文章编号:1001-9014(2025)04-0546-07

DOI:10.11972/j.issn.1001-9014.2025.04.009

毫米波相位一致性验证系统的实现与研究

刘佳奇^{1*}, 杨鹏飞¹, 朱亦鸣² (1. 成都航科瑶光科技有限公司,四川成都 611731; 2. 上海理工大学光电信息与计算机工程学院,上海 200093)

摘要:相位一致性是决定多通道毫米波矢量接收机灵敏度的关键因素,研制毫米波相位一致性验证系统对实现高 灵敏多通道接收机至关重要。该系统能够生成多通道矢量接收机所需要的矢量信号并作为目标系统或目标子系 统的激励信号,应用于验证和评估这些矢量接收机或者矢量子系统的性能,为系统的研究、制造提供有力的理论和 技术支撑。验证系统通过专用的相位一致性测试软件,将通用仪表、专用仪表组成一套完整的系统,研究双通道源 相位一致性信号系统的搭配、校准、验证和信号产生输出特性。基于毫米波相位一致性原理,研究并开发矢量监测 校准输出网络为专用仪表形态,包含射频幅相校准、矢量信号的校正,幅相测试与控制及信号输出幅度门限保护等 多项创新性功能模块;同时该系统所有测控连接部分采用网口进行同步反馈与控制。

关 键 词:相位一致性;毫米波;双通道;矢量校准 中图分类号:0441.5 **文献标识码:** A

Realization and research on the verification of millimeter wave phase consistency

LIU Jia-Qi^{1*}, YANG Peng-Fei¹, ZHU Yi-Ming²

(1. Chengdu Aerospace Light Technology Co., Ltd, Chengdu 611731, China;

2. School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract: Phase consistency is produced under the requirements from the process of research, manufacture and realization in two-channel even multi-channel vector receivers. The required two-channel vector signals will be generated in this verification for stimulating the target systems or target sub systems, which can verify and emulate the performance in these systems or sub systems, and providing strong theories and technologies in the process of research and manufacture in systems. The specialized phase consistency measuring software controls general instruments and specialized instruments, which can be applied in the process of collocation, calibration, verification and signal generation for two-channel phase consistency signal system. The vector monitor and calibration for output network for specialized instrument have been studied and developed based on millimeter wave phase consistency, including many technologies for realization and research such as radio frequency amplitude-phase calibration, vector signal calibration, amplitude-phase measurement and restraint, and output signal threshold protection, meanwhile all testing parts are connected by Ethernet interface for feedback and control synchronization in the system.

Key words: phase consistency, millimeter wave, two-channel, vector calibration

引言

多通道毫米波矢量接收机基于通道间相位差 值来计算目标参考角度,在遥感遥测、频谱管理及 物联网应用等军民方向都有关键应用^[1-4],多通道毫 米波接收机是测试相位差值的重要组成部分^[5],当 多通道毫米波矢量接收机通过通道间的相位差值 来测试计算目标参考角度时,需要尽可能准确测试 不同通道的相位绝对值,但是由于通道间及自身影

^{*}通讯作者(Corresponding author): E-mail: jacky-liu@hotmail. com

收稿日期:2024-10-18,修回日期:2024-12-20

Received date: 2024-10-18, Revised date: 2024-12-20

作者简介(Biography):刘佳奇(1988-),男(回族),湖北省仙桃人,硕士,主要研究领域为毫米波阵列通信、毫米波测试测量. E-mail: jacky-liu@hotmail.com

响,导致通道间相位一致性难以实现,最终影响多 通道毫米波矢量接收机性能参数。因此,研制毫米 波相位一致性验证系统对实现高灵敏多通道接收 机具有重要的意义。

相位一致性验证系统分为独立工作模式和相 参工作模式。单通道信号源技术参数是系统内信 号源独立工作时的性能参数,系统技术参数是系统 工作在相参模式下的性能参数。

相位一致性验证系统的目的是在毫米波频率 以内产生两路稳定的相参信号,达到校准并精确控 制各路信号之间的矢量关系,实现精确调控系统输 出信号的频率、功率、相位等参数功能;可输出相参 连续波信号,作为多通道矢量接收机中频和射频等 相参系统的测试信号。

基于相位一致性验证系统的要求,我们需要对 以下五方面进行研究与实现:

一是在毫米波范围内,可产生双通道相参激励 信号,分别支持不同输出功率要求,以实现对测试 场景的支持;

二是双通道信号之间的矢量关系可调整,可设 置双通道信号的相对幅度和相位关系;

三是具备双通道信号监控校准接口,可实现对 双通道相参信号的在线监测和误差修正;

四是具有通道间矢量校准功能,可利用高精度 矢量网络分析仪,通过对双通道信号的监控校准口 输出信号对应的幅度与相位差值进行分析,实现相 参信号端口幅度与相位的校准,以达到实际测试的 需要;

