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Abstract： The encoding aperture snapshot spectral imaging system， based on the compressive sensing theory， 
can be regarded as an encoder， which can efficiently obtain compressed two-dimensional spectral data and then de⁃
code it into three-dimensional spectral data through deep neural networks.  However， training the deep neural net⁃
works requires a large amount of clean data that is difficult to obtain.  To address the problem of insufficient train⁃
ing data for deep neural networks， a self-supervised hyperspectral denoising neural network based on neighbor⁃
hood sampling is proposed.  This network is integrated into a deep plug-and-play framework to achieve self -super⁃
vised spectral reconstruction.  The study also examines the impact of different noise degradation models on the fi⁃
nal reconstruction quality.  Experimental results demonstrate that the self-supervised learning method enhances the 
average peak signal-to-noise ratio by 1. 18 dB and improves the structural similarity by 0. 009 compared with the 
supervised learning method.  Additionally， it achieves better visual reconstruction results.
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摘要：基于压缩感知理论的编码孔径快照式光谱成像系统可以看作编码器，高效获取压缩后的二维光谱数

据，再通过深度神经网络解码为三维光谱数据。然而，深度神经网络的训练需大量难以获得的干净数据。针

对深度神经网络训练数据不足的问题，提出一种基于邻域采样思想的自监督高光谱去噪神经网络，并将其嵌

入到深度即插即用框架中，最终实现自监督光谱重建，并验证不同噪声退化模型对最终重建质量的影响。实

验表明，在不需要干净数据作为标签的情况下，自监督学习方法相较有监督学习方法的平均峰值信噪比提升

1.18 dB，结构相似度提升0.009，且获得了更优的视觉重建效果。
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Introduction
Spectral imaging technology enables the simultane⁃ous acquisition of both spectral and image information［1］.  It stands as a crucial component of modern remote sens⁃ing， serving as a significant tool for both earth observa⁃tion［2］ and space exploration［3］.  The three-dimensional spectral data cube contains a wealth of information， but its acquisition comes with higher costs， often necessitat⁃ing multiple scans.  In recent years， many advanced ad⁃vances have been made in the field of computational im⁃aging［4］.  The coded aperture snapshot spectral imager 

（CASSI） system offers a solution by compressing hyper⁃spectral images using compressed sensing theory ［5］.  This system modulates the spectral data cube， compresses it into two-dimensional measurements， and then utilizes al⁃gorithms for reconstruction.  The physical structure of CASSI has two types， dual-disperser［6］ and single-dis⁃perser［7］.  Single-disperser structure has achieved applica⁃tions in fields such as medicine［8］ due to its simpler physi⁃cal design.  The objective of compressed sensing image reconstruction is to restore the original high-dimensional signal x ∈ RN from a reduced set of linear measurements 
y ∈ RM ［9］.  Current compressed sensing reconstruction 
methods fall into two categories： model driven algorithms based on regularization prior and data-driven algorithms based on deep networks.  Classical model driven algo⁃rithms include orthogonal matching pursuit［10］， iterative hard thresholding［11-12］ and block compressed sening trans⁃forms［13］.  While model driven algorithms offer strong in⁃terpretability and generalization， it struggles with pro⁃cessing extensive spectral data， resulting in slower recon⁃struction speeds and poorer quality.  In recent years， deep learning has evolved rapidly， with some technolo⁃gies being applied to compressed sensing image recon⁃struction.  Deep learning-based reconstruction algorithms have shown superior performance in both simulations and real-world scenarios ［14］.Xiong et al.  pioneered the use of deep learning methods for hyperspectral compressive sensing recon⁃struction ［15］.  They improved reconstruction using convo⁃lutional neural networks and residual connections.  Choi 
et al.  developed a convolutional autoencoder to obtain a nonlinear spectral representation of hyperspectral imag⁃es， combining the learned autoencoder prior and total variation （TV） prior as a composite regular term， and solving the problem using the alternating direction multi⁃plier method ［16］.  Wang et al.  designed HyperReconNet to reconstruct hyperspectral image by cascading spatial and spectral networks ［17］.  Miao et al.  proposed a λ -net for compressive sensing reconstruction of hyperspectral images and videos through two phases ［18］.  They used Generative Adversarial Networks in the first phase of re⁃construction and U-net in the second phase to enhance re⁃construction.  Meng et al.  proposed TSA-net， incorporat⁃ing a spatial-spectral self-attention module into U-net and integrating scatter-grain noise in the training process， significantly improving reconstruction of real data ［19］.  Zheng et al.  suggested a flexible plug-and-play （PnP） 

