55 44 45 3 40 a5 2 K I R Vol. 44, No.3
2025 47 6 /1 J. Infrared Millim. Waves June, 2025

XEHS: 1001-9014(2025)03-0393-12 DOI: 10. 11972/j. issn. 1001-9014. 2025. 03. 009

Study on correlation of thermal model to in-orbit data for infrared optical
payloads on FY-3E/HIRAS-IT
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Abstract; The Infrared Hyperspectral Atmospheric Sounder IT (HIRAS-II) is the key equipment on FengYun-3E
(FY-3E) satellite, which can realize vertical atmospheric detection, featuring hyper spectral, high sensitivity and
high precision. To ensure its accuracy of detection, it is necessary to correlate their thermal models to in-orbit da-
ta. In this work, an investigation of intelligent correlation method named Intelligent Correlation Platform for Ther-
mal Model (ICP-TM) was established, the advanced Kriging surrogate model and efficient adaptive region opti-
mization algorithm were introduced. After the correlation with this method for FY-3E/HIRAS-II, the results indi-
cate that compared with the data in orbit, the error of the thermal model has decreased from 5 K to within =1 K in
cold case (10 C). Then, the correlated model is validated in hot case (20 C), and the correlated model exhibits
good universality. This correlation precision is also much superiors to the general ones like 3 K in other similar lit-
erature. Furthermore, the process is finished in 8 days using ICP-TM, the efficiency is much better than 3 months
based on manual. The results show that the proposed approach significantly enhances the accuracy and efficiency
of thermal model, this contributes to the precise thermal control of subsequent infrared optical payloads.
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Introduction

The FY-3 meteorological satellite, as China's sec-
ond-generation polar-orbiting meteorological satellite,
plays a vital role in disaster prevention and mitigation, as
well as in responding to climate change. Building on the
success of the FY-3 meteorological satellite, there are
higher demands on the consistency of the thermal man-
agement for the latest advanced space infrared radiomet-
ric benchmark payload technology and the next-genera-
tion FY meteorological satellite’s quantitative remote
sensing infrared payload technology.

The infrared optical payloads on satellites have ex-
tremely stringent requirements for the thermal environ-
ment. On one hand, thermal deformation can lead to a
decline in the imaging quality of the optical system, thus
affecting overall imaging performance. On the other
hand, thermal noise reduces the detection sensitivity of
the optical system, impacting its detection capabilities.
Consequently, it is urgent to solve the challenge of accu-
rately correlating thermal models. A precise thermal
model is obtained by correcting the parameters of thermal
design model, like radiation properties, thermal cou-
pling parameters, and material thermal properties using
experimental data or in-orbit data. And finally, obtain a
thermal model that can more accurately predict the in-or-
bit temperature conditions.

Actually, the thermal model correlation problem is
an inversion problem of model parameters. There are two
main approaches for addressing such inversion prob-
lems: deterministic method and statistical method. 1.
Deterministic method. It treats both the model parame-
ters and the measured temperature data as fixed, known
variables. These methods construct a thermal equilibri-
um equation and solve for the thermal network model pa-
rameters using algebraic techniques, yielding a solution
with deterministic significance. 2. Statistical method. It
treats both the model parameters and the measured tem-
perature data as random variables. This method applies
statistical techniques to determine the probability distri-
bution of the model temperatures, with the resulting pa-
rameters being statistical estimates.

Initially, scholars primarily employed deterministic
method to address the problem of thermal model correc-
tion. Notable studies in this area includes Toussaint et
al. "' proposed the use of minimizing analysis of experi-
mental energy balance residuals for model correlation.
Ishimoto et al. " applied linear regression analysis to ap-
proximately estimate the radiation heat transfer coeffi-
cient and incorporated noise disturbance estimation
through Kalman filtering. Shimoji et al. ' introduced a
statistical approach, using statistical regression to modify
the thermal network model. By analyzing experimental
data and utilizing the F-test (variance test) to determine
confidence intervals for critical nodes, this method al-
lowed for the modification of the thermal networks heat
transfer coefficient with minimal experimental data,
thereby integrating statistical methods into model correla-
tion.

With the increasing complexity of satellite struc-

tures, the number of nodes in thermal analysis models
can easily reach hundreds of thousands or even millions,
significantly increasing the number of parameters requir-
ing correction. At this scale, traditional deterministic
method became inadequate for handling the correlation
process, and statistical methods have gained promi-
nence. Harvey et al. ' introduced a stochastic approxi-
mation method for satellite antenna design, focusing on
the selection and optimization of design parameters such
as the antenna’ s orientation relative to Earth and the
Sun, as well as environmental parameters. Later, Herre-
ra and Sepulveda > were the first to propose applying the
Monte Carlo stochastic approximation method to satellite
thermal analysis. Since then, the Monte Carlo method
and its variants have become mainstream in thermal mod-
el correlation and remain highly relevant, forming the
foundation for numerous improved techniques.

