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Abstract: In this paper, the small-signal modeling of the Indium Phosphide High Electron Mobility Transistor
(InP HEMT) based on the Transformer neural network model is investigated. The AC S-parameters of the HEMT
device are trained and validated using the Transformer model. In the proposed model, the eight-layer transformer
encoders are connected in series and the encoder layer of each Transformer consists of the multi-head attention lay-
er and the feed-forward neural network layer. The experimental results show that the measured and modeled S-pa-
rameters of the HEMT device match well in the frequency range of 0. 5-40 GHz, with the errors versus frequency
less than 1%. Compared with other models, good accuracy can be achieved to verify the effectiveness of the pro-

posed model.
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Introduction cuits"®. Among them, indium phosphide (InP) HEMT
) ) ) devices have become an ideal choice for next-generation
In recent years, with the rapl.d development of h.1gh— high-speed and high-frequency electronic devices due to
speed communication and RF microwave technologies, their excellent electron mobility and frequency response
high electron mobility transistor (HEMT) devices are in- characteristics"”. In order to fully utilize the perfor-
creasingly used in microwave and millimeter-wave cir- mance of InP HEMT devices, accurate device modeling
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is particularly important. However, traditional small-sig-
nal models have limitations in simulating InP HEMT de-
vices, making it difficult to accurately describe their non-
linear characteristics and frequency dependence ™"’

With the rapid development of machine learning
technology, neural networks have been widely used in
many fields, such as microwave device modeling, signal
processing and RF design'""". In the field of microwave
device modeling, neural networks can replace the manu-
al completion of a large number of cumbersome steps,
greatly improving the efficiency of scientific re-
search™"",

The related techniques have been discussed as fol-
lows. The Wiener-type dynamic neural network (DNN)
approach for HEMT device modeling was presented in
Ref. [14]. The analytical formulation of Winer-type
DNN structure consists of a cascade of simplified linear
dynamic parts. In Ref. [15], the approach using decom-
posed mapping for HEMTs, advancing the Space Map-
ping technique of neural network for device modeling was
discussed. The convolutional neural network (CNN) for
HEMT device modeling with various gate and source
field plate designs and drain voltages was mentioned in
Ref. [16]. Moreover, Ref. [17] presented a modified
recurrent neural network (RNN) technique, long-short
term memory (LSTM) algorithm-based, small-signal be-
havioral modeling methodology for HEMTs. Meanwhile,
a small-signal model based on gated recurrent unit
(GRU) neural networks was investigated in Ref. [18].

Based on these research, the small-signal model
based on Transformer neural network with multiple trans-
formers for InP HEMT is presented in this paper. In com-
parison to the previous literature, several novel aspects
are shown as follows.

1) The AC S-parameters have been trained and vali-
dated by the transformer neural network with 8-layer
transformer encoders in series.

2) The encoder layer of each Transformer consists
of two sub-layers: the Multi-head attention layer and the
feed forward neural network layer. Residual connection
and layer normalization are added after each sub-layer.

3) Higher accuracy compared to other models. The
simulated S-parameters perform well on the fitting of the
measured S-parameters under normal bias conditions.
The errors versus frequency is less than 1%.

The organization of the paper is as follows. Section I
gives the details of the proposed neural network with
multiple transformers which are utilized in the small signal
modeling of InP HEMTs. Section Il presents the discus-
sion and the analysis of the results. In the end, a conclu-
sion is provided in Section I11.

