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Modified multiple-component scattering power decomposition for PoISAR
data based on eigenspace of coherency matrix
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Abstract: A modified multiple-component scattering power decomposition for analyzing polarimetric synthetic
aperture radar (PoISAR) data is proposed. The modified decomposition involves two distinct steps. Firstly, ei-
genvectors of the coherency matrix are used to modify the scattering models. Secondly, the entropy and anisotro-
py of targets are used to improve the volume scattering power. With the guarantee of high double-bounce scatter-
ing power in the urban areas, the proposed algorithm effectively improves the volume scattering power of vegeta-
tion areas. The efficacy of the modified multiple-component scattering power decomposition is validated using ac-
tual AIRSAR PolSAR data. The scattering power obtained through decomposing the original coherency matrix
and the coherency matrix after orientation angle compensation is compared with three algorithms. Results from
the experiment demonstrate that the proposed decomposition yields more effective scattering power for different
PoISAR data sets.
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Introduction tion areas. In recent years, various new PolSAR sensors
have been launched and various PolSAR missions have

Because of all-time, all-weather, and multi-band been carried out, resulting in an increase in the amount

imaging characteristics, polarimetric synthetic aperture of data requiring interpretation and processing. Target
radar (PolSAR) has been widely used in various applica- decomposition has emerged as the primary approach for
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interpretation and preprocessing due to its ease of imple-
mentation and strong physical meaning. For PolSAR im-
ages, target decomposition methods can be categorized
into two groups: model-based decomposition'"* and ei-
genvalue-based decomposition' "',

In 1998, Freeman and Durden introduced the Free-
man-Durden decomposition (FDD) "', which is a classi-
cal model-based decomposition method. FDD involves
decomposing the covariance matrix of PolSAR data into
three main components: surface scattering, double-
bounce scattering and volume scattering. Although FDD
has efficiently described the physical features of PolSAR
data, its major shortcomings are the presence of negative
surfaces and double-bounce scattering power. This is
due to the assumption of reflection symmetry theory,
where the co-polarized term is uncorrelated with the
cross-polarized term resulting 7, = 0 and T,; = 0 in the
coherency matrix {T). As a result, the cross-polarized
power only contributes to the volume scattering compo-
nent, causing the volume scattering power to be overesti-
mated and possibly greater than the total power. It leads
to negative surfaces and double-bounce scattering pow-
ers.

There are three primary methods for enhancing
FDD. The first technique involves performing orientation
angle compensation (OAC) on the coherency matrix or
the covariance matrix of the PolSAR data prior to decom-
position™. By orienting the coherency or covariance ma-
trix in this way, the cross-polarized power is reduced, re-
sulting in smaller volume scattering power. Consequent-
ly, the number of negative surface scattering and double-
bounce scattering power is also reduced. The second
strategy for improving FDD is to optimize the scattering
models, particularly the volume scattering model or by
introducing a new scattering model that shares the
crossed-polarized power with the volume scattering”*'*.
For example, Yamaguchi introduced the helix scattering
model as the fourth component for analysis™ , Lamei
Zhang et al. proposed a wire scattering model as the fifth
component” , Singh et al. associated T, and T,, with
physical scattering mechanisms, the six-component scat-
tering decomposition (6SD)"™ and seven-component scat-
tering (7SD )" were presented, Wentao An used a modi-
fied reflection symmetry decomposition to improve the
surface and double-bounce scattering power . The third
model-based decomposition methods represent a combi-
nation of model-based decomposition and eigenvalue-
based decomposition. Cloude made surface and double-
bounce scattering models orthogonal to each other, aim-
ing to minimize unknown variables''®. The orientation
angle compensation helps prevent negative values in the
scattered power, leading to the popular hybrid Freeman/
eigenvalue decomposition technique. Singh et al. en-
hanced the initial hybrid Freeman/eigenvalue decomposi-
tion by utilizing distinct volume scattering models that
were scattered from vegetation areas and oriented ob-
jects''”.