Both approaches offer distinct ways to infer model
parameters based on available data, with deterministic
methods providing exact solutions and statistical methods
offering probabilistic insights. In recent years, some new
methods have emerged. The summary and comparison
are shown in Table 1.

It can be observed that when the number of pending
parameters in the model decreases, it becomes easier to
achieve higher correction accuracy. Although some liter-
ature may have achieved high precision, their models are
often too simplistic to be directly applied to practical proj-
ects. For the entire model, typically consisting of at least
a dozen parameters, the current accuracy can only reach
around 3 ' ~5 K", which can not meet our require-
ments of the infrared payloads on the next-generation FY
meteorological satellite obviously.

Based on these requirements, an intelligent correla-
tion platform has been developed for the correlation of
thermal models to in-orbit data for infrared optical pay-
loads for the first time. The so-called Intelligent Correla-
tion Platform for Thermal Model (ICP-TM) , which em-
ploys advanced surrogate models, efficient sensitivity
analysis, and novel optimization algorithms, achieves a
highly accurate thermal model. The enhancement in pre-
diction accuracy and efficiency achieved by this method
will be validated through case studies of FY-3E/HIRAS-

IT under various operating conditions.

1 Thermal case of FY-3E/HIRAS-II

1.1 Background

FY-3E" is in a dawn-dusk orbit with an altitude of
836 km, an eccentricity of 0 and an inclination angle of
98.753°. The flight direction is shown in Figure 1(a),
where +7, direction is towards the ground, and +X direc-
tion is the flight direction. The structure of each compo-
nent is shown in Figure 1(a) and Figure 1(b). The main
body of the enclosure measures 750 mmx650 mmX300
mm. The main temperature control targets are the inter-
ferometer and the baseplate. The former is the primary
temperature-controlled payload, while the latter repre-
sents the overall temperature level of the optical instru-
ment. These two temperatures are regulated by PID (Pro-



LI Yu-Han et al:Study on Correlation of Thermal Model to in-Orbit Data for Infrared Optical Payloads on

33t FY-3E/HIRAS-IT

395

Table 1 Summary of relevant research

x 1 HXHAREE

Number of parame-

Researchers Method Effect Project

ters

o) APSO (Adaptive Particle Swarm R R Bepi Colombo laser altimeter
Beck et al. Error from 4.2 "C+3.2 °C 10
Optimization) (BELA) receiver baffle structural
Anglada et ' . .
L8l Gradient—based methods Error from 8. 71 "C to below 0. 31 °C International Space Station 6
al. "
A 6U nanosatellite of SNIPE
Pure thermal methods for modify-
9] Error more than 80 % of components below  (Small scale magNetospheric and
Kim et al. ing thermal resistance, surface 20
3K Tonospheric Plasma Experiment)
properties, and thermal loads o
mission
Surrogate modeling of DNN (Deep
Shin et al. "’ Neural Network ) and RBF (Radial Error within 5 K A typical spacecraft 95
Basis Function )

Lietal. ' Kriging surrogate model Error from 4. 07 K to 1. 22 K by 70. 0% A battery pack 5
Cui et al. '/ Kriging surrogate model Error from 3. 55 Kto 1. 11 K A solar spectrometer 15

portional Integral Derivative) controllers, monitoring 4
temperature measurement points for the interferometer
and 2 for the baseplate shown in Figure 1(b). The dates
are selected when the temperatures are stable in orbit.
The thermal model is obtained using UG/TMG, UG is a
software of Simens for computer-aided design, analysis,
and manufacturing, widely used in modern engineering
applications, and TMG is a specialized thermal analysis
module that can simulate and calculate orbital heat trans-
fer in space environments. The mesh diagram shown as
Figure 1(c).

To verify the effectiveness of the correlation meth-
od, it is essential to select an initial operating condition,
which is named test case. To further assess the generaliz-
ability of the correlated thermal model for the project, an
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Fire Lock
) Scanning motor
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Springs / 8 Laser Base
S781 White Temperature measuring
Paint point: Baseplate-2
(a)

additional verification must be conducted under a differ-
ent operating condition named validation case. There-
fore, both test and validation cases are required. Then,
the cold case is selected as the test case, and the hot
case is selected as the validation case. The boundary
conditions for the two operating cases are as follows in
the Table 2 below.

