文章编号:1001-9014(2025)02-0226-15

DOI:10.11972/j.issn.1001-9014.2025.02.011

中红外海面太阳耀光方向辐射模拟与评估

张振午1.2, 王 宁1*, 马灵玲1, 张贝贝1, 赵永光1, 李 婉1

(1. 中国科学院空天信息创新研究院 遥感卫星应用国家工程实验室, 北京 100094;

2. 中国科学院大学, 北京 100049)

摘要:传感器入瞳处接收到的中红外波段能量包含反射的太阳能量与地物自身的发射能量。通常该波段反射的太阳能量很弱,但在海面太阳耀光区域的特定情况下,被中红外通道探测到的反射太阳能量是比较可观的。目前,关于太阳耀光物理模型在中红外波段的应用尚不明确。基于此,研究不同可见光与短波红外的太阳耀光模型应用在中红外波段上的精度,以评估其适用性。文章选取了Breon-Henriot模型、Ebuchi-Kizu模型和Wu模型三种模型,首先对不同太阳耀光模型的敏感性进行评估。随后,利用经过筛选的四幅 MODIS 太阳耀光影像作为数据源,结合与卫星数据相匹配的 ERA5 再分析数据计算大气参数。通过三种模型计算出海面反射的太阳辐射强度,并进一步利用中红外辐射传输模型验证各模型的精度。结果显示,Breon-Henriot模型与 MODIS 测量值的相关系数和均方根误差总体上表现最好。该结果不仅拓展了太阳耀光模型在中红外波段的应用范围,还进一步完善了中红外正向模型体系,为中红外辐射传输提供新的理论支撑,提升中红外遥感产品在气候变化监测和海表温度动态分析中的应用效能和准确性。

关 键 词:太阳耀光;中红外;海洋表面 中图分类号:TP79;TP722.5

文献标识码:A

Simulation and evaluation of mid-infrared sea surface sun glint directional radiation

ZHANG Zhen-Wu^{1,2}, WANG Ning^{1*}, MA Ling-Ling¹, ZHANG Bei-Bei¹, ZHAO Yong-Guang¹, LI Wan¹ (1. National Engineering Laboratory for Satellite Remote Sensing Applications, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: The energy received in the mid-infrared (MIR) band at the sensor's aperture includes both reflected solar energy and the emitted energy from Earth's surface. Typically, the reflected solar energy in this band is weak. However, under certain conditions, such as in sun glint regions on the sea surface, the reflected solar energy detected by the MIR channel can be substantial. Currently, the application of sun glints physical models in the MIR band is not yet clear. This study investigates the accuracy of applying different visible light and shortwave infrared sun glint models in the MIR band to evaluate their applicability. The paper selects three models, namely Breon-Henriot, Ebuchi-Kizu, and Wu, to first evaluate the sensitivity of each sun glint model. Subsequently, four selected MODIS sun glint images were used as data sources, and ERA5 reanalysis data matched with satellite data was used to calculate atmospheric parameters. The solar radiation intensity reflected by the sea surface was computed using the three models. The accuracy of each model generally performs best in terms of correlation coefficient and root-mean-square error compared to MODIS measurements. These findings not only extend the application range of sun glint models in the MIR band but also enhance the MIR forward modeling system, providing new theoretical support for MIR radiation transfer and improving the effectiveness and accuracy of MIR remote sensing products in climate change monitoring and sea surface temperature dynamic analysis.

Received date: 2024-09-05, revised date: 2024-09-26

收稿日期:2024-09-05,修回日期:2024-09-26

基金项目:国家重点研发计划(2023YFB3907705)

Foundation item: Supported by the National Key Research and Development Program of China (2023YFB3907705)

作者简介(Biography):张振午(2000-),男,河北邯郸人,硕士研究生,主要研究领域为中红外遥感方面的研究. E-mail: zhangzhen-wu22@mails.ucas.ac.cn

^{*}通讯作者(Corresponding author): E-mail: wangning@aoe. ac. cn

Key words: sun glint, mid-infrared, ocean surface

引言

中红外波段介于可见光-近红外与热红外波段 之间,地物在该波段表现出独特的光谱特性,能够 获取到区别于其他波段无法获取的信息。并且中 红外窗区是一个比较透明的大气窗口,中红外辐射 相比于可见光具有高穿透能力,中红外遥感图像可 用于地表温度、湿度、沙尘和气溶胶特性的反演^[1]。 中红外通道对地表高温目标也较为敏感,如喷发的 火山及高温岩浆、森林火灾和高温的工业建筑等。 因此,中红外传感器被广泛应用在高温目标探测领 域^[2-4]、导弹探测和高速运动目标识别等方面^[5-7]。

中红外波段相比其他波段有许多独特的优势, 但应用到实际的辐射传输过程中则需要考虑很多 因素,例如大气中的气体分子和气溶胶等成分对中 红外辐射的吸收和散射作用:地物的性质、温度、湿 度等对中红外辐射的发射和吸收影响,陆表的温度 异质性很大,与之相比,海面是较为均一旦理想的 自然场景,虽受太阳耀光影响,但其独特的镜面反 射特性为中红外辐射传输过程提供了独特视角。 卫星传感器捕获的中红外波段能量融合了反射太 阳辐射与地表发射辐射,尽管一般情况下反射太阳 辐射贡献较小,但在海面太阳耀光区域,中红外通 道探测到的反射能量显著增加,且对大气变化相对 不敏感[8]。其中,太阳耀光作为太阳辐射的重要组 成部分,对中红外遥感数据的质量和可靠性具有重 要影响。太阳耀光的形成主要是由于海面对太阳 光的直射反射,它会在遥感影像上表现出带状明亮 区域^[9],从而影响遥感数据的定量分析和应用。因 此,考虑太阳耀光影响的中红外辐射传输过程对于 提高遥感数据的准确性和可靠性具有重要意义。

在探讨太阳耀光模型构建的复杂机制中,一个 关键因素在于精确表征海面的倾斜角度,这一参数 影响着太阳辐射与海洋表面相互作用的特性。早 在20世纪50年代,Cox和Munk通过测量反射太阳 光的航空照片,开发了一种依赖于风速的海面坡度 概率密度函数^[10-12]。Wu重新分析了数据,并针对 Cox-Munk模型提出了一个略有不同的均方斜率表 达式^[13]。Mermelstein等人通过对海浪高度功率谱 密度进行积分得到其坡度参数^[14]。Shaw和Churnside利用一种扫描反射激光雷达来测量海面坡度统 计,同时结合了太阳耀光反射率的测量和来自声速 风速计的风速测量,得出了俄勒冈沿海地区的海面 坡度参数^[15]。Ebuchi和Kizu利用地球静止气象卫 星辐射计拍摄的约3000万个亚热带海洋地区的太 阳耀光图像和星载散射计拍摄的海面风数据估算 海面斜率的概率密度^[16]。Breon 和 Henriot 分析了 POLDER 仪器从 24 000 个受太阳耀光影响的观测中 收集的900万个反射率数据,并结合NASA散射仪 提供的风速数据,通过风速与均方斜率之间的线性 关系,进一步支持和完善了Cox-Munk 斜率统计的 Gram-Charlier 展开^[17]。目前,太阳耀光的海面模型 和校正算法虽然取得了较好的成果,但是大部分都 集中在可见光和近红外波段,而对于中红外波段的 文献较少,景欣等人使用中红外波段的海面耀光区 反射率作为VIIRS的定标基准,构建了改进的非线 性劈窗模型[18]。赵慧洁等人开发了一个新型光学 系统,采用双偏振器减少太阳耀光干扰,提高图像 对比度[19],并与李岩松等人合作设计了可切换的中 红外探测系统,以应对不同的太阳耀光场景^[20]。因 此,本文对比不同物理模型之间的差异,并找到适 用中红外波段的海面太阳耀光模型,将其应用到中 红外辐射过程中。