framework for hyperspectral image reconstruction， en⁃hancing both quality and speed ［20］.  Wang et al.  pio⁃neered the application of the Transformer architecture to compressive sensing spectral imaging with the GAP-CSCoT network， maintaining high reconstruction quality while reducing runtime ［21］.  Chen et al.  proposed a Proxi⁃mal Gradient Descent Unfolding Dense-spatial Spectral-attention Transformer （PGDUF） method that can acceler⁃ate the training of models based on the Transformer archi⁃tecture without affecting the reconstruction results［22］.  Chen et al.  utilised low-rank subspace representations of hyperspectral images in combination with deep neural networks to achieve better reconstruction results and stronger interpretability［23］.  Luo et al.  proposed a Trans⁃former-based HSI reconstruction method called dual-win⁃dow multiscale Transformer （DWMT）， which is a coarse-to-fine process， reconstructing the global properties of HSI with the long-range dependencies， and maintaining better reconstruction quality［24］.By applying deep learning to compressive sensing reconstruction， high quality and fast reconstruction can be achieved through the powerful deep feature representa⁃tion capability.  However， most existing research on deep learning-based reconstruction algorithms is limited to su⁃pervised learning approaches， restricting their applicabil⁃ity in real-world scenarios.  This is because supervised learning approaches require a large number of clean im⁃ages to be used as labels， and acquiring clean images in the hyperspectral domain is expensive.  In the realm of deep learning denoising， self-supervised learning has shown promise.  In cases where the noise is zero-mean， the Noise2Noise method demonstrates that for a clean scene x and two independently noise-containing images y 
and z observed， a denoising network trained with ( y，z ) pairings is equivalent to a network trained with 
( y，x ) pairings.  Neighbor2Neighbor extends Noise2Noise 
by downsampling a single noise-containing image and training the two noise-containing sub-images obtained from downsampling as model inputs and labels.  Howev⁃er， these self-supervised learning methods have only been tested for their denoising efficacy on RGB images or greyscale images and have not explored their perfor⁃mance on hyperspectral images.In this paper， we propose a self-supervised compres⁃sive sensing hyperspectral image reconstruction algo⁃rithm based on PnP method and Neighbor2Neighbor strat⁃egy.  Initially， we train a self-supervised hyperspectral denoising network using Neighbor2Neighbor， incorporat⁃ing a channel attention mechanism to capture inter-spec⁃tral correlations in hyperspectral images.  Subsequently， the denoising network is embedded into a deep plug-and-play framework based on the alternating multiplier meth⁃od to achieve compressive sensing image reconstruction with a denoising model.  We evaluate the algorithm’s ef⁃fectiveness in terms of both data metrics and visual ef⁃fects， and compare the effects of different noise degrada⁃tion models on the final reconstruction results.The main contributions of this paper are as follows：

（1）Based on Neighbor2Neighbor and SENet， we 
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propose a self-supervised hyperspectral image denoising network model Self-HSIDeCNN for subsequent com⁃pressed sensing image reconstruction.
（2）On the basis of Self-HSIDeCNN and PnP meth⁃od， we propose PnP-Self-HSIDeCNN method to imple⁃ment self-supervised hyperspectral compressed sensing image reconstruction.
（3）Through ablation experiments， we verified the effects of multiple hyperparameters in the PnP-Self-HSIDeCNN method on the reconstruction speed and re⁃construction results， laying a foundation for its practical application.The rest of this paper is organized as follows： sec⁃tion 1 describes the mathematical model of CASSI； sec⁃tion 2 introduces the mathematical principles of PnP method and Neighbor2Neighbor methond， and introduc⁃es self-supervised denoising network Self-HSIDeCNN； section 3 demonstrates the effectiveness of our proposed self-HSIDeCNN method through extensive experiments； section 4 concludes the paper.

1 Mathematically model of CASSI 
Let X ∈ RNx × Ny × Nλ be the spectral data cube， where 

x and y are the spatial dimensions and λ is the spectral 
dimension.  Let M * ∈ RNx × Ny be the CASSI system physi⁃cal mask， which can be regarded as a matrix of size Nx ×
Ny.  Each element of this matrix obeys a 0-1 distribution with probability p and is used to modulate the 3D spectral 
data cube signal.  Let X' ∈ RNx × Ny × Nλ be the spectral data after passing through the mask plate， and for the nλ-th band， we have

X'(:,:,nλ ) = X (:,:,nλ )⊙M * ， (1)
where ⊙ represents the element-wise multiplication.  Af⁃ter passing through the dispersion prism， the data cube 
X' is shifted in the y-axis.  Let the offset signal be 
X '' ∈ RNx × ( )Ny + Nλ - 1 × Nλ， and λc be the reference wave⁃length， we have

X ''(u,v,nλ ) = X'( x,y + d (λn - λc ) ,nλ ) ， (2)
where (u，v ) are the pixel coordinates in the plane of the detector， λn is the wavelength of the nλ-th band， λc is the centre wavelength， d (λn - λc ) denotes the spatial offset 
of the  nλ-th band.  This gives the measured value y (u，v ) 
at the position of the detector plane (u，v ) is

y (u,v) = ∫
λmin

λmax  x''(u,v,nλ ) dλ . (3)

The detector receives signals from all bands and finally 
obtains a two-dimensional measurement Y ∈ RNx × ( )Ny + Nλ - 1.  Considering the noise during the measurement， we have

Y = ∑nλ = 1
Nλ  X ''(:,:,nλ ) + G . (4)

Let the offset physical mask plate matrix （this ma⁃
trix can be fixed or variable［25］） be M ∈ RNx × ( )Ny + Nλ - 1 × Nλ， 
and the offset data cube is F͂ ∈ RNx × ( )Ny + Nλ - 1 × Nλ， we have

M (u,v,nλ ) = M *( x,y + d (λn - λc ) ) ， (5)
F͂ (u,v,nλ ) = F ( x,y + d (λn - λc ) ,nλ ) . (6)

The final obtained measurement Y can be expressed as［19］

Y = ∑nλ = 1
Nλ  F͂ (:,:,nλ )⊙M (:,:,nλ ) + G . (7)

The complete process is shown in Figure 1.  The da⁃ta obtained by CASSI is a two-dimensional measurement similar to Y.  This data is characterised by a large amount of information and a small storage capacity.  By means of appropriate algorithms， we were able to recover it as the original three-dimensional data cube.
2 Method 
2. 1　PnP method　The PnP method can decompose the original prob⁃lem， which is difficult to solve， into subproblems that are easy to solve with good results［26］.  Hyperspectral com⁃pressive sensing image reconstruction can be conceptual⁃ized as the task of addressing the subsequent optimiza⁃tion problem：

arg min
x

 12 ∥ y - Ax ∥ 22 + λR (x) ， (8)
where y is the measured value， x is the original signal 
and λR (x) is the regularity term.  The basic idea of PnP 
method for inverse problems is to use a pretrained denois⁃er for the desired signal as a prior.  The method decom⁃poses the whole problem into easier subproblems and solves the subproblems alternately in an iterative man⁃ner.  The denoising network can be used as a flexible plug-in （i. e. ， it can be easily changed） in the process.  Specifically， problem （8） can be decomposed into the following subproblems using the alternating multiplier method［27］：

xk + 1 = arg min
x

1
2 ∥ Ax - y ∥ 22 + ρ

2 (x - ( zk - uk ) ) 2
2,(9)

zk + 1 = arg min
z

λR ( z ) + ρ
2 ( z - (xk + 1 + uk ) ) 2

2, (10)