The optical payload has three operating conditions:
10 °C, 15°C, and 20 °C. As the temperature difference
between the two operating conditions increases, the de-
mand for the generalization capability of the correlated
thermal model also rises, enhancing the credibility of the
verification results. Therefore, to more clearly demon-
strate that the correlated model remains well-suited under
different conditions, we chose the two conditions with the

Baseplate
7

L

ubstrate

" __—Interferometer

Main Optics
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Temperature measuring
point: Baseplate-1
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Fig. 1 Model of FY-3E/HIRAS-II: (a) Physical model and thermal control measures; (b) Distribution of internal components and measuring point of

baseplate; (¢) Mesh of the thermal model for FY-3E/HIRAS-II
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Table 2 The boundary conditions for the two cases

*k 2 AWMIRABAEE

Case Optics Temperature Date Satellite Platform Temperature Laser Temperature Radiator Temperature
Cold 10°C 2021. 10. 16 0°C 35°C -63°C
Hot 20°C 2022.9.16 30°C 45°C -50 °C
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largest temperature difference: 10 °C and 20 °C. All the
optical and electrical instruments are controlled of 10 °C
in cold case or 20 °C in hot case except the laser and la-
ser controller.

To maintain its temperature level in 10 C or 20 °C,
thermal control measures, including insulation, heating,
and heat dissipation, are necessary for the load. The spe-
cific measures implemented are summarized in Table 3.
These measures, in conjunction with Figure 1 (a) and
Figure 1(b) , clearly show the location of each thermal
control action, the type and quantity of thermal control
components used, their installation methods, and the fi-
nal effects achieved through these measures.

1.2 Parameters

UG/TMG uses a conservative, element-based con-
trol volume formulation to compute accurate conductive
and capacitive terms for arbitrary, unstructured meshes.
The proprietary scheme is based on an element tempera-
ture function constrained at calculation points on the
boundaries and at the geometric centroid. The resulting
solution matrix is extremely accurate, stable and fully
compatible with finite difference solvers. Usually, when
the optical payload components reach thermal equilibri-
um in space, their every calculation point should have a
thermal equilibrium relationship like Eq. 1. The thermal
control equation for this node is mainly a constant temper-
ature boundary condition, as shown in Table 2.

dT

Where j is the point adjacent to point i, T, and T, denote
their temperature. There are s nodes that have a thermal
conductivity relationship with this point, and w nodes
that have a radiation relationship with it. D, is the coeffi-
cient of the conduction between points, R, is the coeffi-
cient of radiation between points, (), is the total heat
source of the point. And the material heat capacity is C..

D, includes contact thermal resistance r, material
thermal conductivity h. R, includes solar absorption rate
«, and hemispherical emissivity €,. The total (), is com-
posed of the heat source ¢, generated by several compo-
nents.

Therefore, for steady-state problems, the parame-
ters that determine the temperature level of space optical
payloads mainly include as follows: r, h, «, &,, and ¢,
To make the thermal model more accurate, these parame-
ters are the parameters to be correlated. Based on the
above figures and thermal control methods in Table 3,
the parameters to be correlated can be classified into
three categories: radiation parameters, corresponding to
a, and g&;; thermal conduction parameters, correspond-
ing to r and h; and heat consumption parameters, corre-
sponding to g. For the subsequent model correlation, an
experimental design is required to generate multiple data
sets. Therefore, it is essential to define the value range
for each parameter in advance, the main parameters and
their value ranges are listed in Table 4, Table 5 and Ta-
ble 6.

ED‘,(T‘ -T)+ ZR,,O-(T,“ -TH+Q,=C~+ (1) It should be noted that although the initial values for
ji VL i ji j i i i ’ . .
7 7 dr other dry contacts are uniform in Table 5, the dry contact
Table 3 Measures to control temperature
* 3 LR
Measures Method Position Purpose
OSR (Optical Solar Reflector) OSR panel
Surface +Z and =Y surfaces of To promptly dissipate excess heat from the interior and make effi-
treatment S781 white paint the motor controller and cient use of the cold space background.
the +X side of the fins
PI (polyimide) second surface mirrors as the ~ The surface of shell ex-
Wrap MLI
outermost layer (named MLI-1) cept +X
(Multi—Lay— To mitigate the impact of external heat flux, primarily from solar ra-
The outer surface of the o
er Insula- diation.
ion) Carburized black membrane (named MLI-2) interferometer, laser,
tion
and main optics
4 installation feet are connected by TC4 (a
kind of titanium alloy) isolation springs, and
o ) The payload is in contact with two thermal platforms: the satellite
Insulation an 8mm thick insulation gasket of PI. Between the baseplate .
) ) ) platform at normal temperature, and the radiator at a low tempera-
installation 6 installation feet are connected to the fire and satellite o o
ture. In order to minimize their impact on the payload.
lock, and there is a 3mm insulation gasket of
PL
The interferometer,
Blackening ) '
Black anodizing treatment scanning motor and the To reduce the influence of stray light.
treatment
surface of shell
Thermal ho- The outer surface of the  To maintain the temperature of the internal lenses of the interferom-
High thermal conductivity graphite sheets
mogeneity interferometer eter at the same level and temperature gradients.

