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摘要：本文介绍了一种基于 ARM CPU 的高速鲁棒的双波段热成像测温相机，该测温仪由低分辨率长波红外探测

器、数字温湿度的传感器和CMOS传感器组成。针对热红外图像中人脸与背景对比度大的现象，本文探索了一种平

衡了人脸检测精度与速度的折衷方案，并提出了一个超型轻量级热红外人脸检测，将之命名为 YOLO-Fastest-IR。

基于YOLO-Fastest设计了四种不同尺度的热红外人脸检测器YOLO-Fastest-IR0至 IR3。为了对 4个超轻量级网络

训练和测试，本文还设计了一套多用户低分辨率热人脸数据集（RGBT-MLTF），并对四个网络完成了训练。实验表

明，轻量级卷积神经网络在热红外人脸检测任务中表现出色。该算法在定位精度和速度上均优于现有的人脸检测

算法，且更适合部署在移动平台或嵌入式设备中。在红外图像（IR）中获取感兴趣区域后，根据热红外人脸检测结

果对RGB相机进行引导，实现RGB人脸的精细定位。实验结果表明，YOLO-Fastest-IR 在树莓派 4B上的帧率高达

92. 9 FPS，在RGBT-MLTF测试集中人脸定位成功率达 97. 4%。最终实现了低成本、强鲁棒性和高实时性的测温系

统集成，测温精度可达0. 3℃。
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YOLO-Fastest-IR： Ultra-lightweight thermal infrared face 
detection method for infrared thermal camera
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Abstract： This paper presents a high-speed and robust dual-band infrared thermal camera based on an ARM CPU.  It is 

composed of a low-resolution long-wavelength infrared detector， a digital temperature and humidity sensor， and a 

CMOS sensor.  In view of the phenomenon of large contrast between face and background in thermal infrared image， 

this paper we search for a suitable accuracy-latency tradeoff for thermal face detection and propose a tiny-lightweight de‐

tector named YOLO-Fastest-IR.  Four different scale YOLO-Fastest-IR0 to IR3 thermal infrared face detectors based on 

YOLO-Fastest are designed.  To train and test four tiny-lightweight models， a multi-user low-resolution thermal face da‐

tabase （RGBT-MLTF） is collected， and the four networks are trained.  Experiments reveal that the lightweight convolu‐

tional neural network can also perform well in the thermal infrared face detection task.  And the algorithm is superior to 

the existing face detection algorithms in positioning accuracy and speed， which is more suitable for deployment in mo‐

bile platforms or embedded devices.  After obtaining the region of interest in the infrared image （IR）， the RGB camera 

is guided by the results of thermal infrared face detection， to realize the fine positioning of RGB face.  The experimental 

results show that YOLO-Fastest-IR has a frame rate of 92. 9 FPS on a Raspberry Pi 4B and can successfully locate 

97. 4% of the face in the RGBT-MLTF test set.  The integration of infrared temperature measurement system with low 

cost， strong robustness and high real-time performance was ultimately achieved， the temperature measurement accuracy 

can reach 0. 3 degrees Celsius.
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1 Introduction 

Infrared thermal camera （ITC） has attracted wide⁃
spread attention from various sectors of society due to 
their characteristics of large-scale rapid screening， au⁃
tomatic tracking， high-temperature area alarm， and 
fusion of visible light images， which can quickly track 
high-temperature individuals in the crowd ［1-2］.  During 
the epidemic period， it was widely used for inspection 
and quarantine in crowded public places such as air⁃
ports， nucleic acid testing entrances， subway and 
train stations， and shopping centers.  This approach 
not only reduces the chance of cross-infection between 
individuals but also prevents personnel congestion 
caused by large-scale temperature detection.  In addi⁃
tion， it can also be used for monitoring chemical heat 
sources and real-time monitoring of animal body tem⁃
perature on farms ［3-4］.

Face detection is the key technology for ITC， a 
set of high-speed， stable， low-cost and robust face de⁃
tection algorithms can enable users to detect faces well 
under different conditions， and achieve accurate tem⁃
perature measurement， which significantly affects the 
performance of ITC.  In recent decades， despite sub⁃
stantial progress have been achieved in face detection， 
there have been many reports on infrared temperature 
measurement， numerous models have been proposed 
for thermometer ［5-7］， it remains a very challenging 
work for accurately and quickly locating faces in infra⁃
red images.  However， most previous methods only 
used a single thermal infrared camera for rough facial 
detection based on morphology ［8］， or facial localiza⁃
tion based on visible light images.  In other words， the 
thermal camera first performed face detection through 
visible spectrum images， and then mapped the detect⁃
ed face position to infrared images for temperature mea⁃
suring ［9］.  And they are hard to be directly detected 
from IR images，the disadvantage of using RGB camera 
is that it is easily affected by ambient light ［10］.  More⁃
over， some human-shaped objects （e. g. ， tiny pillars 
and blurry traffic lights） have similar appearances to 
face ［11］ and they are easily mistaken for thermometer.  
As a result， many false alarms appear in the ITC， 
which affects the practical application of the tempera⁃

ture measuring camera.  In general， RGB images can⁃
not guarantee the high-quality for face detection， and 
more comprehensive information should be explored 
for thermometer.