Fig.  1　CASSI forward model
图1　CASSI系统前向模型
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uk + 1 = uk + (xk + 1 - zk + 1 ) ， (11)
where z is the auxiliary variable， u is the multiplier， ρ is 
the penalty factor， and k is the number of iterations.  Let 
the auxiliary function proxg ( v ) = arg min

x
g (x ) +  12 ∥ x -

v ∥ 22， then Eqs.（9） - （11） can be written in the follow⁃ing form：
xk + 1 = prox f

ρ

 ( zk - uk ) ， (12)
zk + 1 = prox λR

ρ

 (xk + 1 + uk ) ， (13)
uk + 1 = uk + (xk + 1 - zk + 1 ) ， (14)

where f (x ) = 1
2 ∥ Ax - y ∥ 22.  Eq.  （12） has a solution 

in closed form， and Eq.  （13） can be viewed as a denois⁃ing prior.  The final PnP-ADMM solution for the compres⁃sive sensing hyperspectral reconstruction can be written as ［28］

xk + 1 = ( zk - uk ) + A⊤[ ]y - A ( )zk - uk

[ ]Diag ( )AA⊤ + ρ
， (15)

zk + 1 = Dσ̂k(xk + 1 + uk ) ， (16)
uk + 1 = uk + (xk + 1 - zk + 1 ) ， (17)

where σ2 = λ/ρ is the estimated noise bias and Dσ̂k
 is the 

denoiser.  It should be noted that the performance of the noise reducer Dσ̂k
 directly affects the final reconstruction 

results.  The noise reducer Dσ̂k
 used here in this paper is a 

self-supervised hyperspectral denoising network for the purpose of final self-supervised image reconstruction.  During the practical application， the initial inputs con⁃sist of 2D measurements acquired from the detector and the mask matrix.  Following several iterations of the pre-trained denoising network， the final reconstructed data cube is obtained.  This process is shown in Fig.  2.
2. 2　Neighbor2Neighbor method　The most critical part of the PnP-ADMM solution for compressive sensing hyperspectral reconstruction is the part of Eq.  （16）， which can be approximated using a deep learning model.  Specifically it can be solved using 

models in deep learning image denoising， but these mod⁃els are mostly trained by supervised learning.  There are two primary unsupervised deep learning denoising meth⁃ods， one relies on deep image prior denoising method， which doesn’t require training but has longer reconstruc⁃tion times.  The other is a denoising method based on Noise2Noise concept， which still needs training but can significantly diminish the reconstruction time.The core idea of Noise2Noise is that for an unob⁃served clean scene x and two observed independent noise-containing images y and z， a noise reduction network 
trained with ( y，z ) pairings is equivalent to a network 
trained with ( y，x ) pairings， provided the noise is obey⁃
ing a zero mean ［29］.  The optimisation objective of Noise2Noise is

arg min
θ

Ex,y,z( fθ(y) - z ) 2
2 ， (18)

where f (·) is the noise reduction network.  Noise2Noise 
requires at least 2 separate noise-containing images for each scene， which is difficult to satisfy in real scenes.  To increase the practical value of Noise2Noise， the theo⁃ry of Noise2Noise is extended.  For a single noisy image， one of the possible ways to construct two similar but not identical images is downsampling ［30］.The Neighbor2Neighbor downsampling idea is shown in Fig.  3.  For a greyscale image y of size H × W， 
divide it into H2 × W

2  blocks of pixels of size 2 × 2.  Then 
two separate pixels are randomly sampled from each pixel block， which are finally combined to form two sub-sam⁃
pled image g1( y ) and g2( y ) of size H2 × W

2 .  At this point 
Eq.  （18） becomes

arg min
θ

Ex,y( fθ(g1(y ) ) - g2(y ) ) 2 . (19)
Reference ［30］ demonstrated that using Eq.（19） directly as the optimisation objective would end up with denoising results that are too smooth.  Therefore， we con⁃sider adding a penalty term to Eq.  （19） to get the final 

Fig.  2　PnP image reconstruction framework
图2　PnP图像重建框架
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optimisation objective as
min

θ
 Ex,y( )fθ( )g1( )y - g2( )y 2

2

+γEx,y( )fθ( )g1( )y - g2( )y - g1( )fθ( )y + g2( )fθ( )y 2

2. (20)
2. 3　Hyperspectral denoising network　Deep denoising models for greyscale and RGB imag⁃es have gained longevity in recent years.  We propose deep plug-and-play self-supervised hyperspectral image denoising network （Self-HSIDeCNN）.  FFDNet is chosen as the base model framework for our model， which has the advantages of being flexible and fast， and has already shown excellent performance in denoising RGB images and greyscale images ［31］.  We use FFDNet as a backbone network for two main reasons.  Firstly， compared to UN⁃et， a commonly used backbone network in image process⁃ing， FFDNet is designed for image denoising， and the noise level map can be varied during training to make the model flexible for various levels of noise.  Second， com⁃pared with the transformer architecture， which has stron⁃ger feature extraction capability， FFDNet's training and inference are faster， and its downsampling module can ef⁃fectively reduce the model's requirement on computation⁃al resources.  The structure of our neural network is shown in Fig.  4.In the process of performing frame-level noise reduc⁃

tion， for the nλ-th band of the spectral data cube 
X ∈ RNx × Ny × Nλ， in addition to inputting this band of size 
Nx × Ny into the neural network， the images of its neigh⁃bouring K bands will also be inputted （in this paper， we take K = 6）.  For K + 1 band images at this point， follow⁃ing the sampling strategy in 2. 2， two subgraphs， both of 
size (K + 1) × Nx2 × Ny2 ， are obtained.  One subgraph y1 
is used as model input and one subgraph y2 is used as la⁃
bels to compute the loss function.  For subgraph y1， in or⁃
der to speed up model training， another downsampling is performed after input to the model.  Together with the noise estimation level map， the final model has an input 
size of (4K + 5) × Nx4 × Ny4 .