The high thermal conductivity graphite sheets resulting in the temperatures of the four temperature measuring points of the interferometer being very

close, therefore, detailed positions are not provided in Figure. 1(b).
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Table 4 Parameters to be correlated — thermal radiation

® 4 BRRSE-RIESE
Material &, A
Name Initial value Range Name Initial value Range
MLI-1 e, 0. 65 [0.62,0.72] a, 0.35 [0.3,0.55]
MLI-2 s, 0. 88 [0.8,0.9] a, 0.93 [0.9,0.95]
S781 white paint s, 0.87 (0. 81,0.93] ay 0.17 [0.11,0.4]
OSR s, 0.8 [0.76,0. 88] a, 0. 16 [0.08,0.3]
Black anodizing &, 0.9 (0. 88,0. 98] s 0. 96 (0. 86,0.96]
PCB surface & 0.9 (0. 81,0.95] / / /

The PCB surface is completely located inside and not exposed to sunlight, its solar emissivity is not correlated.

Table 5 Parameters to be correlated — thermal conduc-
tion

x5 FRRSH-SHX

Initial
Conductive components ~ Parameters ~ Name Range
value
Between laser controller [2000,
h, 3000
and baseplate 4000 |
Between interferometer
h, 300 [100,600]
and substrate
Between parts of interfer- [300,
h, 500
ometer : 1000]
Between MLI and com- [0.03,
h h, 0.05
ponents be warped 0.09]
(W/m*/K)
Between laser base and
h, 100 [50,400]
substrate
Between shell and base-
hy 100 [50,400]
plate
Between OSR and roof h, 100 [50,400]
Between motor and fin hy 100 [50,400]
Other dry contacts hy~h,, 100 [50,400]
Between laser and laser
r, 20 [5,50]
base
Isolation springs r r, 500 [50,600]
Fire lock (K/W) T 20 [5,25]
Between shell and radia-
r 20 [5,25]

tor

heat transfer coefficients between each component may
have some slight deviations due to different processing
techniques such as the uncertainty of clamping force,
surface treatment process and so on. Thus, they should
be handled separately during the process of correlation.

Table 6 Parameters to be correlated — Heat consump-
tion

x 6 R SH-HEE
Heating Components Name Initial value /W Range/W
Motor Controller q, 12 [10,14]
Laser Controller q, 14 [12,14]
Data Transmission q; 1.4 [1,3]
Scanning motor q, 4.6 [2,5]

Otherwise, there are 2 kinds of heat sources: one is
produced by the components in Table 6, the other one is
from the heaters controlled by PID or inherent to the in-
struments. The former should be correlated because it is
unknown exactly, while the latter can be simply calculat-
ed like Table 7 based on the duty cycle in orbit.

Table 7 The actual heating output of the thin heating
elements in orbit
*x 17

HEMARENERERE

Actual heating power (W)

Component be heated

10 °C case 20 °C case
Baseplate—1 10. 49 16.74
Baseplate-2 2.81 3.88
Interferometer —1 0.15 0.31
Interferometer -3 0.05 0.15
Moving mirror 1 1
Data collector 9 9
Front box 15.9 15.9

There are a total of 44 input parameters to be cor-
rected, including 11 for radiation, 29 for thermal con-
duction, and 4 for heating consumption. And the output
parameters include a total of 6 temperature values for in-
terferometer 1-4, baseplate 1-2.

2 Method of correlation

The structure of Intelligent Correlation Platform for
Thermal Model (ICP-TM) is shown as Figure 2, which
has achieved automated, intelligent and precise correla-
tion process of thermal model for infrared payloads. It is
primarily divided into three modules: a, b, and ¢,
which will be introduced separately below.

2.1 Establish a workflow

Establish an automated workflow in optimization
software like Optimus, which includes input parameters,
running macro files (macro files are recorded by simula-
tion software like UG and mapped between parameter ma-
trices in optimization software like Optimus, then rewrite
new macro files to run) , simulation calculations, and ex-
porting temperature results. Replace the input parame-
ters with LHS (Latin Hypercube Sampling) in the macro
file to do iterative calculations, and repeat it until the it-
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eration reaches N, , calculated by the Eq. 2"’ decided by
sensitivity analysis. Determining the initial required sam-
ple size for sensitivity analysis can be done using the con-
fidence interval method. The first idea that should be in-
troduced is that “It is important to understand that the
output samples from simple Monte Carlo consists of inde-
pendent output values from the output distribution, irre-

v [15]

spective of the number of uncertain inputs’ A com-

monly used approach is to calculate the width of the confi-

dence interval for parameter estimation and then deter-
mine the sample size based on the desired confidence lev-
el and precision.