本文的核心目的是验证并拓展太阳耀光模型 的应用范围,从传统的可见光及短波红外波段延伸 至中红外波段,旨在通过模型适应性的验证,为中 红外辐射建模提供新的理论支撑。此举旨在补充 并完善中红外正向模型体系,确保长时间序列观测 数据的一致性与可靠性,进而提升卫星中红外产品 在气候变化监测、海表温度动态分析等领域的应用 效能与准确性。

1 研究方法

本文采用的方法主要基于海面的统计数据^[21], 通过给定的风向量预测每个图像像素的阳光反射 量。详细介绍了以下四种模型:Cox-Munk模型、Wu 模型、Ebuchi-Kizu模型和Breon-Henriot模型。其 中,本文选择了Wu模型、Ebuchi-Kizu模型和Breon-Henriot模型进行对比分析。未选择Cox-Munk 模型的原因在于该模型所使用的风速高度为海平 面以上约12.5 m,而ERA5数据中的风速高度为海平 相似,因此本文选择其中之一进行分析。至于 Shaw-Churnside模型,则因无法获得与所研究场景 每当太阳光线照射到受风影响而变得粗糙的 海面时,多个波面会反射阳光,形成太阳耀光现象。 这些太阳耀光的大小、形状及反射率强度受多重因 素调控:观测几何(即太阳、卫星与海面间的相对位 置)、传感器特性(包括波长、灵敏度等)及其平台高 度、海面粗糙度的变化,以及大气条件(如云量、气 溶胶浓度、中间层水分分布)的影响。

图 1 太阳、卫星传感器和海面的几何关系 Fig. 1 Geometric relationship between the sun, satellite sensor, and the ocean surface

卫星传感器、海面和太阳之间存在几何关系, 如图1所示,其中 U_n 是海面的法向量, U_r 是反射到 传感器的单位向量; U_s 是太阳入射的单位向量; ω 是 反射角; θ_i 是 U_i 向量的天顶角(i = n, r, s); ϕ_i 是 U_i 向 量的方位角(i = n, r, s); ζ_x 是逆风方向的海面坡度; ζ_y 是侧风方向的海面坡度。参考Gordon^[22]设置的坐 标系,本文是以X方向为基准顺时针方向为正,测量 相对方位角。根据反射定律和基本的三角函数,可 以得出以下关系:

$$\cos 2\omega = \cos \theta_s \cos \theta_r - \sin \theta_s \sin \theta_r \cos \left(\phi_s - \phi_r \right), (1)$$

$$\cos\theta_n = \frac{\cos\theta_s + \cos\theta_r}{2\cos2\omega}, \qquad (2)$$

$$\cos\phi_n = -\frac{\sin\theta_s\cos\phi_s + \sin\theta_r\cos\phi_r}{2\cos\omega\sin\theta_n}.$$
 (3)

在太阳耀光区域内,海洋表面发生近似镜面反 射,其反射率由入射太阳辐照度、卫星的观测天顶 角、波面相对于水平面的表面倾斜度以及海面菲涅 尔反射系数共同决定,反射率的表达式为:

$$R_{sp} = \frac{\pi L_{glint}}{E_0 \cos \theta_s} = \frac{\pi \rho_f(\omega)}{4 \cos \theta_s \cos \theta_r \cos^4 \theta_n} P(Z_{up}, Z_{cr}), (4)$$

由此可以推导出海面反射太阳直射辐射的辐

射强度:

$$L_{\text{glint}} = \frac{E_0 \rho_{\text{fr}}(\omega)}{4 \cos \theta_r \cos^4 \theta_n} P(Z_{\text{up}}, Z_{\text{cr}}), \qquad (5)$$

其中 E_0 是太阳辐照度, ρ_{fr} 为菲涅尔反射系数,P是波 面斜率的概率密度函数,Cox和Munk揭示了波面斜 率的概率密度函数在描述太阳耀光反射中的重要 性。他们发现,这个概率密度函数在最低阶时可以 用高斯函数来近似,然而,为了更精确地描述波面 的非高斯特性,使用Gram-Charlier级数展开来修正 这个高斯近似,得到以下结果^[10]:

$$P\left(Z_{up}, Z_{er}\right) = \frac{1}{2\pi\sigma_{up}\sigma_{er}} \exp\left(-\frac{1-\frac{1}{2}c_{21}(\xi^2-1)\eta}{-\frac{1}{6}c_{03}(\eta^3-3\eta)}\right) + \frac{1}{24}c_{40}(\xi^4-6\xi^2+3) + \frac{1}{44}c_{22}(\xi^2-1)(\eta^2-1) + \frac{1}{24}c_{04}(\eta^4-6\eta^2+3)\right], \quad (6)$$

其中*c_{ij}*系数量化了概率密度函数的非高斯性质,*c*₂₁ 和*c*₀₃表示逆风分量斜率的偏度特性,*c*₄₀、*c*₂₂和*c*₀₄则 共同表征了概率密度函数的峰度,揭示了斜率分布 相对于高斯分布的尖锐或平坦程度。海洋表面可 被视为由众多具有不同倾斜角度的斜坡面交织而 成,每个斜坡面的倾斜度均可分解为两个正交的分 量,这两个分量共同决定光线在波面上反射时的具 体路径和强度分布,进而对太阳耀光的形成和特性 产生重要影响。其中每个斜坡面的倾斜度的两个 分量表示为:

$$Z_{x} = \frac{\partial z}{\partial x} = \sin \phi_{n} \tan \theta_{n} = -\frac{\sin \theta_{s} + \sin \theta_{r} \cos(\phi_{s} - \phi_{r})}{\cos \theta_{s} + \cos \theta_{r}}$$
(7)

$$Z_{y} = \frac{\partial z}{\partial y} = \cos \phi_{n} \tan \theta_{n} = -\frac{\sin \theta_{r} \sin \left(\phi_{s} - \phi_{r}\right)}{\cos \theta_{s} + \cos \theta_{r}}.(8)$$