In order to better capture the correlation between dif⁃ferent spectral bands of hyperspectral images， an inter-channel attention structure SENet is added to form a SE⁃Block after every two convolutional layers in the neural network.  This structure is equivalent to assigning a sepa⁃rate weight to each channel feature map， which increases the number of parameters in the model， but enhances the non-local feature extraction capability of the model.  The SENet structure is shown in Fig.  5.  A total of seven SE⁃Blocks are used in this paper， each using a convolutional kernel of size 3 × 3 and a ReLU activation function （the output of the last SEBlock does not use an activation func⁃

Fig.  3　Image downsampling method
图3　图像降采样方法

Fig.  4　Self-HSIDeCNN network architecture
图4　Self-HSIDeCNN网络结构
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tion）.  The feature map size is reduced to (K + 1) × Nx2 ×
Ny2  by up-sampling after 7 SEBlocks， and then the loss 
function is calculated with the sub-sampled image y2.  
The noise level σ in the noise level estimation map is ran⁃domly changed during the training process， allowing the model to flexibly adapt to different noises.

After obtaining the hyperspectral denoising model， we can train the model based on the Neighbor2Neighbor self-supervised learning method.  According to the optimi⁃zation objective shown in Eq.  （20）， the loss function is designed as
L = L rec + γ ⋅ L reg 

= ( )fθ( )g1( )y - g2( )y 2

2

+γ ⋅ ( )fθ( )g1( )y - g2( )y - ( )g1( )fθ( )y - g2( )fθ( )y
2

2
， (21)where g1，  2(·) is a stochastic downsampling function and 

fθ(·) is a noise reduction neural network.  γ is a penalty 
term （fixed at 5 in this paper） used to balance the level of detail preserved in the denoising results.  To keep the 
gradient stable， the gradients of g1( fθ (y ) ) and 
g2( fθ (y ) ) are not propagated during training.  This train⁃
ing process is shown in Fig.  6.  In the inference stage， we only need to input the noisy image into the model to obtain the denoised image directly.

For denoising models with supervised learning meth⁃ods， the models cannot be trained in the absence of clean images as labels.  For the compressed perceptual image reconstruction model with supervised learning method， the training data containing noise will make the model 

worse （we will discuss this content in the subsequent sec⁃tion）.  As can be seen from Figure 6， this self-supervised learning method only needs noise-containing images to complete the training of the model， without the need of clean images as labels.  The self-supervised learning ap⁃proach is significantly superior in the hyperspectral do⁃main where noise-free data is very expensive to obtain.
3 Experiments and results 

Our proposed method can be divided into two steps.  First， we train the hyperspectral denoising network based on the self-supervised approach.  Then， this network is directly embedded into the PnP framework for self-super⁃vised image reconstruction.  In this section， we first de⁃scribe the dataset and implementation details.  Then， to evaluate the effectiveness， the proposed method is com⁃pared with models trained based on supervised learning approach.  Furthermore， ablation studies are conducted to analyze the effect of hyperparameters on the results.
3. 1　Training details　Model training was performed using the CAVE hy⁃perspectral dataset， consisting of 32 scenes， each with a resolution of 512 ×  512 and containing a total of 31 bands from 400 nm to 800 nm.  Five of the scenarios were selected as the test set and the remaining scenarios as the training set.  The RGB images of the five test scenes are shown in Fig.  7.  To increase the training data for subse⁃quent training， this dataset was randomly cropped and data augmented （including flipping， rotating， mirroring， and combinations of these operations）.  A total of 33，480 data of size 256 × 256 × 7 were finally obtained for train⁃ing.  For the five test scenarios， the space was downsam⁃pled to a 256 × 256 × 31 data cube.  In this paper， the code was implemented using the PyTorch framework with 500 epochs using the Adam optimiser.  The initial learn⁃ing rate was set to 0. 000 1 and multiplied by 0. 5 after every 100 epochs.  Training of the entire network took ap⁃proximately 8 hours， using a machine equipped with an Intel Xeon CPU， 360 GB of memory， and four Nvidia RTX 4090 Ti GPUs with 24 GB RAM.
3. 2　Denoising results　Before comparing the reconstruction outcomes， it is essential to access both the supervised and the self-super⁃vised denoising results to investigate the impact of the Neighbor2Neighbor self-supervised learning strategy on the denoising outcomes.  The identical model， parame⁃ters， and training data are employed here， differing sole⁃ly in the loss function and back-propagation gradient.  For the supervised learning approach， the loss function is

L = ( fθ(y ) - x) 2
2 . (22)

For the self-supervised learning approach， the loss function is shown in Eq.  （21）.With the maximum pixel value of 255， let the Gaussian noise variance be σ and the Poisson noise inten⁃sity be λ.  In this paper， we compare four different noise degradation models， which are fixed Gaussian noise （σ =25）， range Gaussian noise （σ ϵ [5， 50]）， fixed Poisson 
noise （λ = 30）， and range Poisson noise （λ ϵ [5， 50]）.  

Fig.  5　SENet architecture
图5　SENet结构

Fig.  6　Self-supervised training process
图6　自监督训练过程
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Using peak signal to noise ratio （PSNR） and structural similarity （SSIM） as evaluation metrics.  The five test scenario metrics were averaged and the final results are shown in Table 1.