2N,s ’

Nmin - ( Ax ) ’ (2)
where Ax is the width of the interval in which the mean is
expected to be found with a confidence level given by
N,. When the confidence level is 95%, then N, =1. 96.
For this question, an accuracy of 0.2 °C (Ax =0.4 °C)
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is sufficient. If the initial estimate of the standard devia-
tion for a node temperature is s =2 °C, a Monte Carlo sim-
ulation with N,, =384 runs of the model will assure.
2.2 Sensitivity analysis and build surrogate mod-
el

To reduce the dimensional of the problem and identi-
fy the input parameters that have the greatest impact on
the temperature results of the optical payload, it is neces-
sary to conduct sensitivity analysis in a targeted and di-
rectional manner by correlating them with reference data
1 The sensitivity parameters are used as input parame-
ters, and the calculated temperature is used as output pa-
rameters to construct a surrogate model. The Spearman
rank coefficient was widely used to rank the degree of in-
fluence of input variables on output "', The coefficient is

calculated by the Eq. 3",

61 P(C) - P(T)F
Ry=1-—=1 ., (3)

m(m* - 1)
where m is the sample size of training, C, represents the
temperature calculated by simulation, T, represents the
temperature predicted by the surrogate model. The larger
the Rs value, the greater the impact of this parameter on
temperature results.

Once the sensitivity parameters are obtained, the in-
put parameters are significantly simplified, thereby es-
tablishing a mapping relationship between the sensitivity
parameters and the output temperature results, and this
relationship can be called surrogate model. Such a surro-
gate model can replace simulation calculations, thereby
improving the efficiency of subsequent parameter optimi-
zation. Many standard machine learning models have
emerged to replace simulation methods with surrogate
models™*" , like Kriging (Or Gaussian process) "',
ANN"" (Artificial Neural Network) , DNN'Z: 2 (Deep
Neural Network) , RBF'™™! (Radial Basis Function) or
SVR™ (Support Vector Regression) and so on. All of
these models have been used for surrogate models instead
of simulation, among them Kriging is particularly suit-
able for replacing computer simulation models and has
strengths shown as following " **".

1. Appropriate for highly nonlinear problems;

2. Well-suited for data with deterministic errors;

3. Suitable for applying to problems up to 50 param-
eters;

4. More accurate approximations over a wide range
of sample size.

The Kriging model, an optimal linear unbiased esti-
mation method, was initially used in geological research
and then gradually applied in aerospace, automotive,
materials processing, etc. (2] Recently, due to its effi-
ciency and accuracy, Kriging interpolation has been one
of the most favored methods in the aerospace applica-
tions' ™", It uses a simple linear regression to outline
the shape of the interpolated surface after training
points, and incorporates a random process to approxi-
mate the response surface of real data by weighting the
correlation of nearby points™. It can be described as

the Eq. 4",

Jui(X) = F(Bx) + e(x) =f"(x)B + &(x) , (4)
where f7(x) is a polynomial vector of the training sam-
plex, the term approximates the drift; B is regression pa-
rameters, they are obtained through Maximum Likeli-
hood Estimation (MLE), which makes them most consis-
tent with the observed data. The method relies on the as-
sumption that the observed data is the result of a Gauss-
ian process; &(x) is the realization of the stochastic pro-
cess approximates the local deviation; X including X, X;
are two training samples. According to the thermal analy-
sis in section 2. 1, for this issue, the input parameters of
the surrogate model include oy, &y, h, R, R,, and Q
mainly. Define sampling points as
x = {xl, -~-,x,,} C R", where x is the value of the input
parameter, R" is n-dimensional Euclidean space, i. e.
parameter space, which determines the range of parame-
ter values. Then, the input spatial sampling point matrix
is X=[X,
ture of key points of components mainly. Similarly, a sin-

T
X\] . The output parameters are tempera-

gle temperature output is defined as & = {Tl, ~--,Tm},

where T is the output parameter temperature. The output
spatial sampling point temperature matrix is T =
[t ---tw]T. The detailed calculation principles regarding
this formula can be found in reference “*.

The size of co-ownership N sampling points of the
data sets are generally determined by the Eq. 5"

N = n(n2+ 1) . (5)
where n represents the number of input parameters x. If
the number of iterations for sensitivity analysis in Eq.
(2) is less than N, further increasing the number of sim-
ulation runs is necessary to ensure the accuracy of the
surrogate model.