Most ITC usually take high-resolution images as 
input to achieve high recall， which usually rely on 
costly graphic processing units （GPUs） for low latency 
［12］.  For our knowledge， few works before have report 
lightweight ITC.  Limited by infrared face detection 
technology and data set， Negishi and others use a ma⁃
ture face detection algorithm in the visible light image 
to locate the faces ［13］， and then map the detected faces 
coordinate to the corresponding infrared image for tem⁃
perature measurement.  In addition to the shortcomings 
of visible light face detection， this method also has the 
shortcomings of inaccurate coordinate mapping， high 
computing time and low frame rate.

Chaitra Hegde et al.  conducted PoseNet based 
forehead positioning temperature measurement and cy⁃
anosis inspection at edge computing platform raspberry 
pi ［5］.  The disadvantages of this method are the fore⁃
head and lip detection were computed on the Google 
Coral USB accelerator.  This system not only has slow 
facial detection speed and poor positioning accuracy， 
but also high cost， only with the help of the Accelera⁃
tor TPU of Google Coral's Coral USB accelerator neu⁃
ral network accelerator can the near real-time effect be 
barely achieved.

At present， visible face detection tasks are usual⁃
ly based on the MS COCO dataset， while visual tasks 
faces can be trained and tested using datasets such as 
Helen ［14］， IBUG ［15］， and 300-W ［16］.  For thermal in⁃
frared visual tasks， UND ［17］ was the earliest thermal 
infrared facial dataset proposed in 2003， followed by 
commonly used datasets such as IRIS ［18］ and NVIE 
［19］.  In 2021， Domenick Poster et al.  ［20］ proposed the 
latest thermal infrared facial dataset ARL-VTF and 
listed most of the previous thermal infrared facial datas⁃
ets.  The existing thermal infrared facial datasets are 
mainly aimed at tasks such as facial recognition and 
emotion recognition.  Therefore， in the dataset， a sin⁃
gle face occupies most of the image， and there are few 
or no interference factors in the background， resulting 
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in usually high image resolution.  The existing thermal 
infrared facial detection algorithms based on convolu⁃
tional neural networks most are using trained single us⁃
er thermal infrared facial images obtained by the au⁃
thor themselves， and these datasets are not publicly 
available.  Within the scope of the author's understand⁃
ing， there is no thermal infrared face dataset suitable 
for multi user face detection tasks.

Woongkyu lee et al.  based on SSD model in 2021 
proposed a temperature measurement method ［21］， they 
customize SSD to identify the location of human faces 
via transfer learning， which can run to 160 FPS on NV⁃
IDA Jetson AGX， it directly detects faces in infrared 
images.  The disadvantage of this method is that when 
there are multiple targets， it is difficult to accurately 
locate suspicious high-temperature targets in visible 
images.  Friedrich et al.  ［22］ proposed the eye corner 
detection algorithm for thermal infrared face detection 
based on the characteristics of the highest eye tempera⁃
ture and the lowest face temperature.  Reese et al.  ［23］ 
calculated the gray projection curve of the thermal in⁃
frared image， and determined the face range by analyz⁃
ing the gray projection curve and its first derivative， 
which is called gray projection analysis （Projection 
Profile Analysis， PPA）.  Marcin Kopaczka et al.  ［24］ 
analyzed and compared two detection algorithms for 
thermal infrared images， along with five algorithms 
predominantly used for visible light face detection.  
These include the Viola Jones algorithm ［25］， a variant 
Viola Jones algorithm replacing Harr features with lo⁃
cal binary pattern features， and a face detection ap⁃
proach combining directional gradient histograms with 
support vector machines ［26-27］.  Deformable component 
model ［27］ and pixel intensity comparisons organized 
（PICO） in decision trees ［28］.

Experiments have shown that these machine learn⁃
ing algorithms mainly used for visible light face detec⁃
tion have higher accuracy and lower false positives 
compared to detection algorithms proposed for thermal 
infrared images.  The detection algorithm proposed for 
thermal infrared images has a shorter running time， 
but the PICO algorithm has the highest computational 
efficiency.