海面坡度的逆风分量和侧风分量由 Z_x和 Z_y推导出:

$$Z_{\rm up} = Z_x \cos \phi_{\rm wind} + Z_y \sin \phi_{\rm wind} \,, \tag{9}$$

$$Z_{\rm cr} = Z_y \cos \phi_{\rm wind} - Z_x \sin \phi_{\rm wind} , \qquad (10)$$

其中, φ_{wind}是逆风方向与太阳方向的相对方位角, 因 此, Z_{up}的正值对应的是面向顺风方向的波浪, 而 Z_{up} 的负值对应的是面向逆风方向的波浪。为了统一 比较和计算, 将海面坡度的逆风分量和侧风分量分 别进行归一化处理:

$$\eta = \frac{Z_{up}}{\sigma_{up}},$$
 (11)

$$\xi = \frac{Z_{\rm cr}}{\sigma_{\rm cr}},\tag{12}$$

其中 σ_{up} 和 σ_{cr} 为逆风分量和侧风分量的均方根坡度,在Cox和Munk的文章中 σ_{up} 、 σ_{cr} 、 c_{21} 和 c_{03} 被建模为风速的线性函数,以反映风速对海面波动特性的直接影响;而其他Gram-Charlier级数展开中的系数则被设置为常数,以保持模型的简洁性和稳定性。函数 $\rho_{fr}(\omega)$ 表示非偏振源的菲涅尔反射系数,可以通过以下公式得出:

$$\rho_{\rm fr}(\omega) = \frac{1}{2} \left[\frac{\sin^2(\omega - r)}{\sin^2(\omega + r)} + \frac{\tan^2(\omega - r)}{\tan^2(\omega + r)} \right], \quad (13)$$

其中r表示水的折射角,与入射角ω和海水的折射 率n有关,其中对于3~5μm波段,海水的折射率设 置为1.364^[23],由下式计算得出:

$$r = \sin^{-1} \left(\frac{\sin \omega}{n} \right). \tag{14}$$

1.1 Cox-Munk 模型

Cox 和 Munk 通过分析在夏威夷群岛附近上空 由航空相机拍摄的太阳闪光照片中的数据表,评估 了常数 σ_{uv} 、 σ_{cr} 和 c_{ii} ,他们的结果如下:

$$\sigma_{\rm cr}^2 = 0.003 + 1.92 \times 10^{-3} W, \qquad (15)$$

$$\sigma_{\rm up}^2 = 0.000 + 3.16 \times 10^{-3} W, \qquad (16)$$

$$\sigma^2 = 0.003 + 5.12 \times 10^{-3} W. \tag{17}$$

根据式(6)中的 c₂₁ = 0.01 - 8.6×10⁻³W, c₀₃ = 0.04 - 33.0×10⁻³W, c₄₀ = 0.40, c₂₂ = 0.12, c₀₄ = 0.23,其中 W 是在海平面以上12.5 m 的风速,单位为 m/s。继 Cox-Munk 的工作之后,为了更精准地刻 画海面坡度特性并优化测量结果的解析,众多学者 投身于坡度统计方法的改进与创新之中。以下是 对其中一些重要成果的简要概述。

1.2 Wu模型

Wu在Cox-Munk数据的基础上,进行了更为细 致的重新分析工作^[13]。他发现,在低风速区域(即 海平面以上10m处,风速W小于7m/s时),海面粗 糙面的坡度增加趋势并不像Cox-Munk模型中线性 关系所描述的那样迅速。相反,坡度随风速的增长 速度较为平缓。然而,当风速进入高风速区域(W大 于7m/s)时,海面粗糙面的坡度则随着风速的增加 而呈现出更为显著的增速。为了更准确地描述这 一非线性变化特征,Wu提出了将斜率参数拟合为 双分支对数函数的方法:

$$\sigma^{2} = (\ln W + 1.2) \times 10^{-2}, W \le 7 \text{ m/s}, \quad (18)$$

 $\sigma^2 = (0.85 \ln W - 1.45) \times 10^{-1}, W > 7 \text{ m/s}.$ (19)

1.3 Ebuchi-Kizu模型

Ebuchi和Kizu通过整合地球静止气象卫星辐射计捕获的广泛亚热带海洋区域太阳耀光影像,以及星载散射计获取的海面风数据,成功估算出海面斜率的概率密度^{116]}。其结果揭示了一种相较于Cox-Munk模型更为狭窄的分布特征,为理解亚热带海域的海面动态提供了新的视角。

$$\sigma_{\rm er}^2 = 0.0048 + 1.52 \times 10^{-3} W, \qquad (20)$$

$$\sigma_{\rm up}^2 = 0.0053 + 6.71 \times 10^{-4} W, \qquad (21)$$

$$\sigma^2 = 0.0101 + 2.19 \times 10^{-3} W.$$
 (22)

1.4 Breon-Henriot 模型

Breon和Henriot深度挖掘了地球反射偏振与方向性(POLDER)卫星提供的全球范围、高精度的海洋反射率数据^[24],同时结合了NASA散射计所收集的全面风场数据,旨在通过这一跨数据源的综合分析,对经典的Cox-Munk斜率统计模型进行系统性地完善与拓展^[17]。他们的工作不仅验证了Cox-Munk模型在描述海洋表面波动斜率方面的基本适用性,还通过引入新的数据维度和分析视角,探索了模型在复杂海洋环境下的局限性,并尝试通过数据驱动的方法对其进行修正和补充。他们的 σ_{up} 、 σ_{ar} 和Gram-Charlier系数的结果如下:

$$\sigma_{\rm er}^2 = 0.003 + 1.85 \times 10^{-3} W, \qquad (23)$$

$$\sigma_{\rm up}^2 = 0.001 + 3.16 \times 10^{-3} W, \qquad (24)$$

$$c_{21} = -9.0 \times 10^{-4} W^2,$$

$$c_{22} = -0.45/(1 + \exp(7 - W)),$$

$$c_{40} = 0.30, c_{22} = 0.12, c_{04} = 0.4$$
. (25)

Breon-Henriot模型与Cox-Munk模型在海洋坡 度统计上的差异,在于对偏度系数(c_{21} 和 c_{03})与风速 关系的深刻洞察。Cox-Munk模型假设这些偏度系 数与风速呈线性关系,而Breon-Henriot模型则通过 详尽的数据分析揭示,这些系数实际上是风速的非 线性函数。具体而言,Breon-Henriot模型指出,偏 度系数的变化遵循更为复杂的规律—— c_{21} 随风速 变化呈现二次函数特征,而 c_{03} 则展现出S型函数的 变化趋势。

