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Abstract: A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic
aperture radar (PolSAR) data is proposed in this letter. The modified decomposition involves two distinct steps.
Firstly, eigenvectors of the coherency matrix are used to modify the scattering models. Secondly, the entropy and
anisotropy are used to improve the volume scattering power. With the guarantee of high double-bounce scattering
power in the urban areas, the proposed algorithm effectively improves the volume scattering power of vegetation
areas. The efficacy of the modified multiple-component scattering power decomposition is validated using actual
AIRSAR PoISAR data. The scattering powers obtained through decomposing the original coherency matrix and
the coherency matrix after orientation angle compensation are compared with three algorithms. Results from the
experiment demonstrate that the proposed decomposition yields more effective scattering powers for representing

the PolSAR dataset.
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| Introduction

Because of all-time, all-weather, and multi-band
imaging characteristics, polarimetric synthetic aperture
radar (PolSAR) has become widely used in various appli-
cation areas. In recent years, various new PolSAR sen-
sors have been launched and various PolSAR missions

have been carried out, resulting in an increase in the
amount of data requiring interpretation and processing.
Target decomposition has emerged as the primary ap-
proach for interpretation and preprocessing due to its
ease of implementation and strong physical meaning. For
PolSAR images, target decomposition methods can be
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categorized into two groups: model-based decomposition
[1-14] and eigenvalue-based decomposition [ 15-22].

In 1998, Freeman and Durden introduced the Free-
man-Durden decomposition (FDD) [1], which is a clas-
sical model-based decomposition method. FDD involves
decomposing the covariance matrix of PolSAR data into
three main components: surface scattering, double-
bounce scattering and volume scattering. Although FDD
has efficiently described the physical features of PolSAR
data, it has a major shortcoming in that there are nega-
tive surface and double-bounce scattering powers. This
is due to the assumption of reflection symmetry theory,
where the co-polarized term is uncorrelated with the
cross-polarized term resulting in 7', and T,; being zero in
the coherency matrix ([T]). As aresult, the cross-polar-
ized power only contributes to the volume scattering com-
ponent, causing the volume scattering power to be overes-
timated and possibly greater than the total power. It
leads to negative surface and double-bounce scattering
powers.

There are three primary methods for enhancing
FDD. The first technique involves performing orientation
angle compensation (OAC) on the coherency matrix or
the covariance matrix of the POLSAR data prior to de-
composition [2]113][4]. By orienting the coherency or
covariance matrix in this way, the cross-polarized power
is reduced, resulting in a smaller volume scattering pow-
er. Consequently, the number of negative surface scatter-
ing and double-bounce scattering powers is also reduced.
The second strategy for improving FDD is to optimize the
scattering models, particularly the volume scattering
model or by introducing a new scattering model that
shares the crossed-polarized power with the volume scat-
tering [5-14]. For example, Yamaguchi introduced the
helix scattering model as the fourth component for analy-
sis[5][6], Lamei Zhang et al proposed a wire scattering
model as the fifth component[ﬂ , Singh et al associated
T\, and T,; with physical scattering mechanisms, the six-
component scattering decomposition (6SD) and seven-
component scattering (7SD) are presented [8][9],
Wentao An used a modified reflection symmetry decom-
position to improve the surface and double-bounce scat-
tering powers[ 10 ].

Third model-based decomposition methods repre-
sent a combination of model-based decomposition and ei-
genvalue-based decomposition. Cloude made surface and
double-bounce scattering models orthogonal to each oth-
er, aiming to minimize unknown variables[ 16]. The ori-
entation angle compensation helps prevent negative val-
ues in the scattered powers, leading to the popular hy-
brid Freeman/eigenvalue decomposition technique.
Singh et al. enhanced the initial hybrid Freeman/eigen-
value decomposition by utilizing distinct volume scatter-
ing models that were scattered from vegetation areas and
oriented objects[ 17].

In this letter, we present an improved version of
multiple components scattering decomposition for Pol-
SAR data. Seven scattering models are used[9], i. e.,
surface scattering model, double-bounce scattering mod-

el, volume scattering model, helix scattering model, ori-
ented dipole scattering model, compound dipole scatter-
ing model, and mixed dipole scattering model. Non-neg-
ative matrix factorization is achieved by limiting the vol-
ume scattered energy to obtain surface scattering and dou-
ble bounce scattering energy. Additionally, the entropy
obtained through eigenvalue decomposition of the coher-
ency matrix enhanced the volume scattering power in veg-
etation areas. The improved version yields non-negative
scattering powers and outperforms FDD, particularly
when applied to vegetation areas.