In recent years， researchers have also applied 
deep learning to thermal infrared facial detection 
tasks.  In 2017， Alicja et al.  adjusted the InceptionV3 
network and removed the global pooling operation ［29］， 
allowing the last 8×8 feature map to be classified on 64 
grids separately， using a set of grids with a face proba⁃
bility greater than 0. 5 as the face range.  However， 
their research is limited to single user thermal infrared 
face detection.  In 2019， Silva et al.  ［30］ adjusted the 
YOLOv3 ［31］ network， trained YOLOv3 using a thermal 
infrared facial dataset， and cut off the last predicted 
feature map during detection， achieving high accuracy 
and efficiency.  The target detector based on YOLO 
has the ability of multi-target detection， but their goal 
is to detect the driver in the autopilot system， so their 
data set also contains only a single user.  However， 
most previous methods directly used infrared images to 
train general models for detecting targets in infrared 
images， but the models had a lot of redundant informa⁃
tion and could not improve detection speed.  In this 
work， we found that combining the characteristics of 
infrared images with composite scaling of the model 
can greatly improve the efficiency of the model and pro⁃
mote future research in this field.

In this paper， we propose a high-speed and ro⁃
bust dual band face detection system on ARM CPU for 
ITC.  Our ITC mainly consists of a low-resolution infra⁃
red detector， an CMOS sensor and an environmental 
temperature monitoring sensor.  The infrared camera is 
used to locate the face in the scene， and the visible 
camera is used to further confirm the face information 
corresponding to the infrared image.  At the same 
time， the attenuation compensation of thermal radia⁃
tion with distance is considered， and the stereo rang⁃
ing is carried out by data set fitting.  In addition， focus⁃
ing on this problem， we propose an ultra-lightweight 
thermal infrared face detection network in terms of al⁃
gorithm， explore the impact of several different net⁃
work models on thermal infrared face detection.  And 
at the same time， to train the proposed model， we de⁃
signed a dual band face detection dataset， we intro⁃
duce a large-scale RGBT dual light dataset， which 
contains 2，030 pairs of RGB-thermal images with 

3



XX 卷 红 外 与 毫 米 波 学 报

138，389 annotated faces.  To verify the proposed mod⁃
el， we designed a set of experimental prototypes， and 
deployed the algorithm to the raspberry pi system with 
ARM CPU.  An ultra-lightweight infrared face detec⁃
tion network suitable for thermal infrared face detec⁃
tion is found by composite scaling of network depth， 
resolution and width.
2 Principle of the temperature mea⁃
surement system 

As shown in Fig.  1， a binocular stereo vision sys⁃
tem composed of an infrared camera and an RGB cam⁃
era.  The raw infrared data obtained by the IR camera 
is separated into two branches for further processing.  
On the one hand， the raw sixteen-bit data is dynami⁃
cally normalized to an eight-bit gray value according 
to the maximum and minimum temperature， the con⁃
version rule as shown in Eq.  （1）.  Where Igray is the 
gray value of infare image， RawData[ i] is 16 bits infra⁃
red raw data， MaxValue and MinValue are the maxi⁃
mum and minimum values in the current frame's infra⁃
red data.  On the other hand， it is used as the backup 
data of temperature measurement.  The original resolu⁃
tion of infrared image is 80×60 pixels， and the resolu⁃
tion is resized to 160×120 after interpolation.  The gray 
image is directly used as the input of the face detector 
to obtain the region of interest for infrared temperature 
measurement.
[ Igray ] =  (RawData[ i] -  MinValue)*

255
 MaxValue -  MinValue (1)

After obtaining the face region in the thermal in⁃
frared image， the region of interest is synchronously 
mapped to the visible image， thereby achieving the 
task of facial detection or identity recognition in the 
visible light image， and the amount of visible data is 
greatly compressed.  In addition， based on the geomet⁃
ric relationship of binocular stereo vision composed of 
infrared and RGB cameras， the distance between the 
measured individual and the camera can also be ob⁃
tained.  Finally， the temperature is corrected and com⁃
pensated according to the distance and environmental 
information to improve the temperature measurement 
accuracy.