2 数据处理

2.1 数据筛选与匹配

本文采用的数据来源于 MODIS 卫星数据以及 ERA5 数据,其中 MODIS 作为 Terra 与 Aqua 卫星的 中分辨率载荷,每 1~2 天全面监测地球,提供陆表、 海洋及低层大气数据。MODIS L1B数据进一步定 位定标后,所有通道统一重采样至1 km分辨率, 包括本文关注的中红外波段(MODIS 第 20 波段, 3.7 μm)。此外,本文还使用了 MOD02定标数据获 取辐射亮温,MOD03地理信息产品确定像素位置与 观测几何,以及 MOD35 云掩膜产品剔除云层影响, 以增强数据分析的完整性和准确性。

ERA5是ECMWF的新一代再分析数据集,基于 四维变分资料同化技术和IFS深度融合,全面提升 了气候预测的精度与全面性^[25]。该数据集覆盖从 地表至近太空,细分为37层次,记录关键大气参数 的变化。参数获取过程中,通过高精度观测数据和 数值模型的结合,确保了各层次数据的可靠性与一 致性。

本文选择了位于西太平洋边缘的一个特定海域,其经度范围从东经120°至180°,纬度跨度自北 纬50°至南纬20°。该海域受热带海洋气候与赤道 暖流的影响,海水温度常年维持较高水平。为了全 面理解季节变化中风速对海洋模型的潜在影响,本 文在ERA5官网下载了2023年该海域海面10m以 上高度的月平均风速数据并进行分析,如图2 所示。

图 2 2023年目标海域海面10m以上高度的月平均风速 Fig. 2 Monthly average wind speed at heights above 10 meters over the study area in 2023

发现了一个显著现象:夏季期间风速较低且太阳耀光频发。通过数据筛选,发现1月份的太阳耀 光较少,而2月份的观测条件较佳。因此,本文选取 了以下四个时间点的影像数据进行分析:2023年2 月16日UTC时间22:30、2023年4月1日UTC时间 00:00、2023年7月1日UTC时间01:30以及2023年 10月2日UTC时间01:00,特别注重选择无云层遮 挡且太阳耀光现象明显的影像区域。 图3展示了四张影像的太阳耀光分布情况,图中的颜色由红到蓝表示辐亮度的强度,红色区域辐亮度较大。下方的四张格网图分别对应上述影像,其中白色格点表示符合筛选条件的区域。具体而言,2023年2月16日UTC时间22:30的格网点数量为14个;2023年4月1日UTC时间00:00的格网点数量为39个;2023年7月1日UTC时间01:30的格网点数量为28个;2023年10月2日UTC时间01:00的格网点数量为28个;2023年10月2日UTC时间01:00的格网点数量为26个。本文对格网点进行编号时,采用从上到下、从左到右的列序方式,后续实验以格网点的编号进行分析。

具体在处理 MODIS 021KM 产品数据时,本文采 取了一系列的筛选与匹配步骤。首先,专注于识别 并选取那些能够清晰展现太阳耀光特征的影像,随 后利用产品的定标系数,将每个像元点的 DN 值转 换为辐射亮度值,为后续的定量分析奠定了坚实基 础。接着,借助与021KM产品相匹配的 MODIS 云掩 膜产品,利用其内置的多种条件控制标志,通过叠 加分析,精确剔除了云层覆盖区域、云不确定性区 域及非太阳耀光影响区域,从而确定了无云且太阳 耀光显著的海洋分析区域^[26]。

为进一步细化分析,本文利用 MODIS 地理信息产品,为筛选出的有效像元点分配了精确的经纬度坐标及卫星与太阳的角度信息,这些信息对于理解太阳耀光区域的物理特性及其与海洋环境的相互作用至关重要。随后,根据 ERA5 SSTskin数据的空间分辨率特性,本文设计并实施了空间匹配窗口的构建,以确保 MODIS 021KM 数据与 ERA5 SSTskin数据在时间与空间上的高度一致性。在匹配过程中,对窗口内的 MODIS 数据进行了经纬度与角度信息的均值化处理,同时对 ERA5 SSTskin 数据则采用了格网点均值计算及时间线性插值法,以获取更为平滑且准确的数据集。这一过程不仅提升了数据的质量与可靠性,还为本文后续的海洋太阳耀光区域特征模拟与分析提供了强有力的数据支撑。

2.2 中红外辐射传输计算

为了精确评估不同太阳耀光模型在中红外辐射模拟中的准确性,本文采用MODIS卫星直接观测的辐射亮温数据作为验证基准。具体而言,本文选择MODIS卫星的第20通道数据,在晴朗无云的海洋太阳耀光区域内选取观测到的星上亮温值。利用 ERA5提供海表温度及大气廓线数据,通过MOD-

图 3 MODIS 原始影像以及筛选后的格网(a)MOD021KM.A2023047.2230; (b)MOD021KM.A2023091.0000; (c)MOD021KM. A2023182.0130; (d)MOD021KM.A2023275.0100, ((i)是MODIS的021KM产品影像,(ii)是经过筛选后的格网) Fig. 3 MODIS images and the filtered grid: (a) MOD021KM.A2023047.2230; (b) MOD021KM. A2023091.0000; (c) MOD021KM. A2023182.0130; (d) MOD021KM.A202327 5.0100; (i) is the MODIS 021KM product image, and (ii) is the filtered grid)

TRAN辐射传输模型^[27],本文模拟了大气透过率、大 气上行辐射、大气下行辐射以及太阳直射辐照度关 键参数。随后,依据中红外辐射传输方程,本文正 向计算出大气层顶的辐射,并将其转换为辐射亮 温,以便与MODIS卫星实测的辐射亮温数据进行直 接的比较与分析。

在中红外谱段,卫星接收到的辐射信息构成复 杂,主要包含四个部分:第一部分是地表地物(如海 水)自身发射并经大气吸收、散射后到达传感器的 辐射;第二部分是地表反射的大气下行辐射,这些 辐射同样经过大气作用后被传感器接收;第三部分 是地表至卫星路径间大气的自发和直接反射太阳 辐射的上行辐射;第四部分指地表反射的太阳直射 辐射经大气作用被传感器接收,特别是在海洋太阳 耀光区域,海表强烈反射的太阳直射辐射经过大气 后成为传感器接收到的显著辐射源,其强度远高于 非耀光区域的太阳直射辐射贡献^[28]。因此,对于海 洋太阳耀光区域内到达大气层顶的热辐射可表 达为:

$$B(T_{3,7}) = \left(\varepsilon_{3,7}B(T_{\rm SST}) + (1 - \varepsilon_{3,7})R_d + L_{\rm glint}\tau_{3,7}^{\rm sun}\right)\tau_{3,7}^{\rm sat} + R_{\rm sun},$$
(26)