In this letter, authors present an improved version
of multiple component scattering decomposition for Pol-

SAR data. Seven scattering models are used” , i e.,
surface scattering model, double-bounce scattering mod-
el, volume scattering model, helix scattering model, ori-
ented dipole scattering model, compound dipole scatter-
ing model, and mixed dipole scattering model. Non-neg-
ative matrix factorization is achieved by limiting the vol-
ume scattered energy to obtain surface scattering and dou-
ble bounce scattering energy. Additionally, the entropy
obtained through eigenvalue decomposition of the coher-
ency matrix enhances the volume scattering power in veg-
etation areas. The improved version yields non-negative
scattering power and outperforms FDD, particularly
when applied to vegetation areas.

This letter is organized as follows. The method is
presented in Section I, including the proposed scattering
model and the improved multiple-component scattering
power decomposition. Experimental results on real Pol-
SAR data are compared with several decomposition meth-
ods in Section 2, and followed by the conclusions in Sec-
tion 3.

1 Modified scattering decomposition

1.1 Scattering models

The multi-look data received in PolSAR systems us-
ing the {H, V| basis can be represented as a 3x3 com-
plex matrix, which is also referred to as the coherency
matrix. This matrix provides information about the polar-
ization properties of the radar signal, including the phase
and amplitude relationships between different polariza-
tion components. The coherency matrix of PolSAR image
is presented as Eq. (1):

N N Tll T12 T|3
ry=(k k=1, T, T, S
T, Ty Ty

In the PolSAR systems, l?p is a Pauli vector repre-
senting single-look data. The angle brackets {-) denote
the mean of several observations from the objects within a
resolution cell. As a result, {T) is a positive semidefi-
nite Hermitian matrix.

Freeman and Durden developed the technique for
PolSAR systems to break down the covariance matrix or
the coherency matrix into three separate components.
These three components consist of the surface scattering
component, double-bounce scattering component, and
volume scattering component'"'. Gulab Singh and his col-
leagues attributed physical scattering mechanisms to T,
and T,;, and established seven-component scattering de-
composition (7SD) to provide an explanation for the co-
herency matrix of PolSAR data'. The scattering decom-
position in this letter is demonstrated on the coherency
matrix, and the coherency matrix is divided into seven
parts as follows™ :

(T)=m.T. +mT,+mT, +mT, +m,T,,
+m, T, +m,T, , (2)
where T, Ty, T,, T,, T,,, T, and T, denote surface
scattering model, double-bounce scattering model, vol-
ume scattering model, helix scattering model, oriented
dipole scattering model, compound dipole scattering
model, and mixed dipole scattering model respectively.
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Correspondingly, m_, m,, m , m,, m,,, m,, and m,,
represent the corresponding scattering power of the seven
scattering models.

T, T, T,T, T

T, and T , are shown as fol-
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where coefficient 8 in Eq. (3) sets 0 <8< 1 and a in
Eq. (4) is a complex value with |a|< 1. T, in Egs.
(5a), (5b), (5¢) and (5d) is the volume scattering
model under different cases. j represents an imaginary
number.
1.2 Modified decomposition

This part presents an improved multiple component
scattering decomposition for PoISAR data based on entro-
py H and anisotropy A. These two parameters are used to
enhance the volume scattering power in vegetation areas
with high-entropy. PolSAR data are divided into two cate-
gories: vegetation areas with high-entropy and other ar-
eas. Different decomposition techniques are adopted to
obtain better scattering power. The volume scattering
power in vegetation areas has been improved while ensur-
ing good performance in other areas.

According to the decomposition formula in Eq. (2)
above and the model in Egs. (3)-(9), m, and m,, can
be calculated from T,;, while m_ and m ,can be calculat-

od

ed from T,;. The solutions are shown as:

m, = 2|Im(7,)| . (10)
m, 2|Re 23| s (11)
my, = 2|Im(T,,)] , (12)
m 2|Re 1z| s (13)

where Im() in Eqs. (10) and (12) denotes the process
of extracting the imaginary part of an element and Re() in
Eqgs. (11) and (13) denotes the process of extracting the
real part of an element.