五是可设置输出电平门限,以防过高功率的

输出。

1 相位一致性验证原理

1.1 双通道信号输出相参

双通道信号相参是指两通道输出信号的相位 关系相对恒定,不随时间变化,双通道信号的相参 输出及非相参输出的时域表现形式如图1所示。

双通道相参信号生成的方式主要有以下三种 方式:

一是同一信号源通过功分器功分两通道信号 后,加移相衰减网络实现不同幅相差信号输出;

二是双通道信号源通过加载参考时钟信号后 实现不同矢量差信号输出;

三是双通道矢量信号源通过共用本振信号后 实现不同矢量差信号输出。

第一种方式看似简单,但实际验证与实现时存 在系统校准复杂且校准数据庞大,使用效率低,调 控精度差的问题,因此本验证不考虑此方案;第二 种方式通常应用在支持高输出参考频率的仪表条 件下,比如1GHz的参考频率,并且相参输出的射频 频率较低,而本验证的输出为毫米波,从各方面来 看,第二种方式都无法满足验证要求。

第三种方式以矢量信号源作为验证基础,图2 所示为矢量信号源的原理图。

从原理图中可以看到,矢量信号源内部由数字 基带板、IQ调制器、频综源等组成部分,其中数字基 带板又可以称为调制码生成器,可以根据实际需求 输出任意 IQ基带波形信号,IQ两路输出信号通过 IQ调制器后,和频综源产生的本振信号进行上变

图1 相参信号及非相参信号时域表现

Fig. 1 The performance in time domain including phase consistency and non-phase consistency

图 2 矢量信号源内部原理图

Fig. 2 Internal schematic diagram in vector signal generator

Fig. 3 Local oscillator shared in vector signal generators for phase consistency

频,达到加载至输出的载波频率上的目的,而输出 信号的幅度由输出的幅度电平控制反馈电路与步 进衰减器来实现。

两通道矢量信号源之间实现相参的方式是,直 接将一台矢量信号源的频综源信号除了给自身 IQ 调制器做本振使用外,还需分出一路至另一台矢量 信号源的 IQ 调制器作为本振使用,具体实现方式如 图 3 所示。

通过本振信号的共用,实现了两通道矢量信号 源的载波信号为同一个信号,从而实现输出信号相 参。两通道矢量信号源共用同一个本振源,如果改 变本振源的输出相位,矢量信号源的两个通道输出 载波的相位都将随之产生变化,无法实现输出相位 差任意可调,所以这种方式只能保证两个通道的信 号相位输出关系是稳定的。更进一步,为了实现输 出相位可调,需要矢量信号源的基带板产生IQ偏置 信号,调制载波信号的输出信号相位,从而实现对 两个通道输出信号相位差的调整。为了实现两个 通道矢量信号源的内部基带板同步,需要将两个通

图4 矢量源共用本振信号与基带同步

Fig. 4 Local oscillator shared in vector signal generators and synchronized with baseband

通过上述方式可以实现两通道信号的相位相 参且输出的相位可调节。在输出信号的幅度上,一 方面可通过矢量信号源内部幅度电平控制反馈电 路与步进衰减器实现稳定电平输出,另一方面可通 过基带板中数字衰减实现两通道信号输出幅度差 的微调。

综上所述,通过对比三种两通道信号源相参验 证方式,并综合考虑最终性能需求,方式三最为可 行,采用两个通道矢量信号源共用本振信号的方 式,实现相位一致性测试子系统中的高稳定度、高 精度、相位一致性信号发生器。

1.2 矢量监测校准输出网络原理

通用矢量网络分析仪做幅相相对值测试需要 较高的信噪比,宽带定向耦合器的主路输出插损较 小,所以采用宽带定向耦合器的主路输出作为矢量 监测校准的监测校准端输出口。另外,电阻型功分 器虽然插入损耗较大,但是本验证系统监测网络输 出两通道相参信号输出口需要输出的电平幅度很 低,可以采用电阻型功分器分路出两通道信号作为 相参信号输出口使用。除此以外,两个通道相参信 号的不同输出电平范围,可以在等分的两个通道上 加装不同衰减量的衰减器方式,将信号幅度下降到 待测件测试幅度区间上。综上所述,考虑采用宽带 定向耦合器和电阻型功分器搭配的方式来实现矢 量监测校准输出网络,监测校准网络的原理型结构 如图5所示。

电阻型功分器将通道一分为二后,送给被测件

图5 矢量监测校准输出网络工作原理图

Fig. 5 Principle diagram in vector monitor and calibration for output network

的两个通道,其中衰减器C和衰减器D的衰减值不同,用于实现不同低功率信号输出幅度范围,以此 实现信号输出幅度门限保护的功能与作用。而图 中衰减器A、C、D、E也可以同时用于改善级联匹配 特性。