One of the advantages of our RGB face localiza⁃
tion is splitting a complicated real-world computer vi⁃
sion task into two easier ones that can be well solved 
by current deep learning methods.  If we stick to a sin⁃
gle visible RGB camera for cascaded or simultaneous 
face detection and eye localization， the input resolu⁃
tion of the CNN will inevitably be large， resulting in a 
computationally heavy network.  In this paper， we 
make the most of guiding mode by using two tiny-light⁃
weight CNNs.  The dual-band infrared guidance sys⁃
tem not only largely reduces the computational cost but 
also maintains high accuracy and robustness.  It effec⁃
tively addresses the trade-off between high tracking 
speed， high tracking accuracy， and strong robustness 
in conventional visual tracking systems.
3 Thermal infrared face detect 

Fig.  1　The procedure of the working process of the dual band ITC system
图1　双波段红外测温系统组成和工作流程
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method 

3. 1　The Introduction of lightweight network YO⁃
LO-Fastest-IR　

As the most of the body's thermal radiation is usu⁃
ally blocked by clothing.  Therefore， the facial part is 
often the place with the highest gray value in the im⁃
age， and the contrast with the background is very 
high.  The face appears as a white oval shape in the IR 
image， and the facial features are basically indistin⁃
guishable.  On the one hand， this creates difficulties 
for highly refined computer vision tasks such as facial 
recognition， emotion recognition， and face landmark 
detection.  On the other hand， it limits the features 
that convolutional neural networks can extract.  That 
is， there are basically no effective deep features for 
thermal infrared facial detection to be extracted by neu⁃
ral networks.  In addition， there are significant differ⁃
ences in shape and aspect ratio between the face and 
other possible heat sources， such as screens， fluores⁃
cent lamps， and cups filled with hot water.  Therefore， 
theoretically， lightweight convolutional neural net⁃
works can stably detect faces in IR images.

As shown in Fig.  2， to verify the hypothesis pro⁃
posed above， we designed four tiny lightweight convo⁃
lutional networks with different complexity levels， in⁃

spired by YOLO-Fastest ［32］.  The red block and blue 
block in the figure represent the lite convolution mod⁃
ule and lite residual module， respectively.  This article 
explores the relationship between network scale in 
three aspects： resolution， depth， and channel num⁃
ber.

In terms of resolution， current object detection 
networks are mostly designed for datasets such as CO⁃
CO， so the input resolution is relatively high， ranging 
from 416 to 800.  To enhance the computational effi⁃
ciency of lightweight object detection networks， reduc⁃
ing the input image resolution has become a common 
strategy for speed improvement.  If directly down sam⁃
pling to a size of 320×240， image details will inevita⁃
bly be lost.  However， the infrared camera used in this 
article has a physical resolution of only 160×120， so 
using bilinear interpolation to enlarge the image to 
320×240 may not have practical significance.  To be 
compatible with the physical resolution of infrared cam⁃
eras， the input resolution of YOLO-Fastest was set to 
160×120， and variables were controlled in depth and 
width.  Four different lengths and widths of infrared 
face detection networks were designed differentially， 
and these networks were named YOLO-Fastest-IR.

The first 3×3 convolution step in all four networks 
has a size of 2 and uses zero padding， thus reducing 

Fig.  2　The YOLO-Fastest-IR network structures with four different levels of complexity
图2　四种不同复杂度的热红外人脸检测网络YOLO-Fastest-IR结构
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the length and width of the input image to half of its 
original size.  The input and output feature maps of all 
lite residual modules maintain the same size and are 
not scaled.  The first lite convolution module in IR1 to 
IR3 does not perform feature map size scaling.  In 
IR0， the first lite convolution module， as well as all 
other lite convolution modules in the four YOLO-Fast⁃
est-IR models， employs depth-separable convolutions 
with a stride of 2， using zero padding to reduce the 
length and width of the input image by half.  Both IR0 
and IR1 undergo four feature map size reductions， re⁃
sulting in a feature map with a grid size of 10×8.  In 
the four types of YOLO-Fastest-IR， the number of 
convolutional kernels gradually increases with the in⁃
crease of network depth.  That is， the number of fea⁃
ture map channels increases with the increase of net⁃
work depth， the specific details are as follows.

（1） YOLO-Fastest-IR0： As shown in Fig.  2
（a）， excluding the first and last two convolutional lay⁃
ers of YOLO-Fastest， only three lite convolutional 
modules were used.  The final output grid size is 10×8， 
which is the network with the least number of layers 
and the simplest network structure.  Due to its small 
number of layers， there is basically no phenomenon of 
gradient vanishing and network degradation， so residu⁃
al modules are not used.

（2） YOLO-Fastest-IR1： As shown in Fig.  2
（b）， a residual module was introduced into the back⁃
bone network， using 4 lite convolution modules and 2 
lite residual modules， the final output grid size was 
10×8.