After removing the four scattering power mentioned
above from the coherency matrix, the residual part con-
tains surface scattering power, double-bounce scattering
power, and volume scattering power as shown in Eq.
(14), with the residual part <T“"> shown in Eq. (15):

() =m.T.+m,T, +m,T,

= <T> -mT, - m,T,,-m,T,—m,T,, (14)
ry Ty Ty
(rey=\15 15 T3 - (15)
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Each element in T’ is represented as follows :

. 1 1
JﬁzT”—EmM—Emmzﬂ]’m T)| - |Re(T))]
| | , (16)
T =Ty = ymy = ymy =Ty [ (72,) | - [Re(T2)]
, (17)
1 1 1
TE=Tys——Smy—5m, — Em(-,d 5 M

=Ty - ‘Im(Tzs) ’ - |RG(T23)’ - ’Im(TH) ‘ - |R6(T13)|
, (18)
r;=T, | s (19)

Ts=T,+ Em”lj + —m,,
Ty, = Im(Ty)j - Re(T;) =0 , (20)
TS =Ty 2m,j+~m,

T,y — Im(T,)j - Re(T,,) = . (21

To ensure that the three scattering power, i.e. , m_,

m,) > m

m, and m, from {T™) is positive, it is necessary to ensure
that T\, T, and T45; are all positive. However, there may
be certain pixels where these values are less than zero.
In these instances, m,, m,,, m,, and m,, must be modi-
fied appropriately to ensure that T);, T, and T35 remain
non-negative. If T33<0, gradually reduce m,, m,,, m.,
and m,, at the same time until T35>=0 is satisfied. Then,
if T}} is still less than 0, set m,, = 0 and m,, = 0. Simi-
larly, if 7,5 is still less than O, set m, = 0 and m,, = 0.

After obtaining the values of m,, m,,, m., and m
through the above solution, in order to calculate the val-
ue of m_, myand m,, T}5 and T,; which are not equal to 0
in some pixels are ignored, and the residual matrix <T“">
is set to the following form as Eqs. (22) and (23):

od

ry T3 0

(r) =T T5 0 , (22)
0 0 T

(1<) =m.T. +m,T, + m,T, . (23)

To determine the volume scattering power m,, it is
first necessary to determine whether the volume scatter-
ing is from the dihedral structure or the dipole structure.
Set C, =T} — Ty, such that if C, < 0, the volume scat-



ZHANG Shuang et al: Modified multiple-component scattering power decomposition for PolSAR data based

4 4 on eigenspace of coherency matrix

tering model 7', is shown as Eq. (5d), and if C, = 0, the
volume scattering model T, is shown as one of Egs.
(5a), (5b) and (5¢). By utilizing the co-polarized ratio
R of Eq. (24), one can determine the suitable model for
the volume scattering. The detailed steps are as follows:
if |[R| < 2, the volume scattering model T, is shown as
Eq. (5a) 5 if R>2, T, is shown as Eq. (5b) ; if
R <=2, T, is shown as Eq. (5¢)". The solutions for the
volume scattering power m, under various scenarios are
expressed as Eq. (25):
2 re re re
R e 10]0g( ISWI2 ) _ IOlog(Tlrl + Tzr? 2Re(T13)
1Sl Ty + Ty + 2Re(T5)
4T if (T - Ts) >0 and |[R| <2

%T;; if (T = Ts)=0 and R > 2

3 15 (15 -T5)>0 and R <=2

15 (75 - T5) <0
8 33
After subtracting the volume scattering part from

{(T™) denoted by {T*") as shown in Eq. (26), {T** con-

sists of surface scattering part and double-bounce scatter-

(24)

ing part and the different cases of the volume scattering
part are shown in Eq. (27):

Ty Ty 0
(T =mT +mT,={T*)-mT, =| Ty T3 0,26
0 0 0
S
TNi-ymo Ti o0
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ry T-tm of THEGW
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0 0 0
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| 7 if T is (5b)
TS + gm\, Ty - gmv 0
(r*y=L 0 0 0] 27)
[ L1 1
T]r; - Emv le - gm‘ 0
| .7 if T is (5¢)
le' - gmv T22' - gmv 0
L0 0 0]
Ty Ty 0
. 7 o
Ty Ty — 3m 0 if T is(5d)
0 0 0