1 Transformer neural network model

The structure of the proposed neural network model
is given in Fig. 1, which uses and improves the encoder
part of the conventional transformer model. As seen in
Fig. 1, the proposed model can be divided into three
parts: the input layer, the hidden layers and the output

layer. The input layer is an nX3 second-order matrix,
where n represents the number of samples and 3 repre-
sents the sample features, which are frequency freq,
gate-source voltage V, and drain-source voltage V,. The
hidden layers consist of the transformer encoder layers

and the linear layers.
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Fig. 1 Model structure
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To begin with, the data are preprocessed through
the first linear layer and the input data are transformed in-
to a third-order matrix of nX8%128, where 8 denotes the
number of samples that are input to the model at one time
for training or inference, generally referred to as the
batch size. This is immediately followed by eight identi-
cal Transformer encoder layers in series, which dimen-
sionally have identical inputs and outputs, all of which
are identical to the output of the first linear layer. Final-
ly, through the second linear layer, the data are trans-
formed into an nX8 second-order matrix to be passed to
the output layer, at this time, 8 represents the sample
characteristics of the output data, which are the magni-
tude (Mag) and phase (¢) of S,,, S,,, S,, , S, , respec-
tively.

The expression for the output matrix S of the model
is:

S = Freamstormer (1) . (D)

where S is an nX8 order matrix denoted as follows :
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and [ is an nX3 order matrix, denoted as _follows:
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The 8-layer transformer encoder in the model is con-
nected in series. By extracting and processing input fea-
tures layer by layer, the model can capture more complex
and abstract feature representations. Increasing the num-
ber of layers can improve the expressiveness of the mod-
el, capture long-distance dependencies, gradually fuse
information, and improve generalization capabilities.
Each transformer encoder layer contains two sub-layers,
as shown in Fig. 2, namely the Multi-head Attention lay-
er and the Feed Forward Neural Network layer. Residual
Connection and Layer Normalization are added after each
sub-layer.

The self-attention mechanism is the core of Trans-
former, which allows each input vector to pay attention to
the input vectors at all other positions in the sequence

—nx3

when calculating its own representation. This can help
the model capture the global dependencies between input
features. The self-attention mechanism is to compute the
attention weight Attention (Q, K, V) by calculating the
query matrix, key matrix and value matrix of the input
matrix X. The formula is as follows:

0 = XW,K = XW, V = XW, . @)
where W, , W, , W, are the weight matrices. Then,

: 0K
Attention((Q,K,V) = softmax( W, (35
Vdk

where v/ dk is the scaling factor.

In multi-head attention, the input is computed in
parallel by h independent heads, each with its own
query, key, and value matrices. The output of each head
is as follows:

head, = Attention( QW , . KW;,VW) . (6)

The outputs of all heads are concatenated and subse-

quently passed through a linear transformation :

MultiHead(Q,K,V) = Concat(head,, - ,head, )W, , (7)

where W, is the output weight matrix.
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Fig. 2 Structure of the Transformer encoder layer
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Then, through the feed-forward neural network, the
proposed model can capture the long-range dependencies
in the input sequences, further extract and fuse the fea-
ture information at different positions, and enhance the
nonlinear and expressive capabilities of the model. The
formula is as follows:

FFN(x) = max(0xW, + b, )W, + b, , (8)
where «x is the input variable, W,, W, are the weight ma-
trices of the linear transformation, and b, , b, are the bias
vectors.

In the proposed model, residual connections and
layer normalization are two key components.

The residual connections can alleviate the gradient
vanishing problem in neural networks and promote the
flow of information. By giving residual connections, the
input can bypass one or more layers and be directly add-
ed to the output, making the network easier to train. The
formula for residual connections is as follows :

y=F(x)+x, 9)
where the input is x and the output after some sublayer
(e. g., a multi-head self-attention layer or a feedforward
neural network ) is F(x).

Layer normalization can normalize the features of
each sample to speed up the training process and
improve the stability of the model. Layer normalization
is performed independently on each sample. Assuming
the input is h, the layer normalization operation is as
follows.
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Calculate the mean and variance :

1
m=
d>h,
.1
g :ﬁ . (10)
d Yy (h,
i1
Standardization
o= GH))

Vo' + e
Linear transformations : .
yi = ’)/hl + B ’ (12)
where y and 8 are trainable parameters and ¢ is a small
constant to prevent division by zero.

The dataset contains 7 700 data points. K-Fold
cross validation is used as the model evaluation method
to provide a more robust assessment of the model. The
dataset is divided into 5 subsets, each with 1 540 data
points. One of the subsets is used as the validation set,
and the other subsets are used for training. Finally, the
average performance of the model is calculated through
multiple rounds of validation.

