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Abstract： Infrared small target detection is a common task in infrared image processing.  Under limited computa⁃
tional resources.  Traditional methods for infrared small target detection face a trade-off between the detection rate 
and the accuracy.  A fast infrared small target detection method tailored for resource-constrained conditions is pro⁃
posed for the YOLOv5s model.  This method introduces an additional small target detection head and replaces the 
original Intersection over Union （IoU） metric with Normalized Wasserstein Distance （NWD）， while considering 
both the detection accuracy and the detection speed of infrared small targets.  Experimental results demonstrate 
that the proposed algorithm achieves a maximum effective detection speed of 95 FPS on a 15 W TPU， while reach⁃
ing a maximum effective detection accuracy of 91. 9 AP@0. 5， effectively improving the efficiency of infrared 
small target detection under resource-constrained conditions.
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资源受限条件下的红外小目标快速检测方法研究

张 瑞 1， 刘 敏 1， 李 争 2*
（1. 厦门理工学院 光电与通信工程学院，福建 厦门 361024；

2. 中国科学院上海技术物理研究所，上海 200083）
摘要：红外小目标检测是红外图像处理中的一项常见任务。在计算资源受限的条件下，传统的红外小目标检

测方法面临着检测率和检测精度的平衡问题。本文针对 YOLOv5s 模型提出了一种在资源受限条件下快速红

外小目标检测方法，该方法增加了一个小目标检测头，并用 Normalized Wasserstein Distance（NWD）度量取代

了原来的 Intersection over Union（IoU）度量，同时考虑了红外小目标的检测精度和检测速率。实验结果表明，
改进后的算法在 15 W TPU 上实现了最大 95 FPS 的红外小目标有效检测速度，同时达到了最大 91.9 AP@0.5 
的检测精度，有效提高了资源受限条件下的红外小目标检测效率。
关 键 词：红外无人机；快速小目标检测；低功耗；损失函数

中图分类号：TP18  文献标识码：A

Introduction
The application range of unmanned aerial vehicles 

（UAVs） is constantly expanding， encompassing areas 
such as military reconnaissance， outdoor photography， 
power line inspection and other fields.  However， at the 
same time， it has also given rise to a series of social is⁃
sues.  These include concerns about privacy infringement 
due to UAVs being used for illicit filming and the poten⁃

tial threat to national security posed by the military appli⁃cation of UAVs.  Therefore， the research of anti-UAV technology has important practical significance.  Infrared UAV target detection technology is a technique that uses infrared imaging to continuously monitor UAVs.  It en⁃ables UAV target detection based on infrared radiation， and also has obvious advantages in low-light condi⁃tions［1］.  In recent years， this technology has become an important research direction and provides an effective 
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complement to radar target detection technology.However， infrared UAV target detection faces chal⁃lenges.  The distance between the UAV and the sensor makes small infrared targets lack distinctive texture and shape features， hampering the detection.  Additionally， background clutter and noise， like clouds and buildings， can cause confusion with obstacles［2］.  Infrared images have high noise， poor spatial resolution， and are sensi⁃tive to environmental temperature changes.  These chal⁃lenges add complexity to infrared UAV target detection.  Infrared small UAVs are shown in Fig.  1.In recent years， there has been a continuous emer⁃gence of object detection methods based on deep learn⁃ing， which has achieved impressive detection perfor⁃mance.  These methods can be categorized into two types based on how they handle input images.  The first type is the two-stage detection method， such as the region-based R-CNN and its variants［3］.  The second type is the one-stage detection methods， including RetinaNet［4］， SSD［5］， and YOLO series［6］.  During the flight of UAVs， real-time transmission of infrared images is required for the infra⁃red cameras.  In scenarios that demand high real-time performance， methods of the YOLO series， known for their fast speed and high accuracy， have been widely ad⁃opted.  Among them， YOLOv5 stands out as an advanced detector with strong real-time processing performance and low hardware computing requirements， allowing for easy deployment on mobile devices.  Therefore， using YOLOv5 can significantly enhance the detection accura⁃cy and real-time performance of infrared small UAV［7］.This paper proposes a UAV detection method based on an improved YOLOv5s model to address the challeng⁃es of detecting small targets.  The original YOLOv5 struc⁃ture only includes three feature detection heads， which are not effective in extracting the feature information of small target UAVs captured by infrared cameras at long distances.  To address this issue， this paper adds a fea⁃ture detection head suitable for detecting small targets by YOLOv5.  Additionally， the Intersection over Union 
（IoU） in the original YOLOv5 model is not a good metric for small target detection tasks.  Therefore， this paper re⁃places it with a more suitable metric for small targets 