The volume scattering power m, is represented as

Eq. (25), while the surface scattering power m, and dou-

ble-bounce scattering power m, are the eigenvalues of

{T*). The eigenvalue decomposition of {T*) is shown as
Eq. (28):

(T) = Xk *ky + Ak, ., (28)

575
cosq,
k, = | sina,cosB,e™ , (29)
0

where A, and A, are the eigenvalues, and k, and k, are
the corresponding eigenvectors as shown in Eq. (29)
with @, + &, = 90. According to Ref. [17], when the
sum of scattering mechanism angles o, + a, = 90, it
can be considered that the surface scattering model and
the double-bounce scattering model are derived from the
eigenvector space of the coherency matrix. The specific
situations are as follows: if a, < 45, then T, = k *k' and
T, = k,*ky; if a, > 45, then T, = k,*ky, and T, = k,*k'.
The surface scattering power m, and double-bounce scat-
tering power m,, can be solved as Eq. (30):

’"Sf)" Ifa, <45

md_/\Z (30)
{’”5‘ > Ifa, > 45

my = A,

In cases where A, or A, of <T“I> is less than zero,
the volume scattering power m, can be gradually reduced
until A, = 0 and A, = 0 conditions are met. Subsequent-
ly, surface scattering power m, and double-bounce scat-
tering power m, can be calculated using Eq. (30).

To ensure non-negative eigenvalues A, and A,, the
volume scattering power m, is typically reduced, often
leading to an underestimation of m_, especially in high-
entropy regions. To address this issue, adjustments are
made to the calculation method for volume scattering pow-
er m, in high-entropy regions. It is considered that {T*')
of high-entropy regions comprises the double-bounce
scattering and the volume scattering, with the surface
scattering excluded.

Entropy of the coherency matrix is calculated as
Eq. (31)"™. p,in Eq. (32) is the normalized eigenval-
ue A; of the coherency matrix {T). Entropy represents
the degree of randomness of the targets in a cell. When
entropy is equal to 1, it means that the current target is
completely random and usually belongs to the vegetation
areas. When entropy equals zero, it means that the tar-
get is not random at all and is a deterministic target,
which usually belongs to the rough surface areas.

H==-%"p-logp, ., (1)

X

=1  el1.2 s 2

P )\,+/\2+/\3’LE{’ .3} (32)
A=A,

=22~ 7% 33

XL E AL (33)

Anisotropy A in Eq. (33) indicates the degree of
heterogeneity of the target. In PolSAR images, anisotro-
py A is often paired with entropy H'"*'. When the entropy
H is high, anisotropy A helps differentiate between tar-
gets in vegetation areas and artificial ones. Additionally,
besides the volume scattering power m, calculated in Eq.
(25), it is believed that part of volume scattering power
exists in the matrix {T*') in some high-entropy case.
When H — A > 0.4, the target is considered to be the
vegetation area, and the calculation of m_, m,, and the
additional m, is as follows:
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m_ =0 1 0 0
m,=A, Ifa, <50 R(0)=|0 cos20 sin20 , (35)
m, =\, HH-A>04 . (34) :O —sin 20 cos 260
m,=0 1 0 0
my=A, Ifa,>50 U(¢) =10 cos2¢ jsin2p , (36)
m, = A, o ] 0 jsin2¢ cos2¢
The flowchart of the modified multiple-component -
scattering power decomposition for the original coherency <T(0)> = R(9)<T>R(0), , (37)
matrix of the PolISAR data is depicted in Fig. 1. ,
In this letter, the orientation angle compensation <T(¢)> = U(¢’)<T(0)>U(¢’) ., (38)
(OAC) can be applied to the modified decomposition
; : : 1 _[2Re(Ty)) nmw
method. The rotation matrices are presented in Egs. 0= —tan'| |+ —, n=0,x1, (39)
(35) and (36). The coherency matrices are shown as 4 Ty =T 4
Eqgs. (37) and (38) after two OACs. To minimize T,
and T,,(6), the values of 6 and ¢ can be determined as il- o= ltan’] 2Im(T”(H))) + m7 m = 0,+1 .(40)
lustrated in Eqs. (39) and (40) respectively: 4 T,(0) - T,(6) 4