The self-supervised learning model， utilizing the Neighbor2Neighbor strategy， demonstrates superior per⁃formance compared to the supervised learning model across various noise degradation models.  This superiority arises from the slight disparity ε between the labels of the self-supervised learning model and the desired denoising results of the model inputs.  Additionally， with the incor⁃poration of the penalty term in the loss function， the mod⁃el achieves enhanced generalization and performs better on the test set.The hyperparameter γ is used to avoid overly smooth denoising results.  When γ = 0， it means that the 
penalty term in the loss function does not exist.  In such a 
case， fθ(g1(y ) ) and fθ(g2(y ) ) are not exactly the same， 
and the model tends to output the average value of 
fθ(g1(y ) ) and fθ(g2(y ) ) because the loss function 
achieves its minimum value at this point.  In order to veri⁃fy the influence of the superparameter γ on the denoising 
results， the noise in the training data is unchanged （this paper uses the Gaussian noise with variance of 25 and the Poisson noise with intensity of 30）， and only the val⁃ue of the superparameter is changed to verify the denois⁃ing effect of different models on the test set.  The final re⁃sults are shown in Table 2.For Gaussian noise， the denoising effect is first anal⁃ysed when γ = 0 and γ = 1.  When γ = 0， the penalty 
term does not exist， the denoising result will be too smooth， and the performance of Self-HSIDeCNN is not optimal.  However， because of the presence of downsam⁃pling and upsampling modules in Self-HSIDeCNN， the denoising outcomes exhibit excessive smoothness in the downsampled subgraphs.  However， despite this， the 

high-frequency information in the final output image of the model remains well-preserved after upsampling the subgraphs.  This explains why the denoising effect be⁃comes worse at γ = 1 （the presence of the penalty term 
makes the denoising inadequate）.  At γ = 5， although a 
small amount of noise is not removed due to the increase in γ， the original information of the image is better recov⁃ered （compared to γ = 0）.  At γ = 20， more noise is re⁃
tained along with the high-frequency detail information of the image， so the denoising effect becomes worse again.For Poisson noise， the trend is similar to that of Gaussian noise， but its optimum is achieved at γ = 2.  
This is because the model has a better denoising effect on Poisson noise.  At this point， only a smaller γ is needed 
to alleviate the problem of over-smoothing caused by the self-supervised learning method.In this paper， we fix γ = 5 for experiments， and the 
value of γ should be determined according to the scene 
characteristics and experimental results in practical ap⁃plications.
3. 3　Reconstruction results　The self-supervised learning model Self-HSIDeCNN based on Neighbor2Neighbor in 3. 2 can be directly em⁃bedded in deep plug-and-play architectures for compres⁃sive sensing image reconstruction.  We name it PnP-Self-HSIDeCNN.  Deep plug-and-play frameworks often re⁃quire a warm start to speed up convergence.  Here， the GAP-TV denoiser is used for 90 iterations first， and then the denoiser is switched to the self-supervised learning model for better reconstruction results.  In addition， for the estimated noise level σ at the time of reconstruction， it was set to 30 regardless of the noise degradation model 
（normalised to 0 to 1）.  As the iteration progresses， this parameter can be gradually decreased to enhance the re⁃

Fig.  7　RGB image of test scene
图7　测试场景RGB图像

Table 1　Comparison of denoising results
表1　去噪结果对比

Noise type
σ = 25

σϵ[5， 50]

λ = 30
λϵ[5， 50]

Supervised Model
38. 12 dB， 0. 951
37. 63 dB， 0. 924
38. 28 dB， 0. 964
38. 25 dB， 0. 966

Self-supervised Model
39. 33 dB， 0. 978
39. 16 dB， 0. 969
40. 25 dB， 0. 983
39. 86 dB， 0. 976

Table 2　The influence of hyperparameter γ on denois⁃
ing results

表2　超参数γ对去噪结果影响

γ

0
1
2
5

20

PSNR / dB
（σ = 25）

39. 27
39. 23
39. 26
39. 33
39. 30

SSIM
（σ = 25）

0. 970
0. 962
0. 965
0. 978
0. 977

PSNR / dB
（λ = 30）

40. 26
40. 23
40. 34
40. 25
39. 89

SSIM
（λ = 30）

0. 983
0. 981
0. 986
0. 983
0. 979
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construction quality.  We employ another reconstruction algorithm named PnP-HSI， which utilizes a denoising model trained through supervised learning with the PnP framework.To compare with end-to-end neural networks， we se⁃lected both U-net and TSA-net models.  U-net consists of two main components： an encoder and a decoder.  Each coding block contains two 3 × 3 convolutional layers and a 2 × 2 maximum pooling layer using the ReLU activa⁃tion function.  TSA-net， directly uses the structure from the Ref.  ［19］ without further changes.  For the dataset， the CAVE hyperspectral dataset is also used and its size is randomly cropped to 256 × 256 in the spatial dimen⁃sion for data augmentation， resulting in 5000 training da⁃ta of size 256 × 256 × 31.  The CASSI system forward model simulation was performed on the data cube before inputting the model， and the final model input was a 2D measurement of 256 × 316.  It is important to emphasize that our primary aim is to investigate the utilization of self-supervised learning in compressive sensing image re⁃construction and to analyze the influence of various noise degradation models on the reconstruction outcomes.  Con⁃sequently， we refrain from comparing our approach with current state-of-the-art models in terms of performance， as these models are trained using a supervised approach.The final comparison results are shown in Table 3.  In terms of reconstruction quality， the self-supervised re⁃construction model proposed in this paper outperforms both U-net and TSA-net in terms of PSNR and SSIM of the reconstruction results.  It can also be seen that the op⁃timal results were achieved by the self-supervised learn⁃ing model trained based on fixed Gaussian noise.  This is because the mathematical form of Dσ̂k
 in Eq.  （13） corre⁃