To meet the accuracy requirements of surrogate mod-
el, we need to take into account the accuracy and time-
cost simultaneously. The most commonly used method in
reality is to use the expected test error on the test set to
calculate generalization error. Therefore, we often divid-
ed the data sets into 80 % training set, 10 % validation
set, and 10 % test set. After the model training is com-
pleted, the training error and validation error of the surro-
gate model can generally be represented by MSE (Mean
Square Error) for test set, which is the average square of
the overall prediction error on the test data sets based on

Eq. 6[25ﬁ'
1 & .
MSE = 5= > (v, = 5.F . (6)
test =1

is the sample size, y, represents the calculated

where N,
temperature value of simulation, ¥, represents the temper-
ature prediction value of the surrogate model. The small-
er the MSE, the better the quality of the surrogate model.
2.3 Optimization

The criterion for determining the correlation effect is
achieved using a function. The Object refers to a function
that represents the deviation between the experimental
temperature data £, and the calculated temperature data
C., as shown in Eq. 7.
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Object = min(Z(Ci -E)) ., (7)

Due to the adaptive optimization algorithm finds the opti-
mal point by gradually reducing the area of interest
around the point, it can gradually improve and optimize
the model with the increase in data and experience,
achieving better results and accuracy. Therefore, in the
subsequent parameter optimization, the adaptive optimi-
zation algorithm is used to optimize the parameters. The
implementation steps ' of this algorithm are shown as fol-
lowing Figure 3.

Where y,“" is the value of the output variable cal-
culated by the Kriging surrogate model in iteration.

Through the above process, the input parameters
are iterative optimized based on the Kriging surrogate
model. After determining the main correlation methods

for the ICP-TM platform, the thermal model for infrared

payloads on FY-3E/HIRAS-II can be correlated to in-or-
bit data.

3 Results and discussion

3.1 Sensitivity analysis

According to Eq. 2, a total of 384 simulations have
been calculated after iterative calculation of simulation
and calculating this Spearman rank correlation coeffi-
cient by ICP-TM. Finally, the sampling characteristics
of input parameters follow uniform distributions, the
mean and variance of the output temperature results tend
to stabilize. The sensitivity parameters obtained from
each sensitivity analysis tend to stabilize to a total of 13
sensitive parameters. Thus, the sample set is sufficient
to reflect the sensitivity situation.

Due to the placement of uniform temperature graph-
ite sheets on the surface of the interferometer, the tem-
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perature differences among the four temperature measur-
ing points are very small. Consequently, the obtained
sensitivity parameters are also very close as shown as Fig-
ure 4(a). However, for the two measuring points on the
baseplate, as shown in Figure. 1(b), one is located at
the bottom of the optical component baseplate and the
other at the bottom of the motor component baseplate.
Therefore, their sensitivity parameters need to be consid-
ered separately shown as Figure 4(b) and Figure 4(c).

According to Figure 4(a)(b) (¢), in the 44 parame-
ters, there are totals of 13 input parameters, all of which
have significant impacts on the readings of the three tem-
perature measuring points. The sensitive parameters of
the interferometer and the baseplate-1 are very similar be-
cause their positions are close. The parameters that have
the greatest influence (1>Rs>0.3) on their temperatures
are the contact resistance between the shell and radiator
(r,) , fire lock (rj) , between the laser and laser base
(r,). This indicates that the overall temperature level of
the payload primarily depends on the temperature bound-
ary conditions with surrounding components, which is
consistent with our general understanding. The parame-
ters that have the general influence (0.3>Rs>0.2) on
their temperatures are the thermal conductivity directly
related to heat or cold sources heat flux boundary condi-
tions, like ¢,, ¢,, q,, h,, h,, and the infrared emissivity
of black anodizing. The heat transfer coefficient h; and
h,, heat consumption ¢, and the emissivity of OSR (&,)
have slight influence (0. 2>Rs>0. 1) , and the other 31
parameters are not sensitive.

The temperature measuring point of the baseplate-2
is located near the scanning motor, motor controller, and
black body, hence it will also be influenced by the tem-
perature levels of these components. Of course, it will al-
so be influenced by the temperature boundary conditions
of the surrounding environment. Thus, the greatest sensi-
tive parameters are the heat from scanning motor (g,)
and motor controller (¢,). The differences of other pa-
rameters with the previous ones are not significant.

Specifically, some parameters have positive sensi-
tivity coefficients, while others have negative ones. This
indicates whether the parameters are positively or nega-

tively correlated with temperature. Overall, an increase
in parameters related to heat sources tends to raise the
load temperature like ¢,, ¢,, g5, ¢, When there is in-
creased heat transfer at the high-temperature boundary,
the load temperature rises like r,, h;. Conversely, when
there is increased thermal resistance at the low-tempera-
ture boundary, the load temperature also rises like, r,,
r;, h, The higher the emissivity of the heat dissipation
surface, the stronger the heat dissipation ability, result-
ing in lower temperatures like £,and £, When the con-
tact between the shell and the baseplate is better, the
temperature uniformity of the load improves. Higher
shell temperatures reduce the heat dissipation of internal
loads, therefore h,is negatively correlated with tempera-
ture.