（3） YOLO-Fastest-IR2： As shown in Fig.  2
（c）， a multi-scale prediction strategy was introduced 
in the neck network， and 5 lite convolutional modules 
and 3 lite residual modules were used.  The final out⁃
put was two feature maps with grids sizes of 5×4 and 
10×8 respectively， responsible for predicting large and 
small targets.  Only one convolutional layer was used 
in the head network.

（4） YOLO-Fastest-IR3： As shown in Fig.  2
（d）， further deepen the network layers and use 6 con⁃
volutional layers in the head network， ultimately out⁃
putting two feature maps with grids of 5×4 and 10×8， 

making it the network with the highest number of lay⁃
ers and the most complex structure.

（5） YOLO-Fastest-EYE： The overall network 
structure is shown in Fig.  2（e）.  The aspect ratio of 
the facial bounding box is roughly close to 1：1.  The 
RGB image resolution is 640×480， when the user's 
face is about 1 meter away from the camera， the bound⁃
ing box size is about 160×160.  Therefore， it is speci⁃
fied that the image size input by YOLO-Fastest-EYE 
is set to 160×160.  After four down sampling and one 
up sampling of the feature map， the final output is a 
tensor of size 20×20×18， the ratio of each grid to the 
length and width of the entire feature map is 5%.  
Since only targets such as the eyes are predicted， the 
number of output feature map channels is 18.
3. 2　 Infrared face detection dataset and model 
training　

To complete the training of the proposed network， 
we also designed an RGBT multi user low resolution 
thermal face database （RGBT-MLTF） in this paper.  
This dataset contains 26800 images captured by an in⁃
frared camera lepto3. 0 with a resolution of 160×120.  
Each image contains 1 to 4 faces， with no less than 2 
faces accounting for 76% of the dataset.  As shown in 
Fig.  3， to improve the generalization ability of the 
model and prevent overfitting， we conducted long-
term experiments under different environmental light⁃
ing and temperature conditions， including weak light 
conditions， high exposure scene， high temperature en⁃
vironment， and low temperature environment.  The da⁃
taset covers almost all conventional application scenari⁃
os.  The dataset is annotated using labeling， which ap⁃
proximates the head as an ellipse and labels the outer 
tangent rectangle of the ellipse as a real face rectan⁃
gle.  The dataset annotates distant faces， incomplete 
faces， and lateral faces， but the back of the head is 
not marked.  The final dataset contains a total of 5102 
faces from 22 people.

Among 2680 images， 1627 images were randomly 
selected as the training set， 520 were used as the cross 
validation set， and 533 were used as the testing set.  
The training set is used to train the four proposed ther⁃
mal infrared face detectors， the cross-validation set is 
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used to select the optimal network weights from several 
training sessions， and the test set is used to test and 
compare the performance of different neural network 
models.
4 Experiment and discussion 

The infrared sensor used in this article is the lep⁃
ton 3. 5 from FLIR， with a resolution of 160×120.  The 
visible light module uses a Raspberry Pi camera， and 
its sensor is OV5647 produced by OV company， with a 
resolution of 1280×720.  Due to the differences in reso⁃
lution and position between IR cameras and RGB cam⁃
eras， the horizontal and vertical coordinates of the ther⁃
mal infrared facial bounding box cannot be directly 
used in visible images.  Therefore， we fitted the posi⁃
tional relationship between infrared and RGB images 
using the annotated RGBT-MLTF dataset.  In short， 
the relationship between the annotated IR face boxes 
and the corresponding RGB face boxes is directly cal⁃
culated by Eq.  （2）.

XRGB = 0.8812*XIR + 0.0844 (2)
where XIR is the x coordinate of the original IR box， 
XRGB is the x coordinate of the shifted RGB box.  Both 
XIR and XRGB are relative values to the width of images.  
The x coordinates of IR and RGB face bounding boxes 
are on the horizontal and vertical axis respectively.  

Each of the sampling point represents a pair of face 
bounding boxes in the two spectrum images.  with lin⁃
ear regression， the relationship is obtained as shown in 
Eq.  （2）.

In this article， we use the RGBT-MLTF dataset 
to train YOLO-V4 and YOLO-V8s ［33］， YOLO-Fast⁃
est， and the four proposed thermal face detection net⁃
works YOLO-Fastest-IR， respectively.  And com⁃
pared the prediction performance of the four proposed 
network models with the current state of the art object 
detection algorithms.  As shown in the first column of 
Fig.  4（a1~g1）， even in scenes with interference， the 
four designed thermal infrared face detection networks 
can stably detect faces in images.  YOLO-Fastest-IR0 
and YOLO-Fastest-IR1 have certain false positives， 
which can detect the monitors or raised fist in the back⁃
ground as a face.  As shown in Fig.  4（a2~g2）， in a 
multi-user scenario， the four networks proposed in 
this paper with different scales can not only effectively 
detect thermal infrared faces of different sizes， but al⁃
so detect half faces with occlusion.  As shown Fig.  4
（a3~g3）， except for the shortest YOLO-Fastest-IR1 
and YOLO-Fastest-IR0， which occasionally have 
some false positives， the other five networks can effec⁃
tively detect faces in thermal infrared images.