This letter is organized as follows. The introduction
is presented in Section I, and Section II is the proposed
scattering models and the improved multiple-component
scattering power decomposition. Experiments results on
real PolSAR data are compared with several decomposi-
tion methods in Section III, and followed by the conclu-
sions in Section V.

Il Modified Scattering Decomposition

Part A: Scattering Models
The multi-look data received in PolSAR systems us-
ing the {H, V| basis can be represented as a 3x3 com-
plex matrix, which is also referred to as the coherency
matrix. This matrix provides information about the polar-
ization properties of the radar signal, including the phase
and amplitude relationships between different polariza-
tion components. The coherency matrix of PolSAR image
is presented as (1).
N N Tll T12 T13
ry=(k k=1, T, T, (1)
Tl*3 T;3 T33

In the PolSAR systems, k, is a Pauli vector repre-
senting that represents single-look data. The angle brack-
ets (-) denote the mean of several observations from the
objects within a resolution cell. As a result, {TYis a pos-
itive semidefinite Hermitian matrix.

Freeman and Durden developed the technique for
PolSAR systems to break down the covariance matrix or
the coherency matrix into three separate components.
These three components consist of the surface scattering
component, double-bounce scattering component, and
volume scattering component [ 1]. Gulab Singh and his
colleagues attributed physical scattering mechanisms to
T,, and T\, and established seven-component scattering
decomposition (7SD) to provide an explanation for the
coherency matrix of PoISAR data[9]. The scattering de-
composition in this letter is demonstrated on the coheren-
cy matrix, and the coherency matrix is divided into seven
parts as follows[ 9]

(T)=mT. +m,T,+mT, +mT,+m,T,, +m,T,+

mu(lTod (2)
where T, T,, T, T,, T,,, T,, and T,, denote surface scat-

v od
tering model, double-bounce scattering model, volume
scattering model, helix scattering model, oriented dipole
scattering model, compound dipole scattering model,
and mixed dipole scattering model respectively. Corre-

spondingly, m,, m,, m,, m,, m,,, m_,, and m,, represent
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the corresponding scattering powers of seven submatri-
ces.

r, r,T1T,T,T,,T,and T, are shown as fol-
lows[9]:

*

1 B 0
1 2
=B |B] O 3)
8] +1_0 0 0]
(1 o 0]
1 2
T)=———a |a|’ 0 4)
|a| + 1
L0 0 0]
L[4 00
T,=4]0 10 (5a)
0 0 1
([15 -5 0
T,=%—5 7 0 (5b)
0 0 8
L[5 50
T,=% 5 7 0] (5¢)
0 0 8
L[oo 0]
TL=15{0 70 (5d)
0 0 8
0 0 0]
T"_;lo 1 5 (6)
0 + 1]
1[0 0 0
Tu=5[0 1 =l (7)
0 =1 1
1 0 =
Tul=;[o 0 0 (8)
F 0 1
| 1 0 =1
Tu=7%[0 0 0 )
+1 0 1

where coefficient 8 in (3) sets 0 <8 < 1 and coefficient
a in (4) is a complex value with |a|< 1. T,in (5a),
(5b), (5¢) and (5d) are the volume scattering models
under different cases.

Part B: Modified Decomposition

This part presents an improved multiple components
scattering decomposition for PolSAR data based on entro-
py H and anisotropy A. There two parameters are used to
enhance the volume scattering power in vegetation areas
with high-entropy. PolSAR data are divided into two cate-
gories, namely vegetation areas with high-entropy and
other areas, then different decomposition techniques are
adopted to obtain the better scattering powers. The vege-
tation areas’ volume scattering powers have been im-
proved while ensuring good performance in other areas.

According to the decomposition formula in (2)
above and the model in (3) - (9), m, and m,,, can be cal-

culated from 7T,;, while m, and mcan be calculated
from T',;. The solutions of are shown as:

m, = 2|imag(T23)| (10)
m,, = 2’real(T23)‘ (11)
m, = 2|imag(T13)| (12)
m,, = 2|real(T13)| (13)

where imag()in (10) and (12) denotes to get the imagi-
nary part of an element and real() in (11) and (13) de-
notes to get the real part of an element.

