更

为精准，能在保持较高准确率的同时，展现出更好

的灵活性和适应性。

3. 4　模型计算效率分析　

为进一步验证本文所提知识蒸馏方法在计算

效率上的提升效果，我们对模型的参数量和每秒浮

点运算次数（Floating Point Operations Per Second， 
FLOPS）进行了定量分析。表 8 列出了本文三种模

型在参数量和 FLOPS方面的对比情况。结果表明，

GeoChat-13B 作为教师模型具有约 130 亿的参数量

和较高的运算量，蒸馏后的GeoChat-7B在参数量上

大幅减少，仅不到 70亿，相较于教师模型减少了约

48%，这直接反映了所提轻量化策略在降低模型复

杂度方面的优势；在运算量方面，蒸馏后的 Geo⁃
Chat-7B模型的 FLOPS也显著下降，减少了约 48%，

进一步验证了其在更优任务性能下所需计算资源

的显著降低。

结合表 8 的结果可以看出，虽然蒸馏后的 Geo⁃
Chat-7B 相较于教师模型在模型规模上大幅缩减，

但其在多模态任务中的性能并未因规模减小而受

到明显影响，甚至在多数任务上超越了教师模型

GeoChat-13B。这表明本文提出的知识蒸馏策略不

仅能够显著降低模型参数量和运算量，还能有效提

升多模态任务的性能，对资源受限场景中的实际应

图5　视觉定位任务的可视化结果

Fig.  5　Visual results on visual grounding task
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用具有重要的实践价值。

3. 5　小结　

由以上实验结果可知，经本文所提出方法蒸馏

后的学生模型GeoChat-7B在多个多模态任务（场景

分类、视觉问答、视觉定位和图像描述任务）中的性

能测试中，其结果均优于现有的初始模型GeoChat-
7B，甚至超越了教师模型GeoChat-13B，其主要特点

可总结如下：

1） 精度高：所提出方法得到的蒸馏后的学生模

型在各项任务中均达成了较高的定量指标，显著超

越了初始模型，甚至超越了教师模型。我们认为，

这主要得益于所提出方法在特征层面对齐不同模

态的输出，深度学习到多模态信息；更进一步，蒸馏

引入了反向 KL 散度作为损失函数，使得学生模型

关注教师模型输出分布中的主要模式，从而使得特

征提取和模态信息对齐得到增强，并结合教师混合

采样和单步分解的优化策略，使模型能够更精准地

处理多模态任务，有效提升了模型的准确性，实现

了超越教师模型的性能。

2） 轻量化：相较于参数量达 130 亿的教师模

型，经蒸馏后的学生模型参数量大幅缩减至 70亿。

经蒸馏后的学生模型使GeoChat模型更适合在边缘

设备或资源有限的环境中进行部署，响应了轻量化

部署的实际需求，并提升了其在各种应用场景中的

适用性和灵活性。

3） 泛化能力强：我们的方法在不同类型数据集

以及不同任务上均达成了较高的定量指标，表现出

强大的泛化能力。我们考虑，这主要归因于我们方

法在设计时充分考虑了多模态信息的通用性，以及

通过知识蒸馏过程使学生模型能学习到教师模型

的通用特征表示，从而在不同类型数据集以及不同

遥感任务中都能发挥良好性能。

另外，在我们方法中，教师模型和学生模型的

LLM部分均基于同一系列，这一选择取得了出色的

定量实验结果，但一定程度上也限制了模型性能的

进一步提升与知识迁移的多样性。由于同一系列

LLM在结构和特性上高度相似，学生模型可能会过

度依赖教师模型的特定模式和特征表示，从而难以

学习到更加广泛或具有创新性的知识与处理方法。

具体而言，如果教师模型在面对某些特殊语言结构

或语义理解场景时存在局限，学生模型可能由于结

构上的相似性，难以有效突破这一局限，从而影响

学生模型在遥感图像多模态任务中的灵活性和适

应性。因此，未来研究可考虑引入不同家族或类型

的语言模型，探索更多样的模型组合，借助于异构

模型引入的优势以克服这一局限，有望进一步提升

模型的性能与泛化能力。

4 结论

本文提出了一种基于知识蒸馏的遥感MLLM轻

量化方法，以提升压缩后模型在遥感多模态任务中

的性能与效率。在遥感 MLLM 压缩过程中，所提出

方法通过在特征层对齐各模态的输出，实现了多模

态信息的有效对齐；通过采用反向 KL 散度作为损

失函数，并结合教师混合采样和单步分解的优化策

略，进一步提升了学生模型的泛化性与稳定性。在

多个不同数据集以及四种下游多模态任务（场景分

类、视觉问答、视觉定位和图像描述）中的实验结果

表明，经所提出方法蒸馏后模型在分类精度、准确

率和定位精度等指标上表现出色，具有精度高、轻

量化和泛化能力强的优点，这些特点对实际应用有

重要价值和意义。

在未来工作中，我们将深入探索异构LLM家族

的知识蒸馏，拓宽学生模型学习知识的范围，实现

更有效的遥感 MLLM 轻量化，以进一步适应复杂多

变的遥感图像多模态任务需求。
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