In order to evaluate the training effect of the model,
the Mean Squared Error (MSE) loss is chosen as the loss
function of the model. Then:

MSE:%E(%_%‘)Z . (13)
i=1
where ¥, is the predicted value of the model, y, is the true
value of the model and n is the number of samples.

The model is trained using the Adam optimizer with
a learning rate of 0. 001. A batch size of 8 is used, and
the training is run for 100 epochs. Dropout is set to 0. 1
in each layer to prevent overfitting. The training is
conducted on an AMD Radeon (TM) Graphics GPU with
16 GB of memory. The total training time for the 8-layer
model is approximately 2. 1 hours.

2 Results and discussions

In order to verify the proposed ANN model de-
scribed in Section 1, the InP-based HEMT devices fabri-
cated using in-house process were characterized. The de-
vices with gate width of 2x25 wm were investigated in the
frequency range of 0.5-40 GHz. The test layout of InP
HEMT devices is shown in Fig. 3. The verification was
made up to 40 GHz by Agilent E8363C vector network
analyzer, with DC bias supplied by Agilent B1500. All
measurements were carried out on wafer using Cascade
Microtech’ s Air-Coplanar Probes ACP50-GSG-100. The
measurement setup is illustrated in Fig. 4.

The comparison between modeled and measured S-
parameters for InP HEMT devices in the frequency range
of 0. 5-40 GHz for the bias points at V, =0V, V,=1.0V,
V.=0V,V,=1.2Vand V,=-0.05V,V,=1.2 V are plot-
ted in Fig. 5.

The formula of the absolute error is as follows :

Error = | Sy = S| x 100% , (14)

Fig. 3 Test layout of InP HEMT devices
3 InP HEMT #3f4 fil iChg €l

Fig. 4 Measurement setup

K4 s

where S;™' represents the modeled S-parameters, and
S denotes the measured S-parameters. Note that all
the S parameters vary with frequency.

Under the condition of bias gate-source voltage V, =
0 V and drain-source voltage V,=1.0 V, the absolute er-
ror curves of the amplitudes of S;, , S,, , S,, , and S,, in
the frequency range of 0.5-40 GHz with respect to fre-
quency are shown in Fig. 6. It can be seen that the er-
rors versus frequency is within 1%, which proves the ac-
curacy of the model.

Figure 7 illustrates the training and validation loss
curves. The model converged after approximately 80 ep-
ochs, with no significant overfitting observed.

For a global evaluation of model accuracy, the
Mean Squared Error (MSE) is also calculated and provid-
ed in Table 1. In order to further demonstrate the accura-
cy of the Transformer model, the proposed model based
on the transformer is compared with other models, in-
cluding Convolutional Neural Network (CNN) , Long
Short-Term Memory Network (LSTM), and Gate Recur-
rent Unit (GRU). As can be seen from Table 1, the
MSE of the proposed model is better than the other mod-
els.

Among them, the input layer of the Transformer
model is projected to obtain a 128 dimensional embed-
ding, using 16 attention heads, and each feedforward
network has 128 neurons. The convolutional layers of the
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Fig. 5 Comparison of modeled and measured S-parameters for
InP HEMT in 0.5-40 GHz frequency range, bias: (a) V,, =0V, V', =
1.OV;(b) V=0V, V, =1.2V;(c) V,,=-0.05V, V,, -12V
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CNN model use 64, 128, and 256 filters, respectively.
3 Conclusions
The small-signal modeling of the InP HEMT based

on the Transformer model is presented in this paper. For
the proposed model, the eight-layer transformer model
connected in series with multi-head attention layer and
the feed-forward neural network layer is utilized to train
and validate the S-parameters of the HEMT. Good agree-
ment can be achieved between the simulated and mod-
eled data in the frequency range of 0.5-40 GHz. Com-
pared with other models, higher accuracy can be ob-
tained, with the errors versus frequency within 1%.
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