文章编号: 1001-9014(2024)03-0331-05

DOI: 10. 11972/j. issn. 1001-9014. 2024. 03. 006

InGaAs/InAlAs InP-based HEMT with the current cutoff frequency of 441 GHz

 $FENG~Rui-Ze^{1,2},~~CAO~Shu-Rui^{1,2},~~FENG~Zhi-Yu^{1,2},~~ZHOU~Fu-Gui^{1,2},~~LIU~Tong^1,\\ SU~Yong-Bo^{1,2},~~JIN~Zhi^{1,2*}$

- (1. High-Frequency High-Voltage Device and Integrated Circuits Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
 - 2. School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: In this letter, an $In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ InP-based HEMT with $f_T > 400$ GHz was designed and fabricated successfully. A narrow gate recess technology was used to optimize the parasitic resistances. The gate length is 54.4 nm, and the gate width is $2 \times 50~\mu m$. The maximum drain current $I_{DS.\,max}$ is 957 mA/mm, and the maximum transconductance $g_{m.\,max}$ is 1 265 mS/mm. The current gain cutoff frequency f_T is as high as 441 GHz and the maximum oscillation frequency f_{max} reaches 299 GHz, even at a relatively small value of $V_{DS} = 0.7~V$. The reported device can be applied to terahertz monolithic integrated amplifiers and other circuits.

Key words: InP HEMTs, InGaAs/InAlAs, current gain cutoff frequency (f_T) , maximum oscillation frequency (f_{max}) , gate recess

电流增益截止频率为441 GHz的InGaAs/InAlAs InP HEMT

封瑞泽^{1,2}, 曹书睿^{1,2}, 冯识谕^{1,2}, 周福贵^{1,2}, 刘 同¹, 苏永波^{1,2}, 金 智^{1,2*} (1. 中国科学院微电子研究所,高频高压器件与集成电路研究中心,北京100029; 2. 中国科学院大学集成电路学院,北京100049)

摘要:本文设计并制作了 $f_r > 400$ GHz 的 $In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ 铟磷高电子迁移率晶体管(InP HEMT)。采用 窄栅槽技术优化了寄生电阻。器件栅长为54.4 nm, 栅宽为2×50 μ m。最大漏极电流 $I_{DS,max}$ 为957 mA/mm, 最大跨导 $g_{m,max}$ 为1265 mS/mm。即使在相对较小的 $V_{DS} = 0.7$ V下,电流增益截止频率 f_r 达到了441 GHz,最大振荡频率 f_{mx} 达到了299 GHz。该器件可应用于太赫兹单片集成放大器和其他电路中。

关 键 词: 铟磷高电子迁移率晶体管(InP HEMTs); InGaAs/InAlAs; 电流增益截止频率 (f_r) ; 最大振荡频率 (f_{max}) ; 栅槽

中图分类号:TN385

文献标识码:A

Introduction

The InP based terahertz monolithic integrated circuit (TMIC) have potentials for applications in plenty of fields, such as high-resolution security imaging systems^[1], revolutionary communication networks^[2], and radio astronomy^[3]. InP-based InGaAs/InAlAs HEMTs have demonstrated high operating frequency, low noise, high-gain performance, as well as good radiation resistance^[4], making them an important device for InP based TMIC.

In recent years, the requirements for higher opera-

tion frequency and larger output power of TMIC result in a strong push of THz transistor technologies with current gain cutoff frequency (f_T) and maximum oscillation frequency (f_{\max}) . The operating frequencies of integrated circuit amplifiers have seen corresponding increase to as high as 1 THz, with InP HEMTs reaching 1.5 THz f_{\max} and 610 GHz $f_T^{[5]}$. And the recent literature reported the current record of $f_T = 738$ GHz with a gate length of 19 nm^[6]. Various efforts have been made to improve the f_T of InP based HEMTs, such as reducing the gate length $(L_g)^{[7]}$, source-to-drain spacing $(L_{\rm SD})^{[8]}$, and gate-to-channel dis-

Received date: 2023-04-13, revised date: 2023-05-26 收稿日期: 2023-04-13, 修回日期: 2023-05-26

Foundation item: Supported by The National Natural Science Foundation of China (61434006)

Biography: Feng Ruize (1995. 12-), male, Shanxi China, Ph. D. Research area involves InP HEMT and MMIC. E-mail: 13161075953@163. com

^{*}Corresponding author: E-mail: jinzhi@ime. ac. cn

tance $(t_{\rm ins})^{[9]}$, as well as optimizing the channel layer and the gate recess All the above measures are for minimizing the parasitic resistances, capacitances and increasing the transconductance.