After removing the above four scattering powers
from the coherency matrix, the residual part contains sur-
face scattering power, double-bounce scattering power,
volume scattering power shown as (14) , and the residual

part <T"’> is shown as (15).

{r)=mT +m, T, +mT ={TY-m,T, - m,,T,, -
m Ty = m,T, (14)
ry TG Ty
(r)=\T7% Ty Tx (15)

re* re* re
T13 T23 T33

Each element in T, is represented as follows :

1 1 .
Ty=T,~- o Mt ™ o M =T, - ’Lmag(TB) ‘ -
’real(Tw)‘ (16)
. 1 1 .
T;=T, - Emh - Emmd =T, - ‘Lmag(TB) ‘ -
|real(T23)‘ (17)
1 1 1 1
Ty =Ty - Emh - Emmd - Em(:(l - Emod
=Ty - ‘imag(TB) ‘ - |real(Tz3)| - ‘imag(TB) ‘ -
|real(T13)| (18)
T,=T, (19)
1 | . .
T;=T,+ Emcd.] + Emod =T, - Lmag(T13)] -
real (T ;) =0 (20)
1 o1 . .
T;=T,% Emhf + Emmd =T, - lmag(T23)] -
real(T,;) =0 (21)

To guarantee that the three scattering powers i. e. ,
m,, m, and m, from {T") are positive, it is necessary to
ensure that T}, T, and T3 are all positive. However,
there may be certain pixels where these values are less
than zero. In these instances, m,, m,,, m, and m,, must
be modified appropriately to ensure that T;, T,5 and 775
remain non-negative. If T3<0, gradually reduce m,,
m,,, m, and m, at the same time until 75;>=0 is satis-
fied. Then, if T7}; is still less than 0, set m_=0 and m, =
0. Similarly, if T,; is still less than 0, set m,=0 and
m,, =0.

After obtaining the values of m,, m,,, m, and m,,
through the above solution, in order to calculate the val-
ue of m,, m, and m,, T}; and T.5 which are not equal to 0

cd



4 EANP/ RS AP ST =K 4

in some pixels were ignored and the residual matrix {T")
is set to the following form as (22) and (23).

Th Ty 0
(=15 T5 0 (22)

0o 0 T
(r*y=mT +m,T,+m[T, (23)

To determine the volume scattering power m,, it is
first necessary to determine whether volume scattering is
from the dihedral structure or the dipole structure. Set
C, =T = Ty, such that, if C, < 0, the volumetric scat-
tering model T, is shown as (5d), and if C, = 0, the vol-
umetric scattering model 7T, is shown as one of (5a) ,
(5b) and (5¢). By utilizing the co-polarized ratio R
(24), one can determine the suitable model for volumet-
ric scattering. The detailed steps are as follows: if | R| <
2, the volumetric scattering model T, is in (5a) ; if
R>2, T, isin (5b); if R <=2, T, isin (5¢)[3]. The
solutions for volume scattering power m, under various
scenarios are expressed as equation (25).

2 re re _ re
R = 10/0g |SW|2 ~ 10log Ty + T3 — 2real(T}) 24)
1S, T + T + 2real(T))

4Ty if (T - T5) >0 and |[R| <2

%OT;g if (T - T)>0 and R > 2
m, = 30 (25)

s s if(Tr - T5)>0 and R <=2

1S e (T = T5) <0

8

After subtracting the volume scattering part from
<T’”> denoted by <T"d> shown in (26) , <T"d> consists of
surface scattering part and double-bounce scattering part
and the different cases of the volume scattering are shown
in equation (27).

(O
(1Y =m,T, + m,T,={T"ym,T,=| T T2 0(26)
0 0 O

XX #&
o )
Ty - Emv Ty 0
. 1 T, is (5
e ra-Lm of VTGV
4
L0 0 0
1 Lo |
T - 2 T + e 0
| T if T, is (5b)
Ty, + gmp Ty - gmz, 0
(ry=4:L 0 0 0] (27)
i 1 1 T
Tﬁ - Em, T{§ - gmw 0
w1 " if T,is (Sc)
Ty - oM Ty - 3 m
L0 0 0]
Ty Ty 0
Ty T - %m 0 if T, is (5d)
0 0 0

The volume scattering power m, is shown as (25) ,
and the surface scattering power m, and double-bounce
scattering power m,, are the eigenvalues of (T*’). The ei-
genvalue decomposition is {T*") shown as (28).