The coherency matrix of the PolSAR data
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Fig. 1 Flowchart of modified multiple-component scattering power decomposition
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After the first OAC by R(8), Re(T5(6))=0, as
per Eq. (11), m,, = 0. The proposed method evolves
into a six-component scattering power decomposition.
Following the second OAC by U(go), T23(g0) =0, as per
Eq. (10), m, = 0. Consequently, the proposed method
transforms into a five-component scattering power decom-
position.

2 Experimental results

To demonstrate the effectiveness of the proposed
multiple-component scattering power decomposition for
PolSAR data based on eigenspace of coherency matrix,
various experiments were conducted using fully PolSAR
data. An L-band 4-look AIRSAR dataset covering San
Francisco is utilized. It has a resolution of 10 mx10 m,
with the radar incidence angles ranging from 5° to 60°,
and the selected image size is 700X600 pixels. The data
is in the {H, V| base, and the diagonal elements of the
coherency matrix form a color image with 7', representing
blue, T,, representing red, and T,; representing green,
as shown in Fig. 2. Three areas outlined by red rectan-
gles in Fig. 2 are designated for subsequent experimental
demonstrations, labeled as zonel, zone2, and zone3
from top to bottom. The respective terrain labels for
zonel, zone2, and zone3 are ocean areas, urban areas
and vegetation areas.

Three decomposition algorithms are selected to com-
pare and demonstrate the results of the proposed decom-
position (PD) in this letter, including the Freeman-Dur-
den scattering power decomposition (FDD) ' utilizing
three volume scattering models (volume scattering mod-
els are shown in Eqs. (5a), (5b), and (5¢)), Yamagu-
chi  four-component scattering power decomposition
(Y4D) "™, seven-component scattering power decomposi-
tion (7SD)". Figures 3-5 display the decomposition re-
sults of the AIRSAR data. In these figures, surface scat-
tering power m_ is represented in blue, double-bounce
scattering power m, in red, and volume scattering power
m, in green. Figure 3 presents the decomposition results
of the original coherency matrix of the AIRSAR data with-
out OAC. Figure 4 shows the decomposition results of
the coherency matrix with the OAC applied using R(0).

vid

(a) FDD (b) Y4D

Fig. 3 Decomposition results for the coherency matrix

K3 MTHERER AR

Fig. 2 Original image
K2 sl

Figure 5 illustrates the decomposition results of the coher-
ency matrix with two types of OAC applied sequentially
using R(6) and U(gp).

As shown in Figs. 3-5, the four decomposition algo-
rithms effectively preserve the key features of the AIR-
SAR data by extracting the three main scattering power
m,, m,, and m,. In Fig. 3(c), Fig. 4(c¢), and Fig. 5
(¢), 7SD demonstrates superior performance in urban ar-
eas, with colors leaning towards red. This suggests a
higher concentration of double-bounce scattering power
in these areas. In contrast, in Fig. 3(d), Fig. 4(d),
and Fig. 5(d), PD exhibits a reddish tint for urban ar-
eas, indicating a significant presence of double-bounce
scaltering power. Vegelation areas show a tendency to-
wards green, indicating a higher proportion of volume
scattering power in these regions.

To visually demonstrate the effectiveness of the pro-
posed algorithm in scattering power, the scattering power
of the original coherency matrix of the AIRSAR data with-
out OAC are represented in Figs. 6-8. The scattering
power is shown as a grayscale image, where black indi-
cates a 0% proportion and white indicates a 100% propor-
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Fig. 4 Decomposition results for the coherency matrix with OAC by R(8)
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(a) FDD

(¢) 7SD (d) PD

Fig. 5 Decomposition results for the coherency matrix with OAC by R(6)and U (¢)
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tion in terms of total power. Based on Figs. 6-8, it can
be concluded that all four decomposition algorithms can
obtain higher surface scattering power over ocean areas,
the double-bounce scattering power is strongest in urban
areas and volume scattering power is strongest in vegeta-
tion areas. In Fig. 8, PD not only ensures the largest vol-
ume scattering power of vegetation areas but also mini-
mizes the volume scattering power in urban areas and

ocean areas.