In this letter, a narrow gate recess technology was used to optimize the parasitic resistances of InP based HEMTs. The $\rm In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As$ HEMTs with gate length of 54. 4 nm were fabricated. The values of f_T and $f_{\rm max}$ are as high as 441 GHz and 299 GHz, the maximum drain current $I_{\rm DS.\,max}$ is 957 mA/mm, and the maximum transconductance $g_{\rm m.\,max}$ is 1265 mS/mm. The InP based HEMTs with such high performances can be applied to terahertz monolithic integrated (TMIC) amplifiers and other circuits.

Fig. 1 A schematic cross-section of InP-based HEMT 图 1 InP HEMT 的截面示意图

Fig. 2 The EBL process with a PMMA/Al/UVIII resist stack 图 2 PMMA/Al/UVIII 光刻胶堆叠的电子束光刻工艺

1 Experiment

The Schematic cross-section of InP-based HEMTs is shown in Fig. 1. The epitaxial layers of the devices were grown by gas source molecular beam epitaxy (GSMBE) on 3 inch semi-insulating InP (100) substrates. From bottom to top, the layers consists of a 500-nm In_{0.52}Al_{0.48}As buffer layer, a 10-nm In_{0.53}Ga_{0.47}As channel layer, a 3-nm unstrained In_{0.52}Al_{0.48}As spacer layer, Si delta doping layer with 5×10^{12} cm⁻² doping concentration, a 8-nm unstrained In_{0.52}Al_{0.48}As Schottky barrier layer, a 4-nm InP etch-stop layer for preventing over etching and a 40-nm multi-layer cap layer that combines heavily-droped In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As and a heavily-droped In_{0.65}Ga_{0.35}As upper cap layer. Hall measurements from a Hall calibration epitaxial layer structure were made at room temperature, showing a carrier mobility of over $10\,000\,\text{cm}^2/(\text{Vs})$.

Fig. 3 $\,$ SEM photograph of the T-Gate and gate recess of the In-GaAs/InAlAs HEMT

图 3 InGaAs/InAlAs HEMT 的 T型栅和栅槽的 SEM 照片

The fabrication process of InP HEMTs mainly contains five steps, including mesa isolation, ohmic contact formation, gate recesses, T-Gates, and connection pads, which is similar to our previously reported devices [13]. Isolating mesa was formed by phosphoric acid-based wet etching down to the InAlAs buffer layer. Source and drain electrodes were defined by electron beam lithography (EBL) with a 2.4- μm distance. Ti/Pt/Au (15 nm/15 nm/50 nm) was evaporated and lifted off to form the source and drain contacts, with contact resistance measured to be 0.023 Ω •mm and the specific contact resistivity 8.75E-8 Ω •cm² by TLM method.

Subsequently, the trilayer e-beam resist process was applied to fabricate 50-nm-gate-length T-gates. The gate process was developed by EBL with a PMMA/Al/UVIII (200 nm/10 nm/800 nm) resist stack, which is shown in Fig. 2. The top UVIII resist was exposed by a small dose and wide line. After that, the gate head was determined by TMAH development and rinsed in DI water. Subsequently, the gate foot was defined on a single layer of PMMA resist and was exposed by a big dose and narrow line. This approach allows better focusing at the gate foot exposure step because of the thin PMMA resist. As a result, this process scheme allows a small $L_{\rm g}$. After that, the 200 nm gate recess was etched to InP etch-stop layer by ${\rm H_3PO_4}$ -solution, and a Ti/Pt/Au (25 nm/25 nm/

350 nm) T-gate was evaporated and lifted off. The length of the T-Gate is 54.4 nm, as shown in Fig. 3. Finally, the Ti/Au (15 nm/400 nm) connection pads were evaporated for on-wafer DC and RF characteristics measurements.