called the Normalized Gaussian Wasserstein Distance 
（NWD） ［8］.  This metric calculates the similarity between bounding boxes using the Gaussian distribution of their corresponding boxes.
1 Method to improve YOLOv5 

YOLOv5 can be categorized into five architectures based on the depth and width of the model： YOLOv5n， YOLOv5s， YOLOv5m， YOLOv5l， and YOLOv5x.  Among these， to balance detection speed and accuracy， we choose to improve YOLOv5s.  The YOLOv5 network structure consists of three main components.  CSP-Dark⁃net53 serves as the backbone feature extraction network， extracting features from the input image.  CSP-Darknet53 is an improved version of Darknet53 from YOLOv3， uti⁃lizing the Cross-Stage Partial （CSP） network strategy to reduce parameters and computation， thus enhancing the inference speed.  In the middle part， YOLOv5 combines two modules： SPPF and PANet ［9］.  The SPPF module in⁃creases receptive fields and diversifies the feature pyra⁃mid， while the PANet module achieves bottom-up and top-down feature fusion， thereby improving the object de⁃tection capability.  In the head part， YOLOv5 adopts the head structure of YOLOv4.  This structure outputs predic⁃tions such as class probabilities， confidence scores， and bounding boxes on the feature maps.
1. 1　Small object detection head　The YOLOv5 model uses a backbone network that undergoes five downsampling stages， producing five fea⁃ture maps （P1-P5） with resolutions of 1/2， 1/4， 1/8， 1/16， and 1/32 of the input image size， respectively.  The neck network combines multi-scale features in a top-down and bottom-up manner without changing the feature map sizes.  The detection head operates on the P3-P5 fea⁃ture maps for object detection.  This design is based on the relationship between the feature layer size and the re⁃ceptive field size in YOLOv5.  The receptive field refers to the size of the input image region corresponding to each output unit in a convolutional neural network.  A larger receptive field captures more object features， mak⁃ing it suitable for detecting larger objects.  On the con⁃trary， a smaller receptive field can only capture a limited 

Fig.  1　Infrared small UAVs
图1　红外小型无人机目标
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number of object features， making it suitable for detect⁃ing smaller objects.  A smaller receptive field implies that each pixel in the feature map is influenced by a smaller region in the original image.  This enables more precise localization of object positions and boundaries， unaffected by irrelevant regions.  Additionally， a smaller receptive field corresponds to a larger feature map size， preserving more spatial information and avoiding the loss of fine details on small objects.  Therefore， a smaller re⁃ceptive field is better suited for detecting smaller objects.We have added a new detection head for small ob⁃jects after the P2 feature layer in the YOLOv5 model.  The detection head operates at a resolution of 160×160 pixels in the P2 layer， which corresponds to two downs⁃ampling operations in the backbone network.  Each pixel in the P2 layer has a receptive field of 10×10 pixels， which is the smallest receptive field among the P2-P5 fea⁃ture extraction layers.  Additionally， we have assigned different loss function weights to the P2-P5 feature layers based on the target sizes.  Specifically， we have assigned a weight of 4 to the feature layers for P2 and P3， a weight of 1 to the feature layer for P4， and a weight of 0. 4 to the feature layer for P5.  The purpose of this weighting scheme is to enhance the focus on small and tiny objects while reducing overfitting to large objects.  The weighted formula for the object loss function is shown in Eq.  （1）.  Although adding the new detection head increases the computational and memory overhead of the model， it sig⁃nificantly improves the detection performance for small objects.  The improved YOLOv5s network architecture is shown in Fig.  2.  Small target detection head is shown in Fig.  3.
Lobj = 4·LP2 + 4·LP3 + 1·LP4 + 0.4·4·LP5 . （1）