<Tﬁd> = Ak kY + ALkt (28)
cosa,
k, = | sina,cosB,e” (29)
0

where A, and A, is the eigenvalues, and k, and k, are the
corresponding eigenvectors shown in (29) with o, + a, =
90 . According to reference [17], when the scattering
mechanism angles a, + @, = 90, it can be considered
that the surface scattering model and the double-bounce
scattering model derived from the eigenvectors space of
the coherency matrix. The specific situations are as fol-
lows: if a, <45, then T, = k,*k' and T, = k,*k'; if o, >
45, then T, = k,*k%, and T, = k,*k'. The surface scat-
tering power m, and double-bounce scattering power m,

can be solved as (30).

{’”*‘i)‘l Ifa, <45

mfz—)\z (30)
{'”-*‘ > Ifa, > 45

m; =N,

If some A, or A, of {T*') is less than zero, we can
gradually reduce m, until A, 20 and A, = 0 are satis-
fied. Then, use (30) to calculate surface scattering pow-
er m, and double-bounce scattering power m,.

In order to obtain non-negative eigenvalues A, and
A,, we reduce the volume scattering power m,, which
usually leads to an underestimation of m,, especially in
high-entropy regions. To deal with this situation, we ad-
justed the calculation method of volume scattering power
m, in high-entropy regions. We consider that {T*') of
high-entropy regions consists of double-bounce scattering
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and volume scattering, and the surface scattering is not
included.

Entropy of the coherency matrix is calculated as
(31)[15]. p, in (32) is the normalized eigenvalue A, of
the coherency matrix {T'). Entropy represents the degree
of randomness of the targets in a cell. When entropy is
equal to 1, it means that the current target is completely
random and usually belongs to the vegetation areas.
When entropy equals zero, it means that the target is not
random at all and is a deterministic target, which usually
belongs to the rough surface areas.

H==3" p:logp, (31)
A, ,

D —m, 15{1,2,3} (32)
_ )‘2 - )‘3

AL A (33)

The anisotropy A in (33) indicates the degree of het-
erogeneity of the target. In PolSAR images, anisotropy A
is usually used in conjunction with entropy H[15]
When the entropy H is high, anisotropy 4 is used to dis-
tinguish whether the target belongs to vegetation areas or
artificial areas. In addition to the volume scattering pow-
er obtained by the calculation in (25), we believe that
part of volume scattering power exists in the matrix {T**)
in some entropy high case. When H — A > 0.4, we con-
sider that the current target belongs to the vegetation ar-
eas, the calculation of m,, m,, and the additional m, is
shown as follows:

m,=0
m,=A, Ifa, <50
m, = A, .
ifH-A>04 (34)
m, =0
m,=A, o > 50
m,= A,

The flowchart of modified multiple-component scat-
tering power decomposition for the original coherency ma-
trix of the PolSAR data is shown in Figure 1.

In this letter, the orientation angle compensation
(OAC) can be used on the modified decomposition meth-
od. The rotation matrices are shown in (35) and (36).
The coherency matrices are shown as (37) and (38) af-

ter two OACs. To reduce T, and T,,(6), the value of 0
and ¢ can be solved as shown in (39) and (40) respec-

tively. )
1 0 0
R(0)=|0 «cos20 sin26 (35)
10 —sin20 cos 260
1 0 0
U(¢) =|0 cos2¢ jsin2e (36)
|0 jsin2¢ cos2¢

(T(0)) = R(O)}TYR(0)' (37)
(T()) = Ule)T(8))U(e) (38)

1 1 2real(T23) n B
0= 1 tan ( T =T, + 40 = 0,+1 (39)
2i T,,(0
o= ltan_l 1mag( x( )) + ﬂ’ m = 0,+1(40)
4 T22(0) - T33(0) 4

After the first OAC by R(6), real(T23(0)) =0, ac-
cording to (11), m,, = 0. The proposed method has be-
come six-component scattering power decomposition. Af-
ter the second OAC by U(go), T23(g0) =0, according to
(10) , m, = 0. The proposed method has become five-
component scattering power decomposition.