2 Results and Discussion

DC properties were characterized by using a HP4142 semiconductor parameter analyzer at room temperature. Figure 4 (a) shows the current-voltage (I-V)characteristics of the HEMT with L_{α} = 54.4 nm and gate width $W_{\mu} = 2 \times 50 \, \mu \text{m}$ at room temperature. The gatesource voltage (V_{GS}) is increased from -1.0 V to 0.0 V with step of +0.2 V, and the drain-source voltage (V_{DS}) changes from 0 V to 1.2 V. The $I_{DS,max}$ @ V_{GS} = 0.0 V is 957 mA/mm. The $I_{DS, max}$ is enhanced compared to our previously reported InP HEMTs^[14] and is attributed to the reduction of gate length. The device shows a small value of ON-resistance ($R_{\rm on} = 0.667 \ \Omega \cdot \text{mm}$) due to a relatively narrow gate recess. Because the narrow gate recess leads to reduction of R_s and R_n [15]. Moreover, the kink effect of the device is negligible due to the introduction of the InP etching-stopper layer.

Figure 4 (b) plots the measured transconductance $(g_{\rm m})$ of the $L_{\rm g}$ = 54. 4 nm device as a function of $I_{\rm DS}$, for various vaules of $V_{\rm DS}$ from 0. 1 V to 0. 7 V in + 0. 1 V steps. A maximum extrinsic transconductance $g_{\rm m.max}$ of 1 265 mS/mm is achieved at $V_{\rm DS}$ = 0. 7 V. The pinch-off voltage is about -0. 73 V at $V_{\rm DS}$ = 0. 7 V as shown in Fig. 3(c).

The RF characteristics were measured using an Agilent E8363B PNA vector network analyzer from 0. 1 GHz to 50 GHz. Before the RF test, the equipment was calibrated to eliminate systematic errors due to the environment or test equipment. In order to accurately obtain the S-parameter of the device, we calibrated the test reference surface to the GSG test probe tip. The open and short structures were used to substract pad-related capacitance and inductance components from measured S-parameters. Then, the values of a short-circuit current gain (H_{21}) , a maximum available gain and a maximum stable gain (MAG/MSG), and a Mason's unilateral gain (U) were plotted in Fig. 5 (a). The bias condition was at $V_{\rm GS}$ = -0. 35 V and $V_{\rm DS}$ = 0. 7 V.

Since the test frequency range was limited from 0. 1 GHz to 50 GHz, we obtained a value of f_T = 441 GHz by extrapolating the measured H_{21} with a slope of -20 dB/dec. Regarding $f_{\rm max}$, it cannot be directly extracted from the measured U or MAG/MSG. This is because it is difficult to observe a decline in the MAG/MSG frequency curve with a slope of -20 dB/dec in a limited test range. Therefore, if the frequency curve of MAG/MSG is extrapolated with -20 dB/dec at 50 GHz, the $f_{\rm max}$ obtained is a conservative result. So, we constructed a small-signal model that yielded a well behaved U with a single-pole system, as shown in Fig. 5 (b) [16]. Using the small-signal model, the values of $f_{\rm max}$ = 299 GHz and f_T = 443 GHz were estimated accurately. The measured $f_{\rm T_{measure}}$ and the modeled $f_{\rm T_{model}}$ are similar, increasing the credibility of

Fig. 4 (a) DC output characteristics, (b) g_m against I_{DS} , and (c) transfer characteristics of the HEMT 图 4 HEMT的 (a)直流输出特性,(b)跨导,(c) 传输特性

our model.

The $f_{\rm T}$ and $f_{\rm max}$ are expressed as equtions (1) and (2):

$$f_T = \frac{g_{\text{mi}}}{2\pi \{(C_{\text{gs}} + C_{\text{gd}})[1 + g_{\text{ds}}(R_{\text{s}} + R_d)] + C_{\text{gd}}g_{\text{mi}}(R_{\text{s}} + R_d)\}} \quad , (1)$$

$$f_{\text{max}} = \frac{f_{T}}{\sqrt{4g_{\text{ds}}(R_{g} + R_{i} + R_{s}) + \frac{2C_{\text{gd}}}{C_{\text{gs}}}(\frac{C_{\text{gd}}}{C_{\text{gs}}} + g_{\text{mi}}(R_{i} + R_{s}))}}},(2)$$

Where $C_{\rm gs}$ and $C_{\rm gd}$ are the capacitances in between gate to source and gate to drain; $R_{\rm g}$, $R_{\rm S}$, and $R_{\rm D}$ are the parasitic resistances of gate, source and drain; $g_{\rm mi}$ is the intrinsic transconductance; $g_{\rm ds}$ is the conductance between drain and source.