sponds to a fixed Gaussian noise denoiser.  Unless other⁃wise stated， the PnP-Self-HSIDeCNN used in the subse⁃quent comparison experiments was trained based on Gaussian fixed noise （σ = 25）.Figure 8 depicts the visual representation of a test scenario.  The image on the left exhibits the RGB image of the scene alongside the 2D measurements following simulation， while the image on the right showcases the reconstruction results obtained from various algorithms.  In Fig.  9， an enlarged view of the last band image on the right side of Fig.  8 is presented to facilitate a visual com⁃parison of its reconstruction quality.In the evaluation of hyperspectral images， we not 

only consider spatial metrics but also emphasize spectral metrics.  Figure 10 illustrates the reconstruction of the spectral profile of the central position for this scene.  For the spectral curves obtained from the reconstruction of different algorithms in Fig.  10（b）， we use Spectral An⁃gle Mapper （SAM） to evaluate their similarity with the real spectral curves， and this result is shown in the leg⁃end of Fig.  10（b）.  From Fig.  10， it can be seen that the re⁃constructed spectral curve based on PnP-Self-HSIDeCNN is most similar to the real spectral curve.Based on the aforementioned metrics， it is evident that the self-supervised reconstruction algorithm pro⁃posed in this paper， based on the deep plug-and-play framework， yields superior results across various met⁃rics.  However， in terms of runtime， the end-to-end neu⁃ral networks U-net and TSA-net hold a significant advan⁃tage， completing reconstruction in less than 1 second af⁃ter training， whereas algorithms utilizing deep plug-and-play frameworks require several minutes due to the itera⁃tive process.  Nevertheless， runtime durations at the min⁃ute level are generally acceptable in practical applica⁃tions.  Moreover， the method circumvents the necessity for clean data as labels during training， thereby substan⁃tially mitigating the issue of inadequate training data for compressive sensing deep learning reconstruction models in real-world scenarios.
3. 4　Comparison of generalisability　In real-world application scenarios， data often con⁃tains noise， and ideally， clean data with minimal noise levels is preferred.  In our proposed self-supervised re⁃construction model， spectral data cubes containing noise can be obtained from real scenarios and then utilized for training to ensure generalization.  However， for super⁃vised deep learning models， training becomes challeng⁃ing due to the absence of clean images as labels.  One ap⁃proach is to directly train with noisy images as labels， but this typically leads to a degradation in model perfor⁃mance.  To evaluate the generalizability of the models， Gaussian noise was introduced to the CAVE dataset to simulate real-world scenarios.  U-net and TSA-net were retrained and tested using this noisy data.  Conversely， self-supervised networks， which inherently incorporate noise during the training process， can be directly tested with noisy data.  The resulting performance is summa⁃rized in Table 4.From Table 4， it's evident that the performance of the algorithms declines when tested on noisy data.  How⁃

Table 3　Comparison of reconstruction results
表3　重建结果比较

Scene1
Scene2
Scene3
Scene4
Scene5
Mean

U-net
26. 29 dB， 0. 843
37. 20 dB， 0. 941
33. 87 dB， 0. 918
32. 99 dB， 0. 910
20. 11 dB， 0. 788
30. 09 dB， 0. 880

TSA-net
26. 47 dB， 0. 855
36. 98 dB， 0. 935
35. 07 dB， 0. 917
33. 16 dB， 0. 929
21. 14 dB， 0. 794
30. 56 dB， 0. 886

PnP-HSI
29. 56 dB， 0. 875
37. 59 dB， 0. 959
36. 27 dB， 0. 924
34. 88 dB， 0. 933
21. 55 dB， 0. 797
31. 97 dB， 0. 898

Ours
（σ = 25）

31. 12 dB， 0. 892
39. 62 dB， 0. 959
35. 89 dB， 0. 916
35. 22 dB， 0. 928
23. 89 dB， 0. 838
33. 15 dB， 0. 907

Ours
（σϵ[5， 50]）

30. 44 dB， 0. 843
37. 01 dB， 0. 921
34. 31 dB， 0. 888
34. 13 dB， 0. 870
23. 94 dB， 0. 808
31. 97 dB， 0. 866

Ours
（λ = 30）

28. 34 dB， 0. 788
37. 55 dB， 0. 963
34. 14 dB， 0. 908
32. 96 dB， 0. 910
23. 06 dB， 0. 810
31. 21 dB， 0. 876

Ours
（λϵ[5， 50]）

28. 51 dB， 0. 798
38. 39 dB， 0. 966
34. 25 dB， 0. 909
33. 02 dB， 0. 903
22. 70 dB， 0. 802
31. 37 dB， 0. 876
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ever， the degradation in performance for the two algo⁃rithms based on the deep plug-and-play framework is con⁃siderably less than that observed for the two end-to-end neural networks.  This indicates that the self-supervised learning model exhibits stronger robustness and general⁃ization.  Building upon the above findings， the self-super⁃vised reconstruction algorithm proposed in this article， based on the deep plug-and-play framework， demon⁃strates superior performance across multiple indicators.  Importantly， this method doesn't necessitate clean data as labels for training， thereby alleviating the challenge of insufficient training data for compressive sensing deep learning reconstruction models in practical applications.
3. 5　Ablation experiment　
3. 5. 1　Hyperparameterisation γ　