其中, $\varepsilon_{3.7}$ 是通道的地表发射率; $B(T_{SST})$ 是海面直射 辐射的通道辐亮度(T_{SST} 为海面温度), W·(m²·sr·µm)⁻¹; R_d 是大气下行总辐射, W·(m²·sr·µm)⁻¹; L_{glint} 是太阳耀光区域内反射太阳辐 射的函数,具体展开为式(5); $\tau_{3.7}^{sun}$ 是从太阳到海面方 向的大气透过率; $\tau_{3.7}^{su}$ 是从海面到传感器方向通道的 大气透过率; R_u 是大气上行总辐射, W·(m²·sr·µm)⁻¹。

为了精确模拟这一过程,本文采用了约翰斯· 霍普金斯大学提供的发射率库,通过卷积处理得到 MODIS中红外22通道对应的海水发射率。基于物 理模型,本文计算了太阳耀光区域内的辐射能量分 布,并将这一计算结果与MODIS卫星实际接收到的 辐射能量数据进行严格比对验证。此外,针对MO-DIS影像数据,本文结合大气辐射传输模型,精确计 算出特定波长下的大气透过率、大气上行辐射和大 气下行辐射,并进一步通过太阳耀光模型计算出太 阳耀光引起的辐射贡献,从而准确求解出对应波段 下的亮温。这一过程不仅提升了模拟的精度,也为 不同太阳耀光模型在中红外辐射模拟中的性能评 估提供了科学的数据支撑。

3 太阳耀光模型自身敏感性

根据式(5),本文所选的三种模型在计算太阳 耀光的辐射强度时,都依赖于观测几何条件、风速、 风向和折射率等因素。为了深入探讨这三种模型 在中红外波段下的差异,本文进一步分析了卫星观 测的天顶角和太阳天顶角、风速和风向以及折射率 的影响。在分析过程中,特别关注了海水反射率的 计算和对比,以明确模型之间的细微差别。

3.1 观测天顶角与太阳天顶角

VZA=10°

240

由于三种太阳耀光模型的海面反射率分布相似,本文以Breon-Henriot模型为例,模拟海面太阳

180

(a)

耀光的反射率分布情况,模拟的参数条件设置如下:对于风向与太阳方位角的设定,本文采用标准 化方法,即当风自北向南吹拂且太阳由南向北照射 时,定义风向相对太阳方位角为180°;太阳天顶角 0°~80°,间隔0.5°;观测相对太阳方位角0°~360°,间 隔0.5°;风速设为5m/s;折射率设为1.36;观测天顶 角设置为10°、20°、30°和40°^[29]。图4表示海面太阳 耀光的反射率分布,极轴的半径为太阳天顶角,极 角为观测相对太阳方位角。具体结果如下:在图4 (a)观测天顶角为10°时,反射率最大为0.23,太阳 耀光的主要影响范围大约为太阳天顶角0°~20°,观 测相对太阳方位角120°~240°;图4(b)观测天顶角 为20°时,反射率最大为0.26,太阳耀光的主要影响 范围大约为太阳天顶角10°~30°,观测相对太阳方

Fig. 4 The variation in the reflectance of sun glint on the sea surface under different observational geometric conditions: (a) observation zenith angle of 10°; (b) observation zenith angle of 20°; (c) observation zenith angle of 30°; (d) observation zenith angle of 40°

率最大为0.32,太阳耀光的主要影响范围大约为太阳天顶角20°~40°,观测相对太阳方位角165°~195°;图4(d)观测天顶角为40°时,反射率最大为0.49,太阳耀光的主要影响范围大约为太阳天顶角30°~60°,观测相对太阳方位角160°~190°。

图4可以看出:(1)随着太阳天顶角的变大,反 射率的最大值都发生在观测天顶角约等于太阳天 顶角的地方,太阳耀光区域在图像上逐渐呈现出椭 圆形的形态特征。(2)在观测相对太阳方位角达到 180°的时候,太阳耀光具有最高的反射率。

为了进一步对比 Breon-Henriot 模型、Ebuchi-Kizu 模型及 Wu 模型在中红外波段下的差异,在观测相对太阳方位角固定为180°的条件下进行模拟, 其他参数条件与上述设置相同。图5表示在观测相 对太阳方位角180°条件下,三种太阳耀光模型的反 射率随太阳天顶角的变化,图5中的观测天顶角变 化与图4一一对应。

在图 5(a)中,当观测天顶角为10°时,三种模型 的反射率在太阳天顶角约为10°时都达到峰值。具 体来说,Ebuchi-Kizu模型的反射率为0.32,Breon-Henriot模型的反射率为0.23,而Wu模型的反射率 为0.19。Ebuchi-Kizu模型与Breon-Henriot模型的 反射率在太阳天顶角约20°处相交,而Wu模型与 Breon-Henriot模型的反射率在太阳天顶角约30°处 相交。在图 5(b)中,当观测天顶角为20°时,三种模 型的反射率在太阳天顶角约为20°时都达到峰值。 具体来说,Ebuchi-Kizu模型的反射率为0.35,Breon-Henriot模型的反射率为0.26,而Wu模型的反射 率为0.21。Ebuchi-Kizu模型与Breon-Henriot模型 的反射率在太阳天顶角约30°处相交,而Wu模型与 Breon-Henriot模型的反射率在太阳天顶角约40°处 相交。在图 5(c)中,当观测天顶角为30°时,三种模

图 5 三种模型不同观测天顶角的反射率:(a)观测天顶角为10°;(b) 观测天顶角为20°;(c) 观测天顶角为30°;(d) 观测天顶角为40°

Fig. 5 Reflectance at different observation zenith angles for three models: (a) observation zenith angle of 10°; (b) observation zenith angle of 20°; (c) observation zenith angle of 30°; (d) observation zenith angle of 40°

型的反射率在太阳天顶角约为30°时都达到峰值。 具体来说, Ebuchi-Kizu模型的反射率为0.44, Breon-Henriot模型的反射率为0.32,而Wu模型的反射 率为0.26。Ebuchi-Kizu模型与Breon-Henriot模型 的反射率在太阳天顶角约40°处相交,而Wu模型与 Breon-Henriot模型的反射率在太阳天顶角约55°处 相交。在图 5(d)中,当观测天顶角为 40°时, Ebuchi-Kizu模型的反射率在太阳天顶角约为40°时都 达到峰值,而Breon-Henriot模型和Wu模型的反射 率在太阳天顶角约为45°时都达到峰值。具体来 说, Ebuchi-Kizu模型的反射率为0.64, Breon-Henriot模型的反射率为0.49,而Wu模型的反射率为 0.40。Ebuchi-Kizu模型与Breon-Henriot模型的反 射率在太阳天顶角约55°处相交,而Wu模型与Breon-Henriot 模型的反射率在太阳天顶角约65°处 相交。

图5显示,在反射率达到其峰值时,Ebuchi-Kizu模型展现出了较为独特的特征:其反射率分布相 比其他两个模型更为狭窄,且峰值反射率显著高于 Breon-Henriot模型。相比之下,Breon-Henriot模型 与Wu模型在反射率结果的宽度上表现出相近的趋势,但Breon-Henriot模型的反射率峰值依然高于 Wu模型。