Fig. 5 (a) The measured and modeled H_{21} , MAG/MSG and U gains versus frequency for the $L_{\rm g}=54.4$ nm InGaAs/InAlAs HEMT at $V_{\rm GS}=-0.35$ V and $V_{\rm DS}=0.7$ V, and (b) small-signal equivalent circuit model used in pervious work [16] 图 5 (a)在 $V_{\rm GS}=-0.35$ V 和 $V_{\rm DS}=0.7$ V 时,栅长为 54.4 nm 的 InGaAs/InAlAs HEMT 器件,其 H_{21} ,MAG/MSG 和 U 的测试结果

和模型结果与频率的关系,以及(b)小信号等效电路模型[16]

Fig. 6 Measured $f_{_T}$ against $I_{_{
m DS}}$ of the $L_{_g}$ = 54. 4 nm InGaAs/InA-lAs HEMT with $V_{_{
m DS}}$ = 0. 7 V 图 6 在 $V_{_{
m DS}}$ = 0. 7 V 时,InGaAs/InAlAs HEMT 的 fT 随 $I_{_{
m DS}}$ 的变化

Equations (1) and (2) suggest that $C_{\rm gs}$, $C_{\rm gd}$, $R_{\rm S}$, $R_{\rm D}$, $g_{\rm mi}$ and $g_{\rm ds}$ are the key parameters that affect $f_{\rm T}$ and $f_{\rm max}$. Table 1 shows small-signal model parameters. These key parameters are all related to the size of the gate recesse and gate length. In terms of $f_{\rm T}$, the small gate length reduces capacitances and increases $g_{\rm mi}$. At the same time, the narrow gate recess also reduces the $R_{\rm S}$ and $R_{\rm D}$. So, these affects lead to a higher $f_{\rm T}=441~{\rm GHz}$.

However, the narrow gate recesse correspond to larger values of $C_{\rm gd}/C_{\rm gs}$, and the shorter gate length leads to larger R_{ν} and $g_{\rm ds}$, which leads to a smaller $f_{\rm max} = 299$ GHz.

Figure 6 plots the extracted f_T as a function of $I_{\rm DS}$ for the same device at $V_{\rm DS}$ = 0.7 V, which consists with the $g_{\rm m}$ against $I_{\rm DS}$ in Fig. 4. The f_T of the device exceeds 400 GHz over a wide range of $I_{\rm DS}$.

Table 2 shows the reported the performance of In-GaAs/InAlAs HEMTs with $L_{\rm g}$ from 50 nm to 75 nm. What these devices have in common is that the channel of devices are indium-rich InGaAs. And Pt buried gate technology is used to decrease the gate-to-channel distance, resulting the excellent RF performance. Although the values of $g_{\rm m. max}$ and $f_{\rm T}$ are quite different, the larger $g_{\rm m. max}$ corresponds to higher $f_{\rm T}$ in this table. Compared with these results, our device achieved the $f_{\rm T}$ of over 400 GHz with the lowest $g_{\rm m. max}$, and we need to improve $f_{\rm T}$ through further increasing $g_{\rm m. max}$ in the future.

3 Conclusion

In summary, we have successfully designed and fabricated a 54.4 nm T-gate InGaAs/InAlAs InP-based HEMT with $f_{\scriptscriptstyle T} > 400$ GHz. In order to optimize the parasitic resistances, we adopt a narrow gate recess technology. As a result, the $f_{\scriptscriptstyle T}$ reaches as high as 441 GHz with a $g_{\scriptscriptstyle \text{m.max}}$ of 1265 mS/mm. The $f_{\scriptscriptstyle T}$ is expected to be promoted through further increasing $g_{\scriptscriptstyle \text{m.max}}$ by adopting an Indiumrich channel and a Pt buried gate technology.