In 3. 2， we verified the effect of the hyperparameter 

γ on the model’s denoising results.  Here， we explore its impact on the hyperspectral image reconstruction.  Using the denoising model from Section 3. 2 directly and main⁃taining other parameters in the PnP-Self-HSIDeCNN algo⁃rithm unchanged， we present the reconstruction results in Table 5.For scenes 1 to 4， an appropriate penalty term can enhance the models’ reconstruction quality.  However， excessively large values of γ can degrade the model’s de⁃
noising effect （even worse than without the penalty term）， consequently affecting the final hyperspectral compressed perceptual image reconstruction.  However， for scene 5， the model performance is better when γ is 
not zero.  This is attributed to scene 5’s rich colour infor⁃mation and more complex spatial-spectral curves， conse⁃quently affecting the final hyperspectral compressed per⁃ceptual image reconstruction.  The comparison of Tables 2 and 5 reveals that the model’s performance on the de⁃noising task and on the image reconstruction task are not entirely correlated.  On the denoising task， the model achieves optimal performance with γ = 5， but on the im⁃
age reconstruction task the model achieves optimal per⁃formance with γ =   2.  In summary， the value of γ should 
also be determined according to the specific usage scenar⁃io.
3. 5. 2　Noise estimation level σ　In the aforementioned comparison， the estimated noise level σ is set to 30， irrespective of the noise degra⁃dation model.  This approach is chosen to facilitate direct model usage for reconstruction without the need for te⁃dious parameter adjustment processes.  Consequently， the reconstruction results of the PnP-Self-HSIDeCNN al⁃gorithm in the aforementioned experiments represent ex⁃pected performance in practical use rather than optimal 

Fig.  8　Comparison of the visual effect of the reconstruction results of different algorithms：（a） RGB image； （b） 2D measure⁃ments； （c） ground truth； （d） U-net； （e） TSA-net； （f） PnP-HIS； （g） PnP-Self-HSIDeCNN
图 8　不同算法重建结果视觉效果对比：（a）RGB 图像； （b）二维测量值； （c）真值图像； （d）U-net； （e）TSA-net； （f）PnP-HIS； （g）PnP-Self-HSIDeCNN

Fig.  9　Comparison of visual reconstruction effects in the final 
band：（a） ground truth； （b） U-net； （c） TSA-net； （d） PnP-HIS； （e） PnP-Self-HSIDeCNN
图 9　最后一个谱段图像重建视觉效果比较：（a）真值图像； 
（b）U-net； （c）TSA-net； （d）PnP-HIS； （e）PnP-Self-HSIDeCNN
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performance.  To explore the model's optimal perfor⁃mance， Gaussian fixed noise （σ = 25） is utilized during model training， and two noise estimation strategies are employed during model testing： fixed estimation of the noise level （fixed at 100， 50， 30， and 5， respectively）， and dynamic estimation of the noise level （gradually de⁃creasing as iterations progress）.  The experimental re⁃sults are presented in Table 6 and Table 7.When σ = 100， it significantly exceeds the noise level present in the training data for the denoising model.  At this point， the results converge quickly but with poor 

reconstruction quality.  Smaller σ values yield better re⁃
construction results but require longer runtimes.  Com⁃
pared to fixed noise estimation levels， allowing the noise 
estimation level to gradually decrease with iterations 
achieves optimal reconstruction results， albeit at the ex⁃
pense of longer runtimes （since σ decreases as iterations 
progress）.  In summary， the value of σ should be select⁃
ed based on specific requirements.  Larger σ values can 
be used to expedite reconstruction when strict reconstruc⁃
tion quality is not necessary.

Table 5　Influence of hyperparameter γ on reconstruction results
表5　超参数γ对重建结果影响

Scene1
Scene2
Scene3
Scene4
Scene5
Mean

γ = 0
PSNR/dB

30. 92
37. 19
33. 93
33. 98
22. 97
31. 79

SSIM
0. 862
0. 921
0. 888
0. 883
0. 769
0. 865

γ = 1
PSNR/dB

30. 42
38. 54
36. 28
35. 07
23. 86
32. 83

SSIM
0. 862
0. 940
0. 908
0. 899
0. 833
0. 888

γ = 2
PSNR/dB

30. 92
40. 19
36. 36
35. 47
23. 80
33. 35

SSIM
0. 878
0. 951
0. 913
0. 894
0. 843
0. 896

γ = 5
PSNR/dB

29. 70
35. 50
32. 74
33. 19
23. 29
30. 88

SSIM
0. 785
0. 921
0. 888
0. 861
0. 791
0. 849

γ = 20
PSNR/dB

29. 89
37. 67
34. 28
35. 38
23. 18
32. 08

SSIM
0. 855
0. 944
0. 892
0. 916
0. 803
0. 882

Fig.  10　Comparison of spectral curve reconstruction results：（a） RGB image； （b） spectral curve comparison
图10　光谱曲线重建效果对比：（a）RGB图像； （b）光谱曲线对比

Table 4　Comparison of generalisability
表4　泛化性比较

Scene1
Scene2
Scene3
Scene4
Scene5
Mean

Difference
Percentage

U-net
25. 89 dB， 0. 824
36. 41 dB， 0. 931
31. 78 dB， 0. 887
31. 03 dB， 0. 901
20. 14 dB， 0. 773
29. 05 dB， 0. 863

-1. 04 dB， -0. 017
-3. 46%， -1. 93%

TSA-net
25. 88 dB， 0. 838
35. 49 dB， 0. 927
33. 80 dB， 0. 904
32. 03 dB， 0. 917
20. 50 dB， 0. 787
29. 54 dB， 0. 874

-1. 02 dB， -0. 012
-3. 34%， -1. 35%

PnP-HSI
29. 52 dB， 0. 873
37. 54 dB， 0. 957
36. 23 dB， 0. 919
34. 80 dB， 0. 934
21. 56 dB， 0. 798
31. 93 dB， 0. 899

-0. 04 dB， -0. 001
-0. 13%， -1. 11%

Ours
（σ = 25）

31. 13 dB， 0. 890
39. 59 dB， 0. 957
35. 84 dB， 0. 912
35. 21 dB， 0. 929
23. 84 dB， 0. 834
33. 12 dB， 0. 904