3.2 风速

模拟的参数条件设置如下:观测天顶角和太阳 天顶角都设置为30°;观测相对太阳方位角设为45°、 90°、140°、150°、160°、170°和180°;风速相对太阳方位 角为180°;风速为2~12 m/s,间隔为0.5 m/s;折射率 为1.36。图6(a)中,Breon-Henriot模型在观测相对 太阳方位角为180°时,其反射率从0.65一直下降到 0.2左右,趋于稳定;图6(b)中,Ebuchi-Kizu模型在 观测相对太阳方位角180°时,其反射率从0.63一直 下降到0.3左右,趋于稳定;图6(c)中,Wu模型的反 射率在风速约7 m/s附近出现非连续变化,呈现阶梯 函数特征,与另外两模型的光滑变化不同。图6可 以看出在观测相对太阳方位角大于150°时,三个模 型的反射率总体上都随着风速的增大而减小,在观 测相对太阳方位角小于150°时,三个模型的反射率

3.3 风向

风向会改变波浪斜坡面的空间分布,从而影响 方向反射率。风向定义为风向方位角与太阳方位 角之间的相对角度。模拟参数设置如下:观测天顶

图 6 三种模型不同风速的反射率:(a) Breon-Henriot模型; (b) Ebuchi-Kizu模型; (c) Wu模型

Fig. 6 Reflectance for different wind speeds according to three models: (a) Breon-Henriot model; (b) Ebuchi-Kizu model; (c) Wu model

角和太阳天顶角均为30°;观测相对太阳方位角设 置为45°、90°、140°、150°、160°、170°和180°;风速在 0°至180°范围内,以10°间隔变化,风速设为5 m/s; 折射率为1.36。由于Wu模型与风向无关,此处不 予考虑。本文关注的是风向对反射率的影响,采用 了各向异性的Breon-Henriot模型和Ebuchi-Kizu模 型。图7显示,当观测相对太阳方位角大于150° 时,两种模型的反射率对风向变化的敏感性较低, 但Breon-Henriot模型的反射率低于Ebuchi-Kizu模 型;当观测相对太阳方位角小于150°且大于90° 时,两种模型的反射率在风向为80°左右的时候分 别向上、向下波动,最大波动约为0.02;当观测相 对太阳方位角小于90°时,两种模型的反射率均非 常微小。可以看出风向对反射率的影响相对较小, 而观测相对太阳方位角对反射率的影响更为 显著。

图 7 两种模型不同风向的反射率:(a)Breon-Henriot模型; (b) Ebuchi-Kizu模型

Fig. 7 Reflectance for different wind directions according to two models: (a) Breon-Henriot model; (b) Ebuchi-Kizu model

3.4 折射率

模拟参数如下:观测天顶角和太阳天顶角均为

30°;观测相对太阳方位角设置为180°;风向为180°, 风速设为5 m/s;折射率在1.33至1.38范围内,以 0.001间隔变化^[30]。图8展示了三种模型的反射率 与折射率之间的线性关系,对于3~5 μm,海水的折 射率为1.364^[23],此时Ebuchi-Kizu模型的反射率为 0.444, Breon-Henriot模型为0.323,Wu模型为 0.295。折射率与反射率的线性关系在不同模型中 表现出不同的斜率,其中Ebuchi-Kizu模型的斜率 最大,为1.995; Breon-Henriot模型的斜率为 1.4525,Wu模型的斜率为1.3274,二者对折射率的 变化反应相对较低。

图 8 三种模型不同折射率的反射率

Fig. 8 Reflectance at different refractive indices for three models

4 模型比对与分析

为深入探讨三种太阳耀光模型在中红外波段 大气层顶辐射模拟中的精度,本文选择了四个月 份的遥感影像进行对比分析。通过筛选遥感影 像,获取符合条件的海面太阳耀光格网点,并将这 些点与再分析数据匹配,利用 Modtran 进行大气参 数模拟。接着,将每个格网点的角度信息和风速 输入到三种太阳耀光模型中,并将各项辐射强度 代入中红外辐射传输方程中,以计算辐射亮温。 最后,将模拟结果与原始影像的辐射亮温数据进 行对比。

图9的横坐标是格网点的编号,从中可以看出, Ebuchi-Kizu模型对2023年2月16日和2023年7月 1日影像的模拟结果明显高于原始影像的辐射亮 温;Wu模型对2023年10月2日影像的模拟结果明 显低于原始影像的辐射亮温;而Breon-Henriot模型 在四张影像的模拟结果中,与原始影像的辐射亮温 更为接近。图 10 展示了四张影像的观测天顶角与 太阳天顶角的变化(上图)以及观测天顶角与太阳 天顶角的差值变化(下图)。图 11 则显示了四张影 像的相对太阳方位角与风速的变化,可以看出, 2023年2月16日的风速较为均衡且最快,平均风速 约为6 m/s,而2023年10月2日的平均风速最低约 为3 m/s。综合分析表明,风速对Ebuchi-Kizu模型 的影响显著。在风速较高时,该模型的模拟精度低 于风速较慢时的表现。相比之下,Wu模型和Breon-Henriot模型对风速的敏感性较小,表现出相对 稳定的模拟结果。

表1展示了三种模型在四张影像中模拟的 大气层顶辐射亮温与 MODIS 观测星上亮温的精 度结果,其中 Breon-Henriot 模型模拟的结果 RMSE 最大为 0.6742 K; Ebuchi-Kizu 模型模拟的 结果 RMSE 最大为 3. 1272 K; Wu 模型模拟的结 果 RMSE 最大为 2. 0208 K, Breon-Henriot 模型整 体上相较于另外两个模型的模拟结果精度更 高,该模型模拟的结果与原始数据的相关系数 均在 0. 9479 以上,表明其模拟结果与实测数据 之间具有较强的一致性。结合图 11 可以观察 到,无论风速条件如何变化, Breon-Henriot 模型 相较于 Ebuchi-Kizu 模型和 Wu 模型,均展现出了 较高的模拟精度,而对于 Ebuchi-Kizu 模型在图 11(d)平均风速较慢时,模拟精度相对较好,对 应表 1 中的 RMSE 为 1. 3314 K; 对于 Wu 模型在 图 11(a)平均风速较快时,模拟精度相对较好, 对应表 1 中的 RMSE 为 0. 7718 K。该情况与上一 节的风速敏感性实验结果相一致。对于理论计 算值在特定条件下出现较大误差的原因, Ebu-

图 9 三种模型模拟大气层顶辐射亮温与 MODIS 观测辐射亮温对比结果:(a)2023年2月16日 UTC 时间 22:30; (b) 2023年4月1日 UTC 时间 00:00; (c) 2023年7月1日 UTC 时间 01:30; (d) 2023年10月2日 UTC 时间 01:00