1.3 矢量监测校准输出网络设计

矢量监测校准输出网络的引入,虽然方便了矢 量网络分析仪能获得较高信噪比进行幅相相对值 测试,但是矢量监测接口与校准端口之间的初始幅 度和相位差异数据需要进行校准和存储。除此之 外,对用于校准的矢量网络分析仪本身也存在两通 道测试电缆长度差,导致测量通道差异的问题,故 而需要设计完善的矢量校准方法对整个系统进行 校准。

通过同相等幅功分器进行波量比的校准后,就 可以使用矢量网络分析仪精确地测试其两通道输 出信号的幅相相对值,如在进行矢量监测校准输出 网络的同一源通道的监测校准口与被测件的两组 相参信号输出测试口之间,对系统固有矢量差的校准数据进行标定。图6展示了测试相参输出口组 A1与同源的校准输出A的固有矢量差的校准数据。

图 6 校准口与相参输出口的固有矢量差的校准数据示意图 Fig. 6 Diagrammatic sketch for inherent vector difference between calibration output ports and coherent output ports

经过矢量校准后的矢量网络分析仪可以用于 在线监控,并实时校准两通道源的校准口之间的矢 量差。

2 相位一致性验证实现

2.1 验证架构图

相位一致性验证子系统在系统架构布置上主 要由如图8所示四个部分组合而成。

图中可以看出,由两台矢量信号源组成相位一 致性信号发生器;矢量网络分析仪作为输出信号矢 量测试设备,定义为相位计算分析仪;安装在电脑 上的系统控制软件作为整个系统控制中心,定义为

图7 矢量网络分析仪矢量校准后通过测试两校准输出口的矢量差

Fig. 7 Testing vector difference for two calibration output ports after vector calibration in vector network analyzer

图8 验证架构图

Fig. 8 Diagram for architecture

自动补偿相位一致性控制器;最后一个部分是矢量 监测校准输出网络,为被测件和系统矢量校正提供 各通道输入输出功能。

验证运行的基本逻辑是:一是在自动补偿相位 一致性控制器上输入被测件所需激励信号的幅度 与相位差;二是自动补偿相位一致性控制器读取当 前校准输出口的信号幅度与相位差;三是经过自动 补偿相位一致性控制器计算矢量补偿值后,控制相 位一致性信号发生器输出所需的激励信号幅度与 相位差。

2.2 验证工作原理

相位一致性测试子系统中使用两台单通道矢 量信号源作为两通道相参信号产生的核心设备,两 台通道矢量信号源通过本振信号级联,以及基带参 考时钟和触发信号互锁的方式实现输出信号的相 位差稳定,且相位差值可以通过IQ基带调制的方式 进行调整。

虽然这些措施可以实现两个通道输出的相位 差稳定且可调,但是输出信号的相位差值并不能完 全等于仪表设置的差值,这是由于两台通道矢量信 号源本身硬件都有差别,此外连接电缆也会存在相 位差异。因此需要使用矢量网络分析仪分析两个 通道输出实际矢量误差,再将实际测试值和设置值 之间的差值即误差修正到矢量信号源内部,以此实 现精确调控双通道输出幅度及相位关系。

如果使用矢量网络分析仪在测试电缆的末端 进行矢量测试与误差修正,则每次测试前都需要将 矢量网络分析仪先接在测试电缆的末端进行系统 校准,然后去掉矢量网络分析仪,连接被测件,由于 反复连接电缆次数较多,将导致额外的测试误差且 无法实现实时矢量校正。另外,考虑本系统实际需 要的输出幅度很低,无法直接送给矢量网络分析仪 进行幅相相对值测试。所以,综合以上因素,考虑 设计一个矢量监测校准输出网络,将一台矢量信号 源的输出通道分为三个通道,一通道衰减较小、输 出信号幅度较高,送给矢量网络分析仪做矢量差的 修正,另外两个通道衰减各不同,输出两组不同的 幅度信号给被测件进行测试。

2.3 验证相位差修正

系统对相参信号相位差参数修正,使系统输出 信号精确达到验证所需的设定值。相位差修正是 基于修改矢量信号源的IQ幅度实现的,本节详细介 绍相参信号相位差修正理论背景。

记修正前下载到信号源的原始波形文件为:

$$x(t) = i(t) + j^*q(t)$$
 , (1)