To further verify the generalization ability of the 

Fig.  3　Examples and statistics of the RGBT-MLTF dataset
图3　部分RGBT-MLTF数据集示例和统计信息
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four YOLO-Fastest-IR， we conducted generalization 
tests on the high-resolution thermal infrared facial da⁃
taset provided by Marcin et al ［34］， and the test results 
are shown in Fig.  4（a4~g4）.  The detection results 
show that several IR face detectors have certain gener⁃
alization ability.  Among which， YOLO-Fastest-IR0， 
YOLO-Fastest-IR1 predicted the boundary box has a 
certain deviation from the real face， YOLO-Fastest-
IR2， YOLO-Fastest-IR3 and YOLO-V8s can accu⁃
rately extract the thermal infrared face region from the 
thermal infrared face image that is significantly differ⁃
ent from the training set， and the confidence is close to 
100%.  However， YOLO-V4 is no longer able to pre⁃
dict the image under commonly used confidence 
thresholds.  When the confidence threshold is reduced 
to 0. 1， the results in Fig.  4（f4） are outputted， this in⁃
dicates that YOLO-V4 may have some over fitting to 
the training set.  As shown in the Fig.  4（a5~g5）， al⁃
though the data set only contains a fewer number of 
pseudo color samples， the IR face detection network 
YOLO-Fastest-IR0 and YOLO-Fastest-IR1 designed 
in this paper can still predict the position of the face in 
the pseudo color image.  However， YOLO-V8s cannot 
accurately predict faces from pseudo color images.

Fig.  5（a） shows the experimental results of RGB 
face detection and eye location guided by thermal infra⁃
red proposed in this paper.  First， the position of the 
face in the infrared image is determined by YOLO-
Fastest-IR， and then the YOLO-Fast-EYE is used to 
predict the position of the eyes based on the region of 
interest determined by thermal infrared.  The result 
show that YOLO-Fastest-IR can better solve the local⁃
ization problem of occluded faces.  It proves that the in⁃
frared guidance effectively avoids the abnormal temper⁃
ature measurement of the ITC， thus reducing the false 
alarm rate.  Fig.  5（e~h） shows the results of RGB face 
and eye detection using YOLO-Fastest-EYE under 
poor lighting conditions.  Fig.  5（i~l） shows the results 
of multi-target face detection.  In summary， the algo⁃
rithm presented in this paper demonstrates strong ro⁃
bustness， capable of handling diverse lighting condi⁃
tions and occlusion interferences， while also support⁃
ing the detection of multiple targets.

The comparison results of AP values and FPS for 
several different networks are shown in Fig.  6.  It can 
be seen that except for YOLO-V4， YOLO-V8s and 
YOLO-Fastest， four YOLO-Fast-IR can all meet the 
real-time detection standards， and their AP50 values 
exceed 90%.  The prediction performance of the light⁃
weight network is close to that of YOLO-V4.  The AP 
values was tested based on the RGBT-MLTF dataset， 
and the frame rate was measured on the Raspberry Pi 
4B CPU.  By compressing the network， the inference 
speed of the network can be greatly improved， but the 
accuracy has not significantly decreased.  This also ful⁃
ly demonstrates that for infrared facial detection tasks， 
a lightweight convolutional neural network with a sim⁃
ple structure is enough to extract infrared facial fea⁃
tures and complete facial localization.  Based on the ex⁃
perimental results， it can be observed that the overall 
trend of YOLO-Fastest-IR is： the deeper the net⁃
work， the slower the inference speed， but the higher 
the average precision.  YOLO-Fastest-IR2 in Fig.  6 
has achieved a better precision mean than the deep net⁃
work， which may be caused by the accidental factors 
during training that lead to the better convergence re⁃
sult of the network.