(b) Y4D

(a) FDD

Fig. 6 Surface scattering power of the coherency matrix

Fl6 AR g2 O RE R

Quantitative comparison is made using the three
zones in Fig. 2. The scattering power from these decom-
position algorithms for the original coherency matrices
without OAC in zonel, zone2, and zone3 is displayed in
Tables 1-3, respectively.

From Tables 1-3, it can be observed that, com-
pared with the other three algorithms, the proportion of
surface scattering power of PD algorithm in zonel is as
high as 93.64%, only slightly inferior to Y4D. In

(¢) 7SD

(d) PD
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(a) FDD (b) Y4D

Fig. 7 Double-bounce scattering power of the coherency matrix
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(b) Y4D

Fig. 8 Volume scattering power of the coherency matrix
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zone2, PD algorithm has the highest proportion of double-
bounce scattering power, while 7SD algorithm focuses its
power on double-bounce scattering, mixed dipole scatter-
ing and surface scattering. PD algorithm concentrates its
power on double-bounce scattering, surface scattering,
and mixed dipole scattering sequentially. This phenome-
non is consistent with the possible scattering types that
may occur in urban areas. In zone3, PD algorithm ob-
tains the highest volume scattering power, accounting for
as much as 90. 41%. Because the PD algorithm has been
improved using entropy to decompose the coherency ma-
trix. If entropy H is high and anisotropy A is low, i. e. ,
H-A>0.4, it considers that surface scattering does
not exist, and the scattering power with scattering angle
less than 50 is classified as volume scattering, which in-
creases the volume scattering power.

The scattering power from these decomposition algo-
rithms for the coherency matrices with OAC by using
R(0) in zonel, zone2, and zone3 is displayed in Tables
4-6, respectively. Because after OAC R(@), m,, =0,
so PD and 7SD both have six scattering power. In zonel
(shown in Table 4) , the proportion of surface scattering
power of PD algorithm is as high as 93. 96%, only slight-
ly inferior to Y4D. These four algorithms obtain a higher
proportion of surface scattering power than 92%. In
zone2 (shown in Table 5), the double-bounce scattering

Table 1 Scattering power in zonel for (T) (%)

F1 HETFERETXE1HEEHEEE (%)
Method
Powers FDD Y4D 7SD PD
m, 91. 62 94.21 91.85 93. 64
m, 0. 01 0.18 0.25 0.95
m, 8.36 3.02 7.91 2.60
m, — 2.59 0 0.28
Mg - — 0 0.10
- — — 0 1. 16
m., — — 0 1.26
Table 2 Scattering power in zone2 for {T) (%)
F2 HETERTXE2WEHEE%)
Method
Powers FDD Y4D 7SD PD
m, 13.21 30. 41 25.81 32.90
my 35.41 37.82 32.75 40.51
m, 51.38 26. 50 6.51 7.03
m, — 5.27 3.59 1.95
m., — — 18.36  8.98
m, — — 9.98 5.78
m e — 3.02 2.85

cd
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Table 3 Scattering power in zone3 for {T) (%)
®3 HTERETRIEINHSESE (%)

Method Powers ~ FDD Y4D 7SD PD
m, 3.15 7.09 15.97 2.96
m, 7.07 9.14 15.17 6.53
m, 89.77 79.12 44.92 90. 41
m, — 4.65 4.46 0.02
m,, — — 5.38 0.02
m,, — — 7.11 0.02
m — — 6.99 0. 04

cd

power of PD algorithm is the highest one, and it is
50.06%. In zone3 (shown in Table 6), PD algorithm
gets the highest volume scattering power, which is
88.58%. 1t is 1.51%, 14.89% and 40.32% higher
than FDD, Y4D and 7SD respectively.