3.2 Correlation

Take the 13 sensitive input parameters and 6 output
temperature parameters into building the Kriging surro-
gate model by ICP-TM. The statistical results of the sur-
rogate model are shown in Table 7 in Table 8.

According to Eq. 5, for the 13 input parameters, at
least 91 iterations of simulated data sets are required.
The data set used in the previous sensitivity analysis was
quite sufficient, so there is no need to increase the data
set further. Firstly, in terms of the time-cost, it is indi-
cated that after using the Kriging surrogate model, the
time of simulation can be shortened from 1 h 25 min to
less than 0.1 s, the computational efficiency has been
greatly improved, which is extremely beneficial for sub-
sequent parameter optimization. Secondly, in terms of
the accuracy of surrogate model, for test data set, the av-
erage predicted temperature error is within 0.4 K. In
summary, for the demands for high-dimensional input pa-
rameters, strong non-linearity, high accuracy and com-
putational efficiency of thermal model for space borne op-
tical payloads, the Kriging surrogate model can meet all
of them currently, especially for this case.

After establishing the surrogate model, it is turned
to perform optimization on the ICP-TM platform with Ob-
Ject based on Eq. 7. The settings for the adaptive region
algorithm are: Population size-240; Average termination
step-0. 01; Maximum iteration count-300, From this, up
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Table 7 Results of surrogate model
x 7 REREBERE

Evaluating Indicator

Result
33min53s

Time for training
less than 0. 1s
0.188
0. 369K

Time for single calculate
MSE of test data set

Average absolute prediction error

to 72,000 computation points can be generated. Actual-
ly, the Object has already converged after only 43 itera-
tions with 10, 560 computations, the optimization pro-
cess took only about 1 minute. The comparison of the to-
tal time cost between ICP-TM and manual correlation is

shown in Table 8.

Table 8 Time—-cost compared between ICP-TM
manual correlation

x 8 ICP-TM 5FHhiriRFERXTLE

Time—cost of single

and

Method Process Total time-cost
process
About 3
Manual Manual correlation About 3 months
months
Iterative simulation of ~ About 7 days with
384 data set 3 computers
ICP-TM  Build Kriging surro- In 8 days
In 34 min
gate model
Adaptive optimization In 1 min

Both manual and ICP-TM correlations were per-
formed on an HP (Hewlett-Packard, a computer brand)
7840 desktop workstation equipped with a 32-core pro-
cessor. The UG software used was the 2015 version, and
all TMG simulation calculations were executed using a
10-core parallel processing configuration. As both cali-
bration methods were conducted under identical hard-
ware conditions, this setup allows for a direct comparison
of computational efficiency.

In general manual correlation, the correlation works
heavily relies on the engineer’s experience and familiari-
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ty with the project. As a result, it is usually performed
by a single engineer on a single computer. Furthermore,
it is possible to make mistakes during each time the ther-
mal model parameters are modified. Even for a senior en-
gineer, 3 months is still quite tight. However, as for ICP-
TM, firstly, it avoids the issue of making coarse mistakes
when changing parameters by automated sampling and
playback macro file. Secondly, compared to manual cor-
relation, ICP-TM has reduced time costs by more than
two-thirds overall. Although it is undeniable that the
most lime-consuming process is iterative simulation and
construction of data set, it runs automatically once estab-
lished, the time cost can be reduced by parallel comput-
ing on computers and merging data sets. The time cost
has been reduced from 3 months to 8 days, approximate-
ly a 90% decrease.

After substituting the optimal parameters back into
the simulation model, the temperature cloud map of cold
case is shown as Figure 5(a). By comparing the tempera-
ture in orbit, predicted by surrogate model, calculated
by correlated simulation model, and calculated by pre-
correlated simulation model together, we can quantita-
tively evaluate the effectiveness and performance of the
ICP-TM platform. The comparison is shown in Figure 5
(b) and Figure 5(c). It is important to note that in Fig-
ure 5(b), due to the calibration accuracy of the thermis-
tor being 0. 5 K, there will be £0. 5 K errors in tempera-
ture measurements in orbit. To more clearly observe
whether the associated errors fall within +1 K, we have
additionally included curves for +1 K and -1 K. FErrors
beyond this range are considered to be outside the +1 K
accuracy threshold.