Fig. 9 Comparison of simulated top-of-atmosphere radiance temperatures from three models with MODIS observed radiance temperatures: (a) February 16, 2023, 22:30 UTC; (b) April 1, 2023, 00:00 UTC; (c) July 1, 2023, 01:30 UTC; (d) October 2, 2023, 01:00 UTC

图 10 四张影像的观测天顶角与太阳天顶角变化:(a) 2023年2月16日UTC时间22:30; (b) 2023年4月1日UTC时间00:00; (c) 2023年7月1日UTC时间01:30; (d) 2023年10月2日UTC时间01:00

Fig. 10 Variation in observation zenith angles and solar zenith angles for four images: (a) February 16, 2023, 22:30 UTC; (b) April 1, 2023, 00:00 UTC; (c) July 1, 2023, 01:30 UTC; (d) October 2, 2023, 01:00 UTC

chi-Kizu模型的数据集主要集中于亚热带海域的晴朗天气条件,这种环境特异性可能导致其模拟结果的斜率分布与其他模型存在显著差

异。此外, Wu模型中的系数可能与海水的动态 粘度和表面张力相关, 这也可能影响其在不同 风速条件下的表现。

表 1 三种模型模拟大气层顶辐射亮温与 MODIS 观测辐射亮温对比的精度结果

Table 1	Accuracy	results	for 1	the c	omparison	between	simulated	top-of-atmosphere	radiance	temperatures	from
	three mod	lels and	MOI	DIS o	bserved ra	diance ter	mperatures				

影像	精度指标	Breon-Henriot模型	Ebuchi-Kizu模型	Wu模型
MODO21WN A2022047 2220 061 2022048101622	R2	0. 9479	0.9464	0.8842
MOD021KM. A2023047. 2230. 001. 2023048191022	RMSE	0. 4568	3. 1272	0.7718
MODO21WN A2022001 0000 061 2022001121722	R2	0. 9785	0. 8903	0.9595
MOD021KM. A2023091. 0000. 001. 2023091131/23	RMSE	0. 4558	1.8162	0. 6930
MODO21VM A2022192 0120 061 2022192121652	R2	0.9679	0.9155	0.9606
MOD021KM. A2025182. 0150. 001. 2025182151052	RMSE	0. 6148	2.8462	1.6674
MOD021KM A2022275 0100 061 2022275121502	R2	0.9722	0. 9476	0. 9411
MOD021KM, A2023273, 0100, 061, 2023273131302	RMSE	0.6742	1.3314	2.0208

图 11 四张影像的相对方位角与风速变化:(a) 2023年2月16日 UTC 时间 22:30; (b) 2023年4月1日 UTC 时间 00:00; (c) 2023 年7月1日 UTC 时间 01:30; (d) 2023 年10月2日 UTC 时间 01:00

Fig. 11 Variation in relative azimuth angles and wind speeds for four images: (a) February 16, 2023, 22:30 UTC; (b) April 1, 2023, 00:00 UTC; (c) July 1, 2023, 01:30 UTC; (d) October 2, 2023, 01:00 UTC

5 结论

本文对三种太阳耀光模型在特定区域进行了 比较分析。首先,评估了每种模型的敏感性因素, 如观测几何条件、风速、风向和折射率,然后将这些 模型应用于实际遥感影像进行对比。研究结果 表明:

(1)不同模型在中红外波段的反射率表现随着 观测几何的变化而有所不同。Ebuchi-Kizu模型在 不同观测天顶角下展现出较高且显著的峰值反射 率,其反射率分布相对狭窄。Breon-Henriot模型与 Wu模型的反射率峰值较低,但Breon-Henriot模型 的反射率峰值普遍高于Wu模型。

(2) Breon-Henriot 和 Ebuchi-Kizu 模型在观测 相对太阳方位角180°时,反射率逐渐下降并趋于稳 定。Wu模型在约7m/s风速处表现出非连续变化。 整体上,观测相对太阳方位角大于150°时,所有模型的反射率随着风速增加而减小;而在相对太阳方 位角小于150°时,反射率则随着风速增加而缓慢 上升。

(3)风向对反射率的影响较小,而观测相对太 阳方位角的变化对反射率的影响更为显著。观测 相对太阳方位角大于150°时,反射率对风向变化不 敏感;在相对太阳方位角小于150°时,反射率会有 波动,但风向对这些波动的影响有限。

(4)在本文中,Ebuchi-Kizu模型的反射率对折 射率变化的响应最为敏感,显著高于Breon-Henriot 模型和Wu模型。相比之下,Breon-Henriot模型和 Wu模型对折射率变化的响应较弱,反射率也较低。

(5)在对四张遥感影像的模拟中,尽管在不同

的观测几何角度和风速条件下,Ebuchi-Kizu模型和 Wu模型的精度有所波动,但Breon-Henriot模型在 所有条件下均保持较高的精度,验证了其在中红外 大气层顶辐射亮温模拟中的优越性。

Breon-Henriot模型、Ebuchi-Kizu模型和Wu模型最初是应用于可见光及短波红外的太阳耀光校正,本文通过验证并拓展了这些太阳耀光模型的应用范围,从传统的可见光及短波红外波段延伸至中红外波段,此举旨在为中红外辐射传输提供新的理论支撑,补充并完善中红外正向模型体系,从而确保长时间序列观测数据的一致性与可靠性。这将有助于提升卫星中红外产品在气候变化监测、地表温度动态分析等领域的应用效能与准确性。

References

- Kaufman Y J, Remer L A. Detection of forests using mid-IR reflectance: An application for aerosol studies [J].
 IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 672-683.
- [2] Wu xing, Zhang Xia, Sun Xue-Jian, et al. Radiation quality evaluation of Spark hyperspectral satellite image [J]. Remote Sensing Technology and Application, 2018, 33(2): 233-240.

吴兴,张震,孙雪剑,等.SPARK 卫星高光谱数据辐射 质量评价[J].遥感技术与应用,2018,33(2):233-240.

- [3] Chen Xing-Feng, Liu Li, Li Jia-guo, et al. Application and research progress of fire monitoring using satellite remote sensing [J]. Journal of Remote Sensing (Chinese), 2020, 24(5): 531-542.
 陈兴峰,刘李,李家国,等. 卫星遥感火点监测应用和 研究进展[J]. 遥感学报, 2020, 24(5): 531-542.
- [4] Qin Xian-Lin, Li Xiao-Tong, Liu Shu-Chao, et al. Forest fire early warning and monitoring techniques using satellite remote sensing in China [J]. Journal of Remote Sensing (Chinese), 2020, 24(5): 511-520
 覃先林,李晓彤,刘树超,等.中国林火卫星遥感预警监测技术研究进展[J]. 遥感学报, 2020, 24(5): 511-520
- [5] Liu Yin-Nian. Visible-shortwave infrared hyperspectral imager of GF-5 satellite [J]. Spacecraft Recovery and Remote Sensing, 2018, 39(3): 25-28.
 刘银年. "高分五号"卫星可见短波红外高光谱相机的 研制[J]. 航天返回与遥感, 2018, 39(3): 25-28.
- [6] Zhang Bing. Advancement of hyperspectral image processing and information extraction [J]. Journal of Remote Sensing, 2016, 20(5): 1062–1090.
 张兵.高光谱图像处理与信息提取前沿[J]. 遥感学报, 2016, 20(5): 1062–1090.
- [7] Liu Y, Zhang W, Zhang B. Top-of-atmosphere image simulation in the 4.3 μm Mid-infrared Absorption Bands [J].
 IEEE Transactions on Geoscience and Remote Sensing, 2015, 54(1): 452-456.
- [8] Jing Xin, Yan Lei, Hu Xiu-Qing, et al. NPP/VIRS solar reflectance bands radiation validation based on mid-infrared reference standard on sea surface sun glint sites [J].