1. 2　Normalized Gaussian Wasserstein Distance　In YOLOv5， IoU is used as an indicator to measure the degree of matching between predicted bounding box⁃es and real bounding boxes.  It is obtained by calculating the ratio of the intersection area and the union area of the two.  However， in the UAV images obtained by infrared devices， the overlapping part of the bounding boxes of small targets is often very small， which will result in low⁃er IoU values.  As shown in Fig.  4， IoU is very sensitive to the scale of small targets.  For the infrared small UAV target with a size of 6×6 pixels， only a small position de⁃viation can cause IoU to decrease from 0. 53 to 0. 06， thereby affecting the accuracy of label allocation and re⁃ducing the performance of detection［8］.  So， for small tar⁃get objects， IoU does not measure their matching degree effectively.We used a metric known as Normalized Gaussian Wasserstein Distance named NWD， which is suitable for small object detection.  It is insensitive to the scale of tar⁃gets， allowing for better assessment of similarities be⁃tween small objects.  Specifically， this method models the object bounding boxes as two-dimensional Gaussian distributions and calculates the NWD between the pre⁃dicted and the ground truth distributions， as shown in Eq.  （2）.  Modeling the bounding boxes with Gaussian distributions enables the representation of the object's po⁃ sition as the mean point and its shape as the standard de⁃

Fig.  2　Improved YOLOv5s network architecture
图2　改进的 YOLOv5s 网络架构

Fig.  3　Small target detection head
图3　小目标检测头

Fig.  4　The sensitivity analysis of IoU on infrared small UAV
图4　IoU在红外小型无人机上灵敏度分析
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viation of the Gaussian distribution.  This approach has the advantage of better describing the spatial distribution of the objects， not solely relying on their geometric shapes.  NWD takes into account the geometric features and spatial distributions between two bounding boxes， even when they do not overlap， by considering their geo⁃metric relationships［10］.  This measurement approach avoids the sensitive issues of IoU with small objects， making it more suitable for quantifying small object matches.
NWD(NA,NB ) = exp(- W 22 (NA,NB )

C ) , （2）

W 22 (NA,NB ) = 
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where NA and NB are Gaussian distributions modeled by A=（cxA， cyA， wA， hA） and B=（cxB， cyB， wB， hB）， W 22（NA， 
NB） is the distance measurement， C is the constant close⁃ly related to the dataset.
2 Experiment and deployments 
2. 1　Dataset introduction　This article is based on the experimental analysis of selected subsets from the 3rd Anti-UAV Workshop & Challenge［11］.  The dataset consists of a total of 9841 small target drone images captured under thermal infra⁃red， involving complex environmental factors such as dy⁃namic backgrounds， complex motions， scale changes， and small targets.  The labels in this dataset only include the category of drones.  It is noteworthy that the Signal-to-Noise Ratio （SNR） of this dataset is 12. 615 dB.  The da⁃taset is divided into training and testing sets in a 7：3 ra⁃tio.  The distribution of the dataset is shown in Fig.  5.
2. 2　Evaluation index　To verify the performance of the model， this article selects Average Precision （AP） to evaluate the model performance， where the AP@0. 5 and the AP@0. 5：0. 95 represent the detection accuracy of two models under dif⁃ferent IoU thresholds.  The AP@0. 5 is the average accu⁃

racy of a certain category when IoU is 0. 5.  The average accuracy is based on different confidence levels， includ⁃ing the curve area of Precision （P） and Recall （R）.  And AP@0. 5：0. 95 is the average accuracy of a certain cate⁃gory when IoU is taken every 0. 05 from 0. 5 to 0. 95.  This indicator requires a higher degree of overlap in the target box.  The False Alarm Rate （FAR） is depicted in Eq.  （6）， the Miss Rate （MR） is represented by Eq.  
（7）， with the Average Precision （AP） illustrated in Eq.  （8）.