The result indicates that the error of predication for
main temperature control components have reached with-
in £ 1 K from 5 K with the in-orbit temperature after the
correlation. This result is more optimistic than the re-
sults found like 3 K in current literature in Table 1. We
have met the accuracy requirements of the payload in
cold case for thermal model correlation.

Furthermore, whether the optimal parameters ob-
tained under cold conditions are applicable to other oper-
ating conditions of the model needs further validation.
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3.3 Validation

Based on Table 2, we selected the hot case for fur-
ther validation. To ensure that the results are solely relat-
ed to changes in operating conditions, none other chang-
es were made to the model structure and settings. After
calculation, the temperature cloud map of hot case is
shown as Figure 6(a). We compared the temperature of
simulation after the correlation with the original simula-
tion and in-orbit temperature. This indicates that these
temperature sensors can roughly characterize the applica-
bility of the optimal parameter combination obtained from
correlation to the hot case. The results are shown in Fig-
ure 6(b) and Figure 6(c).

It is indicated that most of these 6 measurement
points meet the expected prediction error within £1 K ex-
cept for the sensors on the baseplate-2, approximately
1. 4 K lower than in-orbit data. More detail, after the cor-
relation, the temperatures were slightly lower than the in-
orbit temperatures for most measurement points in cold
case, while in hot case, they were mostly higher. Specif-
ically, the temperature of baseplate-2 is not necessarily
the case. For these 2 special phenomena, they may be
because of the 4 reasons:

1. Due to the degradation of some coatings, affect-
ed by the space environment resulting in a slight change
in payload heat dissipation capacity, like the increasing
of solar absorption rate of OSR, result in the rising of
temperature.

2. Due to the temperature difference between the
two cases, different temperatures may cause changes in
the thermal physical properties of the parameters.

3. Due to different temperature boundaries, the
model may experience errors. The results of correlation
only obtained sensitive parameters, which cannot reflect
the complete physical model.

4. Due to the location of the sensor of baseplate-2,
it is closer to exposed areas than others. Perhaps it re-
ceives greater interference from changes in external heat
flux.

Although not all points have errors within =1 K like
the cold case, this result is still inspired that represents a

Temperature measuring
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significant improvement compared to the overall predic-
tion error of approximately 5 K before the correlation or 3
K in other literature.

3.4 Discussion

The proposed approach does have limitations. To
further define the scope and conditions for applying the
method discussed in this paper, the following recommen-
dations based on its inherent characteristics are offered :

1. Due to the "black box" nature of the DNN surro-
gate model used in the calibration process, there is a par-
tial disconnect from the underlying thermal processes.
As a result, the thermal parameters obtained through
ICP-TM may not represent true physical values. There-
fore, it is essential to use the calibrated thermal model
and its thermal parameters together as a set.

2. The logic and approach of the ICP-TM method
are theoretically universal in the field of thermal model
correlation, because the process involves generally pa-
rameter identification, surrogate model construction,
and parameter optimization. However, thermal models
can vary significantly across different projects, and even
across different operating conditions within the same proj-
ect. Thus, the generalization capability of the correlated
thermal model must be robust.

3. The establishment of the surrogate models in this
method is based on data sets generated from hundreds of
iterations of experimental design using the original ther-
mal model. If the physical model or basic structure of the
original model changes, the previously generated data set
will largely lose its relevance, necessitating new itera-
tions to generate a fresh data set—thereby exponentially
increasing time costs. Therefore, it is advisable to em-
ploy this method only after the project’s physical model
and the thermal boundaries with surrounding components
are firmly established.

In future research, to ensure the correlation results
are equally applicable in validation cases or other operat-
ing cases, considerations can be made in the following 2
aspects:

1. Further refinement is needed in improving the
prediction accuracy of the Kriging surrogate model
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through improved algorithms to meet the requirements for
higher precision in projects such as black body calibra-
tion components.

2. The current parameters, being the results of opti-
mization, may to some extent lose their physical signifi-
cance and may not represent the true values. Subsequent
correlation results from multiple projects could potential-
ly derive more universally applicable parameters or pat-
terns of parameter values through big data analysis.

4 Summary
A study on method named ICP-TM was established

in this paper by building convenient workflow, sensitivity
analysis, constructing advanced Kriging surrogate mod-
el, and using efficient adaptive region optimization algo-
rithm. It achieved an intelligent and automated process
for correlating the thermal model with in-orbit data for in-
frared optical payloads on FY-3E/HIRAS-II.

It has been verified of the feasibility and superiority
of this platform in cold and hot cases. It greatly improves
the efficiency of thermal model correlation about 90%
from 3 months to 8 days, and the accuracy of thermal
model prediction has been improved significantly within
+1 K compared with 5 K before the correlation or 3 K in
other literature. This work is of great significance for pre-
cise thermal design and temperature prediction for infra-
red payloads in orbit.
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