Il Experiments Results

To demonstrate the effectiveness of the proposed
Freeman/Eigenvalue decomposition, various experiments
were conducted using fully PolSAR data. This is a L-
band 4-look AIRSAR dataset on San Francisco. The reso-
lution is 10mx10m, the incidence angle of the radar is 5°
~60", the size of selected image is 700x600 pixels. The
datais on {H, V! base, and the diagonal elements of the
coherence matrix form a color image with T, as blue, T,,
as red, and Ty, as green, shown as Figure 2. The three
areas with red rectangular in the Figure 2 are used for
subsequent experimental demonstrations, and they are
called zonel, zone2, and zone3, from top to bottom.
The respective terrain labels of zonel, zone2, and zone3
are ocean areas, urban areas and vegetation areas.

Three decomposition algorithms are chosen to com-
pare and demonstrate the results of the proposed decom-
position (PD) in this letter, including the Freeman-Dur-
den scattering matrix power decomposition (FDD)[ 1] us-
ing three volume scattering models (volume scattering
models are shown in (5a), (5b), and (5¢)), Yamagu-
chi four-component scattering matrix power decomposi-
tion (Y4D)[3], seven-component scattering matrix pow-
er decomposition (7SD) [9]. Figure 3, Figure 4, and
Figure 5 display the decomposition results of the AIR-
SAR data. In these figures, surface scattering power m,
is used for blue, double-bounce scattering power m, is
used for red, and volume scattering power m, is used for
green. Figure 3 displays the decomposition results of the
original coherency matrix of the AIRSAR data without
OAC. Figure 4 displays the decomposition results of the
coherency matrix with the OAC by using R(6). Figure 5
displays the decomposition results of the coherency ma-
trix with two kinds of OAC by using R(6) and U (¢) suc-
cessively.

As can be seen from Figure 3, Figure 4, and Figure
5, the four decomposition algorithms can preserve the im-
portant features of the AIRSAR data by extracting the
three main scattering powers m,, m,, and m,. In Figure 3
(e), Figure 4(¢), and Figure 5 (¢), it can be observed
that 7SD performs better for urban areas, with colors
trending towards red. This indicates a larger proportion
of double-bounce scattering power in urban areas. In Fig-
ure 3(d), Figure 4(d), and Figure 5(d), it can be seen
that the PD shows a reddish color for urban areas, indi-
cating a larger proportion of double-bounce scattering
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The coherency matrix of the PolSAR data

()= (k- 1) =

Ty T Ta

Ty T szl
Ty Tz Tas

!

iy = 2|imag(Tss)|
My = 2lreal(Tys)]
Meg = 2[imag(Ti3)|

noq = 2lreal(Tys)|

—

T e

]
Fakes values successively from 09, 0.8, . 0
my, = 2|imag(Tas)| + f

Y Mg = 2|real (Tos)| + f
Meq = 2|tmag(Tis)| + f
] Mo = Zlreal(Tya)] - f
Y T 0
() =|Ti3" T35 0
0 T
v /l\ N
l =Ty Y
R<-2 s | R>2
R =10log (—Sﬂﬁ)
15,1
1 IR|<2
30 e TE 30 re
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Tif—gm, Ti§-zm, 0 4 TH*=3me T3 0 Tii—gm, T +zm, 0 TS T{% 0
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!
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Figure 1
BT k) 22 on O R 0 i 7 ik T AR 1A

power. The vegetation areas tend towards green, indicat-
ing a larger proportion of volume scattering power in vege-
tation areas.

To visually demonstrate the effectiveness of the pro-
posed algorithm in scattering powers, the scattering pow-
er of the original coherency matrix of the AIRSAR data
without OAC are represented in Figure 6~8. The scatter-
ing power is shown a grayscale image, where black indi-
cates a 0% proportion and white indicates a 100% propor-
tion in terms of total power. Based on Figure 6, Figure 7
and Figure 8, it can be concluded that all of the four de-
composition algorithms can obtain higher surface scatter-
ing powers over the ocean areas, the double-bounce scat-
tering powers are strongest in urban areas and the volume
scattering powers are strongest in vegetation areas. In
Figure 8, the PD not only ensures the largest volume
scattering power of vegetation areas but also minimizes
the volume scattering power in urban areas and ocean ar-

Flowchart of modified multiple-component scattering power decomposition

eas.