P = ( )TP
TP + FP , （4）

R = ( )TP
TP + FN , （5）

FAR = ( )FP
TN + FP , （6）

MR = 1 - R , （7）
AP = ∫0

1 P (R)dR , （8）
where TP means true positive， TN means true negative， FP means false positive， and FN means false negative.
2. 3　Experimental environment and parameter set⁃
tings　In this work， all experiments were conducted on the Ubuntu 22. 04 operating system， with 128 GB of RAM and an Intel i9-13900K processor.  The system was equipped with an NVIDIA RTX 3090 Ti graphics card with 24 GB of video memory； the deep learning frame⁃work used was Pytorch 1. 12. 1； and the programming language was Python 3. 10.The optimization algorithm used for model training was Stochastic Gradient Descent（SGD）.  The initial learning rate was 0. 01， the momentum was 0. 937， and the weight decay coefficient was 0. 0005.  In addition， the model was trained for 300 epochs， the batch size of the dataset was set to 64.
2. 4　Experimental results　The experimental results regarding the allocation of different loss function weights for different feature layers are shown in Table 1.  From the ablation experimental re⁃sults in Table 2， it can be observed that adding the NWD 

Fig.  5　Dataset analysis： （a） the label category distribution； （b） the bounding box size distribution； （c） the label center position distri‐
bution； （d） the label size distribution
图5　数据集分析：（a）标签类别分布；（b）边界框尺寸分布；（c）标签中心位置分布；（d）标签尺寸分布
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metric with a coefficient of 0. 5 results in a 2. 7% im⁃provement in the AP@0. 5 compared to the original mod⁃el.  Furthermore， when using the complete NWD metric， the AP@0. 5 is improved by 5. 2%.  Moreover， introduc⁃ing a small object detection head with a resolution of 160×160 pixels from the P2 layer also leads to a 3. 7% in⁃crease in the AP@0. 5 compared to the baseline results.  Finally， by combining the complete NWD loss function with the small object detection head， the overall model achieves a 7. 2% improvement.  The improved model also shows a 3. 9% increase in the AP@0. 5：0. 95 compared to the original model.The performance comparison chart of AP is shown in Fig.  6.  The partial experimental result is shown in Fig.  7.  To validate the effectiveness of the improved YOLOv5s in this paper， a comparison was made with various main⁃stream detection networks using the official sub-dataset from the 3rd Anti-UAV Workshop & Challenge.  The comparison results are shown in Table 3.
2. 5　Deployment　Our algorithm is deployed on the BM1684X TPU， and the specific flow is shown in Fig.  8.  Generally speaking， deep learning-based algorithms have two main results in the quantization process： int8 and FP16.  Ac⁃cording to the characteristics of infrared small targets， learning-based target detection algorithms will have a sig⁃nificant accuracy decline in the quantization process.  

Table 1　Comparison of the different weighting coeffi⁃
cient results

表1　不同权重系数的结果对比

Weighting Coefficients
1·LP2+1·LP3+1·LP4+0. 4·LP5
1·LP2+4·LP3+1·LP4+0. 4·LP5
4·LP2+1·LP3+1·LP4+0. 4·LP5
4·LP2+4·LP3+1·LP4+0. 4·LP5