其中x(t)为基带复信号,i(t)为I路信号,q(t)为Q路 信号。

图9 相参信号输出相位差校正

Fig. 9 Output phase difference correction in phase consistency signals

假设校准设备测量实际相位差为φ,而用户实际需要的是同相位输出,则修正相位差后的波形文件 *x*(*t*)应该为:

$$x(t) = x(t)^* e^{-i\varphi} = (i(t) + j^* q(t))^* (\cos\varphi - j^* \sin\varphi)$$
$$= (i(t)\cos\varphi + q(t)\sin\varphi) - j^* (i(t)\sin\varphi - q(t)\cos\varphi)$$
$$. (2)$$

因此修正后的波形文件对应的IQ数据为:

$$i'(t) = i(t)\cos\varphi + q(t)\sin\varphi$$
 , (3)

$$q'(t) = q(t)\cos\varphi - i(t)\sin\varphi$$
 . (4)

假定验证需要在 5 m 电缆末端相参输出相位差 为 $ØopB1_A1$ 。首先根据 5 m 电缆校正时保留的线 缆参数 Δ $Øc_A1_5$ m、Δ $Øc_B1_5$ m,计算在矢量监测 校准输出网络相参输出口所需要的相位差为: $ØopB1_A1 - (\Delta Øc_B1_5$ m - $\Delta Øc_A1_5$ m)。 然 后 再根据预先定标好的相参输出口与校准输出口的 相位差值 Δ $ØopA1_calA$ 、Δ $ØopB1_calB$,得到在监测 校准输出口的相位差: $ØopB1_A1 - (\Delta Øc_B1_5$ m - $\Delta Øc_A1_5$ m) - ($\Delta ØopB1_calB - \Delta ØopA1_calA$)。

2.4 实验验证

为了验证相位一致性验证系统误差修正有效性,如图10所示,搭建了基于德国罗德与施瓦茨公司的矢量信号源SMW200A、矢量网络分析仪ZNB40以及矢量监测校准网络的实物验证系统,测试仪表采用了频谱分析仪FSW43、矢量网络分析仪E8363C,经实测验证,测试结果数据如图11所示。

图 10 实物验证系统 Fig. 10 Physical verification system

图 11 相位一致性验证系统误差修正结果 Fig. 11 Phase consistency verification system error correction results

根据实测数据可知,相参一致性系统实现了频 率范围500 MHz~40 GHz,相参输出功率范围-50~ -110 dBm,相位差控制精度≤9°(50~-80 dBm)、 ≤10°(-100~-80 dBm)、≤12.5°(-110~-100 dBm), 幅度控制精度≤0.7 dB(-50~-80 dBm)、≤0.8 dB (-100~-80 dBm)、≤1 dB(-110~-100 dBm)。

3 结论

随着多通道及毫米波相参系统应用的日益广 泛,相位一致性测试的要求也随之日益提高^[6-7]。 但由于其通道矢量一致性在实际应用中存在校准 难度大、应用要求高的特点,本文提出基于两通道 矢量信号源通过共享本振信号后实现不同矢量差 信号输出,通过自动补偿相位差值控制器计算矢 量补偿值后控制矢量信号发生器输出所需的激励 信号幅度与相位差值,建立有效的原理推论及验 证方法。本文设计了一种基于毫米波相位一致性 的专用仪表形态矢量监测校准输出网络,通过通 道间矢量差测试进行幅相一致性校准和校正。将 输出网络在两通道信号进行相位一致性测试,经 过实际测试,该输出网络具有优异幅相一致性校 准和校正能力,为今后更多通道数和更高频率接 收机相位一致性研究进行了前期探索。本文方法 给多通道毫米波幅相一致性的分析及验证提供了 新的思路。

References

- [1] Stojanovic M, Catipovic J A, Proakis J G. Phase-coherent digital communications for underwater acoustic channels
 [J]. IEEE Journal of Oceanic Engineering, 1994, 19(1): 100-111.
- [2] Wang L, Ren C, Zheng Z. DOA estimation for monostatic coprime MIMO radar with mixed-resolution quantization

[J]. IEEE Transactions on Vehicular Technology, 2023, 72(12): 16737-16741.

- [3] Lu B, Wen B, Tian Y, et al. Analysis and calibration of crossed-loop antenna for vessel DOA estimation in HF radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 17(1): 42-45.
- [4] Xu Z, Chen Y, Zhang P. A sparse uniform linear array DOA estimation algorithm for FMCW radar [J]. IEEE Signal Processing Letters, 2023, 30: 823-827.
- [5] Babur G, Manokhin G O, Monastyrev E A, et al. Simple calibration technique for phased array radar systems [J]. Progress In Electromagnetics Research M, 2017, 55: 109-119.
- [6] Kaul R. Microwave engineering [J]. IEEE Potentials, 1989, 8(2): 11-13.
- [7] Nanzer J A, Mghabghab S R, Ellison S M, et al. Distributed phased arrays: Challenges and recent advances [J].
 IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11); 4893-4907.