Quantitative comparison is made using the three
zones in Figure 2. The scattering powers from these de-
composition algorithms for the original coherency matri-
ces without OAC in zonel, zone2, and zone3 are dis-
played in Table 1, Table 2, and Table 3, respectively.

From Table 1, Table 2, and Table 3, it can be seen
that compared with the other three algorithms, the pro-
portion of surface scattering power of PD algorithm in
zonel is as high as 93.64%, only slightly inferior to
Y4D. In zone2, PD algorithm has the highest proportion
of double-bounce scattering power, while 7SD algorithm
focuses its power on double-bounce scattering, mixed di-
pole scattering and surface scattering. PD algorithm con-
centrates its power on double-bounce scattering, surface
scattering, and mixed dipole scattering sequentially.
This phenomenon is consistent with the possible scatter-
ing types that may occur in urban areas. In zone3, PD al-
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Figure 2 Original Image
2 A

gorithm obtains the highest volume scattering power, ac-
counting for as much as 90. 41%. Because the PD algo-
rithm has improved using entropy to decompose the co-
herency matrix. If entropy H is high and anisotropy A is

(a) FDD (b) Y4D

Figure 3 Decomposition results for the coherency matrix

K3 MTHERER 2 RAE R

”(b) Y4b

low, i.e., H—-A > 0.4, it considers that surface scat-
tering does not exist, and the scattering power with scat-
tering angle less than 50 is classified as volume scatter-
ing, which increases the volume scattering power.

The scattering powers from these decomposition al-
gorithms for the coherency matrices with OAC by using
R(0) in zonel, zone2, and zone3 are displayed in Table
4, Table 5, and Table 6, respectively. Because after
OAC R(0), m,, =0, so PD and 7SD both have six scat-
tering powers. In zonel (shown in Table 4), the propor-
tion of surface scattering power of PD algorithm is as high
as 93.96%, only slightly inferior to Y4D. These four al-
gorithms obtain higher proportion of surface scattering
power than 92%. In zone2 (shown in Table 5), the dou-
ble-bounce scattering power of PD algorithm is the high-
est one, and it is 50.06%. In zone3 (shown in Table
6), PD algorithm gets the highest volume scattering pow-
er, which is 88.58%. It is 1.51%, 14.89% and
40. 32% higher than FDD, Y4D and 7SD respectively.

The scattering powers from these decomposition al-
gorithms for the coherency matrices with two kinds of
OAC by using R(6) and U(go) successively in zonel,
zone2, and zone3 are displayed in Table 4, Table 5, and
Table 6, respectively. Because after OAC by R(8) and
U(go), m,, =0 and m, = 0, so PD and 7SD both have

five scattering powers. In zonel (shown in Table 7), the

(¢c) 7SD (d) PD

Figure 4 Decomposition results for the coherency matrix with OAC by R(8)
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(a) FDD

(d) PD

Figure 5 Decomposition results for the coherency matrix with OAC by R(#) and U(go)
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(a) FDD (b) Y4D

Figure 6 Surface scattering powers of the coherency matrix
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(a) FDD (b)

Y4D

Figure 7 Double-bounce scattering powers of the coherency matrix
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proportion of surface scattering power of PD algorithm is
as high as 95. 17%, only slightly inferior to FDD. These
four algorithms obtain higher proportion of surface scat-
tering power than 93%. Compared with Table 4, double-
bounce scatting power is a slight improvement. In zone2
(shown in Table 8), the double-bounce scattering power
of PD algorithm is the highest one, and it is 51. 77%. In
zone3 (shown in Table 9), PD algorithm gets the highest
volume scattering power, which is 87.30%. It is

3.77%, 10.21% and 32.44% higher than FDD, Y4D

(¢) 7SD (d) PD

and 7SD respectively. Compared with Table 6 and Table
3, although there is a slight decrease in volume scatter-
ing in Table 9, the volume scattering still occupies an ab-
solute dominant position.