AP@0. 5
（%）

81. 2
86. 8
84. 2
88. 4

AP@0. 5：0. 95
（%）

44. 9
47. 6
46. 0
48. 6

FAR

（%）

6. 4
4. 7
7. 8
4. 0

MR

（%）

28. 4
19. 4
22. 8
17. 4

Table 2　Comparison of ablation experiments of im⁃
proved methods

表2　改进方法的消融实验对比

Models
YOLOv5s

YOLOv5s+0. 5NWD
YOLOv5s+NWD

YOLOv5s+P2
YOLOv5s+NWD+P2

AP@0. 5
（%）

84. 7
87. 4
89. 9
88. 4
91. 9

AP@0. 5：0. 95
（%）

46. 1
47. 9
48. 1
48. 6
50. 0

FAR

（%）

3. 1
4. 0
4. 4
4. 0
4. 2

MR

（%）

23. 6
17. 4
14. 6
17. 4
12. 9

Fig.  6　Performance comparison of the AP： （a） AP@0. 5； （b） AP@0. 5：0. 95
图6　模型在AP值上的性能表现：（a）AP@0. 5；（b）AP@0. 5：0. 95

Table 3　Comparison of improved YOLOv5s with other methods
表3　改进的模型与其他同类算法的比较

Models

SSD-ResNet50
Faster-RCNN-ResNet50

RetinaNet-ResNet50
YOLOv3
YOLOv5s
YOLOv5m
YOLOv5l
YOLOv8s

YOLOv5s+NWD+P2

AP@0. 5
（%）

60. 4
78. 3
82. 1
83. 3
84. 7
86. 6
87. 7
89. 5
91. 9

AP@0. 5：
0. 95
（%）

22. 8
30. 9
33. 8
45. 2
46. 1
48. 8
49. 1
48. 9
50. 0

FAR
（%）

29. 7
21. 2
18. 5
8. 7
3. 1
3. 1
3. 8
6. 3
4. 2

MR
（%）

46. 2
40. 0
33. 2
22. 4
23. 6
20. 4
17. 6
17. 3
12. 9

Parameter
（M）

13. 1
41. 1
32. 0
9. 3
7. 0

20. 8
46. 1
11. 1
7. 7

GFLOPs

15. 0
134. 5
127. 5
23. 1
15. 8
47. 9

107. 6
28. 4
26. 8

Speed
（FPS）

200
50
43

526
625
303
196
435
400

Weights
（MB）
105. 1
330. 3
257. 3
18. 9
14. 4
42. 2
92. 8
22. 5
16. 3
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The experimental results show that when the algorithm ac⁃curacy is quantized to FP16， the target detection efficien⁃cy is the highest， while the quantization to int8 has the weakest effect to the extent that no valid data can be counted.  The deployment experimental results are shown in Table 4.     

3 Conclusion 
To address the challenge of small drone detection in infrared devices， this paper proposes a light weight detec⁃tion model.  The model introduces a small object feature extraction layer at the P2 level of the backbone network， connecting it to a high-resolution detection head， thereby enhancing the network's capability to perceive small ob⁃jects.  Additionally， the paper adopts the NWD metric to replace the original IoU-based metric， as the NWD met⁃ric provides better measurements for small object instanc⁃es and improves the model's detection accuracy.  The pa⁃per conducts several comparative experiments on the par⁃tial sub-dataset provided by the 3rd Anti-UAV Workshop & Challenge.  The results demonstrate that the proposed model outperforms other mainstream detection models in terms of both AP@0. 5 and AP@0. 5：0. 95 evaluation metrics， validating the effectiveness of the proposed ap⁃

proach.  Furthermore， the proposed method maintains high performance levels concerning parameter count， computational complexity， and model weight file size.
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Fig.  8　Framework of the deployment
图8　模型部署的架构流程   

Fig.  7　Some examples of the detection result on the improved model
图7　改进的模型的案例表现

Table 4　Result of the deployment
表4　部署的实验结果

BM1684X
FP32
FP16
INT8

FPS
12
95

163

AP@0. 5 （%）

91. 9
87. 8

-

AP@0. 5：0. 95（%）

50. 0
49. 8

-
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