In the visual task of object detection， 30 frames 
per second is usually used as the standard to divide re⁃
al-time and non-real-time.  YOLO-V4 and YOLO-
V8s can achieve the real-time operation standard on 
the GPU， but it takes more than 1 second to complete 
the reasoning of a single picture on the Raspberry Pi 
4B， which cannot meet the real-time requirements.  
YOLO-V4 can reach 98. 95% AP50 on RGBT-MLTF 
dataset after training， which is far more than the high⁃
est 81. 3% AP50 on MS COCO dataset.  As mentioned 
above， the RGBT-MLTF dataset covers as many fac⁃
tors as possible that may interfere with thermal infrared 
face detection.  Compared with the images captured in 
the actual application scenario of the ITC system in 
this paper， the images in the RGBT-MLTF dataset are 
more difficult for the detector.  Through the perfor⁃
mance of the above several networks on the dataset， it 
is proved that the thermal infrared face detection task 
in the application scenario of ITC can be better com⁃

8
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pleted by using deep learning.
4. 3　Temperature measurement experiments　

In this section， we will introduce the details of 
temperature measurement.  We set the black body tem⁃
perature as the vertical axis and the raw data captured 
by IR camera as the horizontal axis.  The black body 
temperature value is measured several times （20 
times） and take the average value.  The relationship 
between the temperature values and the raw IR data is 
the blue curve in Fig.  7 and its linear fitting curve is 

the magenta dashed line.  To verify the relationship be⁃
tween thermal radiation and distance， we conduct tests 
at intervals of 25 cm， starting from 25 cm to 225 cm.  
At each interval， we perform 20 tests and take the av⁃
erage value.  The relationship curve is shown as the red 
curve in Fig.  7， and the linear fitting result is a green 
dotted line.  The fitting result is shown in Eq.  （3）.  
When i=1 or i=2， it represents the relationship be⁃
tween temperature and grayscale or distance respec⁃
tively.  After fitting a1 = 19. 645， b1 = 0. 1163，a2 =

Fig.  4　The comparative and generalization experiments of different models：（a1~a5） the detection effect of YOLO-Fast-IR0； （b1~b5） the detection effect of YOLO-Fast-IR1； （c1~c5） the detection effect of YOLO-Fast-IR2； （d1~d5） the detection effect of YOLO-Fast-IR3； （e1~e5） the detection effect of YOLO-Fast； （f1~f5） the detection effect of YOLO-V4； （g1~g5） the detection effect of YOLO-V8s.
图4　不同模型的对比测试和泛化实验结果分析
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37. 514，b2 = -0. 00794.
y = ai + bi x (3)

According to Planck's radiation law， the gray val⁃
ue of each pixel in the infrared image is proportional to 
the thermal radiation energy of the corresponding point 
on the surface of the measured object.  But the temper⁃
ature captured by the thermal imager is the radiation 
temperature Tr of the object surface， not the real tem⁃

perature T0 of the object.  The real temperature of the 
object is equal to the temperature of the blackbody ra⁃
diating the same energy.  Therefore， in actual tempera⁃
ture measurement， it is necessary to calibrate the ther⁃
mal imager with high-precision blackbody to find the 
mapping relationship between blackbody temperature 
and sensor output voltage， the temperature of the 
black body is preset， the relationship between Tr and 

Fig.  5　IR face detection samples of YOLO-Fastest-IR and eye localization in the RGB images results：（a~d） YOLO-Fastest-IR and YOLO-Fastest-Eye is robust against angle of face inter-viewer occlusion， environmental occlusion； （e~h） extreme lighting condition； （i~l） multi tar⁃get and distant viewers.
图5　YOLO-Fastest-IR热红外人脸检测结果及在RGB图像中人眼定位效果

Fig.  6　Comparison of the proposed YOLO-Fastest-IR and other object detectors on the RGBT-MLEL face subset
图6　YOLO-Fastest-IR与主流目标检测器在RGBT-MLEL面部数据集上的测试结果对比
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T0 as shown in Eq.  （4）.
T0 = { 1

ε [ 1
ta
T λ
r - (1 - ε)T λ

u - ( 1
ta

- 1)T λ
a ] }1

λ (4)
Where λ is a wavelength dependent parameter， which 
varies depending on the material of the IR camera 
used.  For InSb （3-5 μ m） detectors， the value of λ=
8. 68； For HgCdTe （6-9 μ m） detectors， the value of 
λ=5. 33； The detector we use is HgCdTe （8-14 μm）， 
so the λ=4. 09； Due to the fact that the impact of atmo⁃
spheric transmittance can be ignored in close range 
temperature measurement， so ta=1， and Eq.  （5） can 
be obtained.

This is the temperature measurement calculation 
formula for the surface of the gray body.  In the Eq.  
（5）， where ε is the skin emissivity， usually taken as 

0. 98， Tr is the thermal radiation detected by the infra⁃
red detector， Tu is the ambient temperature， which 
can be measured by temperature and humidity sen⁃
sors.  Therefore， the temperature at the forehead can 
be estimated.