Journal of Infrared and Millimeter Waves, 2017, 36(6): 694-700.

景欣,晏磊,胡秀清,等.基于海表耀斑中红外基准 NPP/VIIRS反射通道在轨验证[J].红外与毫米波学报, 2017,36(6):694-700.

- [9] Li Wei-Wei, Li Yu-Meng, Li Tong-Ji. Research on prediction technology of sun glint region in HY-1C satellite image [J]. Journal of Ocean Technology, 2023, 42(3): 1-8.
 李尉尉,李雨萌,李铜基. HY-1C卫星影像中太阳耀斑 区域的预测技术研究[J]. 海洋技术学报, 2023, 42(3): 1-8.
- [10] Cox C, Munk W. Measurement of the roughness of the sea surface from photographs of the sun's glitter [J]. Josa, 1954, 44(11): 838-850.
- [11] Cox C.; Munk W. Statistics of the sea surface derived from sun glitter [J]. J. Mar. Res, 1954, 13:198–227.
- [12] Cox C, Munk W. Slopes of the sea surface deduced from photographs of sun glitter [J]. 1956, 6, 401–488.
- [13] Wu J. Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition
 [J]. Radio Science, 1990, 25(1): 37-48.
- [14] Mermelstein M D, Shettle E P, Takken E H, et al. Infrared radiance and solar glint at the ocean - sky horizon [J]. Applied Optics, 1994, 33(25): 6022-6034.
- [15] Shaw J A, Churnside J H. Scanning-laser glint measurements of sea-surface slope statistics [J]. Applied Optics, 1997, 36(18): 4202-4213.
- [16] Ebuchi N, Kizu S. Probability distribution of surface wave slope derived using sun glitter images from geostationary meteorological satellite and surface vector winds from scatterometers [J]. Journal of Oceanography, 2002, 58: 477-486.
- [17] Bréon F M, Henriot N. Spaceborne observations of ocean glint reflectance and modeling of wave slope distributions
 [J]. Journal of Geophysical Research: Oceans, 2006, 111(C6).
- [18] Jing Xin, Hu Xiu-Qing, Zhao Shuai-Yang, et al. The sunglint area reflectance calculation of VIRS middle infrared channel inSouth Indian Ocean based on the improved nonlinear split window model [J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 394-402.
 景欣,胡秀清,赵帅阳,等.基于改进非线性劈窗算法的 VIIRS 中红外海面耀斑区反射率计算[J]. 光谱学与光谱分析, 2017, 37(2): 394-402.
- [19] Zhao H, Ji Z, Zhang Y, et al. Mid-infrared imaging system based on polarizers for detecting marine targets covered in sun glint [J]. Optics Express, 2016, 24 (15) : 16396-16409.
- [20] Li Yan-Song, Zhao Hui-Jie, Li Na, et al. Detection of marine targets covered in sun glint based on mid-infrared polarization [J]. Chinese Journal of Lasers, 2022, 49 (19): 1910004.
 李岩松,赵慧洁,李娜,等.基于中红外偏振的海面太阳耀光背景下的目标探测[J].中国激光, 2022, 49 (19): 1910004.
- [21] Kay S, Hedley J D, Lavender S. Sun glint correction of high and low spatial resolution images of aquatic scenes: a review of methods for visible and near-infrared wavelengths [J]. Remote Sensing, 2009, 1(4): 697-730.

- [22] Gordon H R. Atmospheric correction of ocean color imagery in the earth observing system era [J]. Journal of Geophysical Research: Atmospheres, 1997, 102 (D14) : 17081-17106.
- [23] Wang Yan, Xie Xiao-Fang, Sun Hai-Wen, et al. Simulation of dynamic infrared sea scene in mid band [J]. Infrared and Laser Engineering, 2015, 44(12): 3604.
 王彦,谢晓方,孙海文,等.中波段动态海洋红外视景 仿真[J]. 红外与激光工程, 2015, 44(12): 3604.
- [24] Deschamps P Y, Bréon F M, Leroy M, et al. The POL-DER mission: Instrument characteristics and scientific objectives [J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(3): 598-615..
- [25] Hersbach H. Global reanalysis: goodbye ERA Interim, hello ERA5 [J]. ECMWF Newsletter, 2019, 159: 17.
- [26] Xue Ya-Nan, Ma Ling-Ling, Wang Ning, et al. Accuracy evaluation of the satellite thermal infrared radiometric calibration method based on ERA5 ocean re-analysis data [J]. National Remote Sensing Bulletin, 2023, 27 (5): 1150-1165.

薛亚楠,马灵玲,王宁,等.基于ERA5海洋再分析资料的卫星热红外辐射定标方法精度评估[J].遥感学报, 2023, 27(5): 1150-1165.

- [27] Berk A, Bernstein L S, Anderson G P, et al. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS [J]. Remote Sensing of Environment, 1998, 65 (3): 367-375.
- [28] Jing Xin, Yan Lei, Hu Xiu-Qing, et al. NPP/VIIRS solar reflectance bands radiation validation based on mid-infrared reference standard on sea surface sun glint sites [J]. Journal of Infrared Millimeter Waves, 2017, 36 (6): 694-700
 景欣,晏磊,胡秀清,等.基于海表耀斑中红外基准

NPP/VIIRS 反射通道在轨验证[J]. 红外与毫米波学报, 2017, 36(6): 694-700.

- [29] Chen Xing-feng, Gu Xing-fa, Cheng Tian-hai, et al. Simulation and analysis of polarization characteristics for real sea surface sunglint [J]. Spectroscopy and Spectral Analysis, 2011, 31(6): 1648-1653.
 陈兴峰,顾行发,程天海,等.真实海洋表面的太阳耀 光偏振辐射特性仿真与分析[J].光谱学与光谱分析, 2011, 31(6): 1648-1653.
- [30] Harmel T, Chami M, Tormos T, et al. Sunglint correction of the Multi-Spectral Instrument (MSI) -SENTINEL-2 imagery over inland and sea waters from SWIR bands [J]. Remote Sensing of Environment, 2018, 204: 308-321.