IV Conclusion

This letter proposed a modified multiple-component
scattering power decomposition. This paper combines ei-
genvalue decomposition with model decomposition. Re-
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(a) FDD

Figure 8 Volume scattering powers of the coherency matrix
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Table 1 Scattering powers in zonel for {T) (%) Table 4 Scattering powers in zonel for <T( 0)> (%)
F1 HTFERETXE 1B EEE(%) F4 HTHERETOXiE 1 KSR E (%)
Method
o FDD Y4D 78D PD Method FDD Y4D 78D PD
Powers Powers
m, 91. 62 94.21 91. 85 93. 64 m, 92.07 94. 67 92.26 93.96
m, 0.01 0.18 0.25 0.95 m, 0.07 0.15 0.29 1.00
m, 8.36 3.02 7.91 2.60 m, 7.91 2.61 7.44 2.34
m, — 2.59 0 0.28 m, — 2.57 0 0.34
,n'/n(l - - 0 O 10 ’nor{ - - O O 64
m,, — — 0 1.16 m, — — 0 1.73
- — — 0 1.26

Table 5 Scattering powers in zone2 for <T( 0)> (%)

Table 2 Scattering powers in zone2 for (I') (%) R5 MHTHEMETO XIE2EEBEE (%)
F2 HTHEKETXIE2HWESEEE (%) Method
othod i FDD Y4D 7SD PD
i FDD Y4D 78D PD Powers
Powers m, 19.58 34.61 28. 45 31.04
m, 13.21 30.41 25.81 32.90 m, 43.35 43.37 47.51  50.06
m, 35.41 37.82 32.75  40.51 . 37 08 1703 3 39 489
m, 51.38 26. 50 6.51 7.03 . 499 450 5 50
h . . .
m, — 5.27 3.59 1.95 . 0. 14 .
od N N
m, — — 18.36 8.98 ) o o s 71 3 o4
M, — — 9.98 5.78
m — — 3.02 2.85

od

Table 6 Scattering powers in zone3 for (7(0)) (%)
F6 AT IERE TO X1 3 M BUHEER (%)

Table 3 Scattering powers in zone3 for (T) (%) Method
F3 ETERT X3 WSS %) Powers FbD Y4b 7sb D
Method FDD YaD 7SD PD m, 3.79 9.06 13. 58 4. 49
Powers m, 10. 14 12. 60 19. 46 6. 84
s 315 7.09 15.97 2.96 m, 86. 07 73.69 48.26  88.58
m, 7.07 9.14 15.17 6.53 . o s i s .02
m, 89.77 79.12 44.92  90.41 - L o e 0.02
m, — 4.65 4.46 0.02 . L - 6,29 0.0
m,, — — 5.38 0.02
m,, — — 7.11 0.02

ume scattering power. The effectiveness of the proposed
algorithm in this letter has been demonstrated by experi-
ments on the real PoISAR data, especially in vegetation
ferring to 7SD [9] , this letter adopts seven scattering areas.

models. Entropy and anisotropy are used to get the vol-

m,, — — 6.99 0.04
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Table 7 Scattering powers in zonel for <T(go)> (%)
R7_HTEM T XiF 1 HIBEEEE (%)

Method
FDD Y4D 7SD PD
Powers
m, 94. 08 93.95 94. 52 95.17
m, 0.19 0. 67 1.01 1.33
m, 5.74 5.38 3.45 1.34
m,, — — 0. 62 1.33
m, — — 0.41 0.82

Table 8 Scattering powers in zone2 for (7(¢)) (%)
#=8 1HTAERE Te X2 MRS EEE (%)

Method
FDD Y4D 7SD PD
Powers
m, 20. 15 32.73 29.26 30. 04
m, 43.93 45. 83 50. 19 51.77
m, 35.92 21.44 4. 62 5.23
m,, — — 10. 11 8.36
m,, — — 5.81 4. 60

Table 9 Scattering powers in zone3 for (7(¢)) (%)
F9 TR Te Xi3 3 KBS EEE (%)

Method FDD Y4D 78D PD
Powers
m, 4.34 8.05 10. 55 5.31
m, 12.13 14. 86 21.01 7.31
m, 83.53 77.09 54.86  87.30
m,, — — 7.29 0. 02
m,, — — 6.29 0. 05
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