Table 4 Scattering power in zonel for (7(0)) (%)
*4 HTEFETOXIE 1SS (%)

Method Powers FDD Y4D 75D PD
m, 92.07 94. 67 92.26 93.96
m, 0.07 0.15 0.29 1.00
m, 7.91 2.61 7.44 2.34
m, — 2.57 0 0.34
m, — — 0 0. 64
m — — 0 1.73

cd

m;, = 0, PD and 7SD both have five scattering power. In
zonel (shown in Table 7), the proportion of surface scat-
tering power of PD is as high as 95. 17%, only slightly in-
ferior to FDD. These four algorithms obtain a higher pro-
portion of surface scattering power than 93%. Compared
with Table 4, double-bounce scatting power shows a
slight improvement. In zone2 (shown in Table 8) , the
double-bounce scattering power of PD is the highest one,
at 51.77%. In zone3 (shown in Table 9) , PD obtains
the highest volume scattering power, which is 87. 30%.
This is 3. 77%, 10. 21% and 32. 44% higher than FDD,
Y4D and 7SD respectively. Compared with Table 6 and
Table 3, although there is a slight decrease in volume
scattering in Table 9, the volume scattering still occupies
an absolute dominant position.

)) (%)

Table 7 Scattering power in zonel for <T(gp

K7 BFEET(o)XIE 1 HESTEE S (%)

Method Powers FDD Y4D 7SD PD
m, 94.08 93.95 94.52  95.17
m, 0.19 0.67 1.01 1.33
m, 5.74 5.38 3.45 1.34
m,, — — 0.62 1.33
m — — 0.41 0.82

cd

Table 8 Scattering power in zone2 for <T (qo)> (%)

RS TR T (o)X 2 BUELSTRE B (%)

Method Powers FDD Y4D 7SD PD
Table 5 Scattering power in zone2 for <T (0)> (%) m, 20. 15 32.73 29.26  30.04
x5 MBTHERETOXE2HEGEEE (%) m, 43.93 45.83 50.19  51.77
Method Powers FDD Y4D 7SD PD m 35.92 21. 44 4.62 5.23
m, 19. 58 34.61 28.45  31.04 m:d . . 1011 8.36
m, 43.35 43.37 4751 50.06 ., . . 581 4.60
m, 37.08 17.03 3.39 4.89
i T 4.99 4.80 2.80 Table 9 Scattering power in zone3 for <T(go)> (%)
Mo — — 1014 7.27 R9 HATHERE (o)X 3 MBS EEE (%)
Mey — — 5. 71 3.94 Method Powers FDD Y4D 78D PD
m, 4.34 8. 05 10. 55 5.31
Table 6 Scattering power in zone3 for (7(0)) (%) m, 12.13 14. 86 21.01 7.31
x6 MHTHEMETOXE3IWEHIEEE%) m, 33,53 7709 5486 87.30
Method Powers FDD Y4D 75D PD m,, _ _ 729 0.02
m, 3.79 9.06 13. 58 4.49 - - - 629 0.05
m, 10. 14 12. 60 19.46 6.84
m, 86. 07 73. 69 48. 26 88.58 .
m o i s 4o 0.00 3 Conclusions
m,, — — 7.83 0.02 This letter proposes a modified multiple-component
m — — 6.29 0.05 scattering power decomposition. This proposed algorithm

cd

The scattering power from these decomposition algo-
rithms for the coherency matrices with two types of OAC
by using R(6) and U(go) successively in zonel, zone2,
and zone3 is displayed in Tables 7-9, respectively. Be-
cause after OAC by R(6) and U(go), =0 and

M g

combines eigenvalue decomposition with model decompo-
sition. Referring to 7SD"’, this letter employs seven scat-
tering models. Entropy and anisotropy are utilized to esti-
mate the volume scattering power. The effectiveness of
the proposed algorithm is demonstrated by experiments
conducted on real PolSAR data, particularly in vegeta-
tion areas.
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