-0. 03 dB， -0. 003
-0. 09%， -0. 33%
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3. 5. 3　Number of warm start iterations　Deep plug-and-play frameworks typically require a hot-start to expedite convergence.  In the aforementioned experiments， the GAP-TV denoiser is employed for 80 it⁃erations before transitioning to a self-supervised learning model to achieve improved reconstruction results.  How⁃ever， the GAP-TV noise reducer doesn't necessarily need 80 iterations to reach its denoising performance lim⁃it.  Thus， reducing the number of hot-start iterations could accelerate reconstruction.  However， ending hot-start iterations prematurely may result in suboptimal final image reconstruction.  To investigate this， we select a scene with a fixed noise estimation level of 30 and vary the number of hot-start iterations to study their effects on reconstruction results and speed.  The experimental re⁃sults are presented in Table 8.

As can be seen from Table 8， regardless of the num⁃ber of hot-start iterations， the running time of the image reconstruction phase of the PnP-Self-HSIDeCNN using the deep model is basically unchanged.  Hence， the total running time of the model is primarily limited by the hot-start time.  The total image reconstruction time is shortest when no hot-start is performed， but this compromises the final reconstruction results.  As the number of hot-start it⁃erations increases， the image reconstruction quality de⁃creases slightly and the total reconstruction time increas⁃es.  Therefore， in practice， the number of hot-start itera⁃tions can be set to 10-20 to accelerate reconstruction while ensuring satisfactory reconstruction quality.
4 Conclusions 

In this paper， we propose a self-supervised learning method， PnP-Self-HSIDeCNN， based on a deep plug-and-play framework and neighborhood sampling strategy.  Unlike traditional methods， it only requires noisy images for training and fully exploits the inter-spectral correla⁃tion of hyperspectral images through the SENet struc⁃ture.  Comparing the results across visual evaluation， PSNR， SSIM， and previous end-to-end neural network reconstructions， the self-supervised learning method pro⁃posed herein achieves commendable reconstruction re⁃sults with robust generalization within acceptable run⁃times.  We conduct a detailed and comprehensive com⁃parison test on three hyperparameters of the loss func⁃

Table 6　Influence of noise estimation level σ on reconstruction results
表6　噪声评估水平σ对重建质量影响

Scene1
Scene2
Scene3
Scene4
Scene5
Mean

σ = 100
PSNR/dB

27. 57
33. 56
32. 00
31. 87
21. 58
29. 32

SSIM
0. 750
0. 921
0. 888
0. 861
0. 749
0. 834

σ = 50
PSNR/dB

30. 21
38. 16
34. 69
34. 59
22. 97
32. 12

SSIM
0. 852
0. 941
0. 888
0. 912
0. 803
0. 879

σ = 30
PSNR/dB

31. 00
39. 38
35. 77
35. 13
23. 75
33. 01

SSIM
0. 888
0. 955
0. 911
0. 927
0. 832
0. 903

σ = 5
PSNR/dB

31. 28
40. 18
36. 20
35. 50
24. 29
33. 49

SSIM
0. 897
0. 973
0. 928
0. 929
0. 850
0. 915

σϵ[0， 50]

PSNR/dB
32. 01
40. 32
36. 83
36. 14
25. 88
34. 23

SSIM
0. 899
0. 977
0. 932
0. 941
0. 859
0. 921

Table 7　Influence of noise estimation level σ on recon⁃
struction time

表7　噪声评估水平σ对重建时间影响

Scene1
Scene2
Scene3
Scene4
Scene5
Mean

σ = 100
53. 10 s
51. 21 s
48. 69 s
51. 84 s
55. 62 s
52. 09 s

σ = 50
96. 57 s
91. 74 s
84. 51 s
91. 35 s

104. 61 s
93. 76 s

σ = 30
99. 09 s
95. 67 s
89. 87 s
96. 27 s

112. 84 s
98. 75 s

σ = 5
105. 39 s
101. 17 s
94. 28 s

103. 77 s
119. 07 s
104. 74 s

σϵ[0， 50]

117. 74 s
110. 92 s
105. 03 s
116. 19 s
145. 56 s
119. 09 s

Table 8　Influence of the number of warm start iterations
表8　热启动迭代次数对重建结果影响
Number of warm start it⁃

erations
0

10
20
30
40
50
60
70
80
90

100

Warm start time / s
0

5. 24
10. 04
15. 76
20. 68
26. 41
31. 23
36. 44
41. 67
46. 88
52. 27

Self-supervised recon⁃
struction time / s

39. 06
40. 95
39. 69
40. 95
40. 32
40. 32
39. 69
39. 69
40. 32
40. 95
39. 69

Total reconstruction time/ s
39. 06
46. 19
49. 73
56. 71
61. 00
66. 73
70. 92
76. 13
81. 99
87. 83
91. 96

PSNR / dB
33. 79
34. 33
34. 43
34. 44
34. 42
34. 25
34. 21
34. 17
34. 15
34. 12
34. 12

SSIM
0. 828
0. 867
0. 867
0. 871
0. 869
0. 869
0. 867
0. 864
0. 869
0. 869
0. 867
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tion — penalty factor γ， noise level estimation parameter σ， and number of hot-start iterations — to fully explore their impacts on final reconstruction results in terms of speed and quality， thereby laying a relevant foundation for the algorithm's future practical applications.  Our findings demonstrate that self-supervised learning can yield satisfactory performance even with limited or poor-quality data， providing a feasible approach for the future application of compressed sensing and CASSI systems in real-world scenes.  However， compared to end-to-end neural networks， our approach lacks in real-time perfor⁃mance.  Also， real-world noise is far more complex than Gaussian and Poisson noise.  For future work， we would like to reduce the iteration time of our method and extend it to real-world data.   
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