TM = 1
ε * (T λ

r - (1 - ε)*T λ
u ) 1

λ (5)
To further verify the proposed method， we design 

and carry out the temperature measurement experiment 
based on our binocular vision system.  It can be seen in 
Fig.  8， whether in close or long distance， single or 
multi person scenarios， the algorithm can stably detect 
the position of the face and accurately measure the tem⁃
perature of the forehead.  Meanwhile， as shown in Fig.  
5 and Fig.  8， the proposed IR face detection algorithm 

Fig.  7　The variation of grayscale values with temperature at different distances
图7　不同距离下灰度值随温度的变化关系

Fig 8　The real time temperature measurement experiment of temperature measurement system：（a） normal sitting and standing； （b） wear a mask； （c） interference testing at different distances； （d） remote temperature measurement experiment； （e） high temperature warning test； （f） remote multi-target temperature measurement experiment； （g） side face test； （h） fist interference experiment.
图8　红外测温系统的实时温度测量实验
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also has strong robustness and can effectively detect 
faces wearing masks， occlusion， and different poses.  
Fig.  8（e） shows the high temperature warning exam⁃
ples caused by a part of the cup body entering the fa⁃
cial area during the process of drinking hot water.  To 
avoid this phenomenon in practical applications， we 
will accurately locate the temperature measurement ar⁃
ea and position combine with the position of the eyes.

In order to verify the temperature measurement 
accuracy of ITC， it was tested using a blackbody at dif⁃
ferent ambient temperatures and distances， each data 
point was measured five times， and took the average.  
As shown in Fig.  9（a）， regardless of the ambient tem⁃
perature， the measured temperature decreases linearly 
with distance increasing， and the higher the ambient 
temperature， the higher the measurement result.  
Then， we gather several volunteers for the experiments 
and used a forehead gun as a controlled experiment.  
The test results are shown in the Fig.  9（b）， the experi⁃
ment covered 11 sets of temperature measurements at 
different distances.  With the distance increases， the 
original temperature measured by the infrared camera 
decreased， as shown the blue curve in Fig.  9（b）.  Af⁃
ter distance correction， the measurement results are 
basically consistent at different distances， as shown 
the green curve in Fig.  9（b）.  At close range， the mea⁃
surement accuracy of the ITC in this article is basically 
consistent with the measurement accuracy of the fore⁃
head gun.  With the increase of distance， the measure⁃
ment accuracy of the infrared temperature measure⁃

ment camera is better than that of the forehead gun， 
which not only has high temperature measurement ac⁃
curacy but also achieved good repeatability stability， 
the temperature measurement accuracy can reach 0. 3 
degrees Celsius.
5 Conclusion 

In this paper， we develop a dual band ITC，it can 
be used to measure the temperature of forehead which 
is composed of an infrared detector and a RGB sensor.  
In addition， the thermometer also integrates a tempera⁃
ture and humidity sensor for sensing environmental 
temperature and humidity.  Accordingly， this paper al⁃
so proposes four tiny-lightweight thermal infrared face 
detectors of different scales， namely YOLO-Fastest-
IR0 to YOLO-Fastest-IR3.  Through training and test⁃
ing the above models in the RGBT-MLTF dataset pro⁃
posed in this paper， it is proved that YOLO-Fast-IR 
is more suitable for deployment in mobile device and 
edge computing embedded platform than existing algo⁃
rithms such as YOLO-V4 and YOLO-Fastest， and its 
tiny version runs fastest.  Although the accuracy of face 
location is slightly decreased， it also meets the applica⁃
tion accuracy requirements of infrared temperature 
measurement equipment.  Among them， YOLO-Fast⁃
est-IR0， which has the smallest network scale， cannot 
complete thermal infrared face detection well due to 
the lack of deep networks.  The average accuracy of 
other thermal infrared face detectors can reach more 
than 95%， and the frame rate can reach more than 90 
FPS on Raspberry Pi 4B.  Compared with YOLO-Fast⁃

Fig.  9　Analysis of temperature measurement accuracy of ITC：（a） the variation relationship of different temperatures of blackbody under dif⁃ferent environmental temperatures and distances； （b） temperature correction experiment.
图9　红外测温系统的测温精度分析
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est and YOLO-V4 and YOLO-V8s， it shows that 
these tiny-lightweight convolutional neural networks 
have greatly improved the operating efficiency on the 
premise of less precision loss.  According to the differ⁃
ent visual tasks， the convolutional neural network can 
be adjusted in structure to achieve the optimal combi⁃
nation of precision and speed.  The experimental re⁃
sults show that our ITC is effective， and the proposed 
face detection methods have excellent performances.
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