References

- [1] Grossman E N, Leong K, Mei X, et al. Low-frequency noise and passive imaging with 670 GHz HEMT low-noise amplifiers [J]. IEEE Transactions on Terahertz Science and Technology, 2014, 4 (6): 749-752.
- [2] Kallfass I, Harati P, Dan I, et al. MMIC chipset for 300 GHz indoor wireless communication [C]. 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS), 2015; 1-4.
- [3] Schleeh J, Wadefalk N, Nilsson P. -Å., et al. Cryogenic broadband ultra-low-noise MMIC LNAs for radio astronomy applications [J]. *IEEE Transactions on Microwave Theory and Techniques*, 2013, 61 (2): 871-877.
- [4] Zhong Y H, Yang B, Chang MM, et al. Enhancement of radiation hardness of InP-based HEMT with double Si-doped plane [J]. Chinese Physics B, 2020, 29(03): 532-536.
- [5] Mei X, Yoshida W, Lange M, et al. First demonstration of amplification at 1 THz using 25-nm InP high electron mobility transistor process[J]. IEEE Electron Device Letters, 2015, 36(4): 327-329.
- [6] Jo Hyeon–Bhin , Yun Seung–Won , Kim Jun–Gyu , et al. $L_{\rm g}=19$ nm ${\rm In_{0.8}Ga_{0.2}As}$ composite–channel HEMTs with $f_{\rm T}=738$ GHz and $f_{\rm max}=492$ GHz [C]. 2020 IEEE International Electron Devices Meeting (IEDM) , 2020; 8.4.1–8.4.4.
- [7] Kim D. –H. , Brar B., del Alamo J. A.. $f_{\rm T}=688$ GHz and $f_{\rm max}=800$ GHz in $L_{\rm e}=40$ nm ${\rm In_{0.7}Ga_{0.3}As}$ MHEMTs with $g_{\rm m_{\rm max}}>2.7$ $m_{\rm s}/\mu{\rm m}$ [C]. 2011 International Electron Devices Meeting, 2011; 13.6.1–13.6.4.
- [8] Yun D Y, Jo H B, Son S W, et al. Impact of the source-to-drain spacing on the DC and RF characteristics of InGaAs/InAlAs highelectron mobility transistors [J]. IEEE Electron Device Letters, 2018, 39(12): 1844-1847.
- [9] Jo H B, Baek J M, Yun D Y, et al. $L_{\rm g}$ = 87 nm InAlAs/InGaAs highelectron–mobility transistors with a $g_{\rm m,max}$ of 3 S/mm and $f_{\rm T}$ of 559 GHz [J]. IEEE Electron Device Letters, 2018, 39(11): 1640–1643.
- [10] Barsky M., Biedenbender M., Mei X., et al. Advanced InP and GaAs HEMT MMIC technologies for MMW commercial products [C]. 2007 65th Annual Device Research Conference, 2007: 147-148.

Table 1 Small-signal model parameters of the $L_{\rm g}$ = 54.4 nm InGaAs/InAlAs HEMTs at $V_{\rm DS}$ = 0.7 V, with different structures

表1 $V_{DS} = 0.7$ V时,栅长为54.4 nm的 InGaAs/InAlAs HEMT的小信号模型参数

$C_{\rm gs}$ [fF/mm]	$C_{ m gd}$ [fF/mm]	$C_{ m ds}$ [fF/mm]	g_{mi} [mS/mm]	$g_{ m ds}$ [mS/mm]	$R_i \left[\Omega ullet \mathrm{mm} ight]$	$R_{_{\!g}}[\Omega{ullet}\mathrm{mm}]$
322. 1	134. 1	1 124	2 431	597. 7	0.01	0. 346 6
$C_{_{\mathrm{D}}}\left[\Omegaullet\mathrm{mm} ight]$	$R_{_{\mathrm{S}}}\left[\Omega{ullet}\mathrm{mm} ight]$	$R_{ m gs} [\Omega { m f e} { m mm}]$	$R_{ m gd} \left[\Omega { m ullet} { m mm} ight]$	$f_{\mathrm{T_measure}}[\mathrm{GHz}]$	$f_{\mathrm{T_model}}$ [GHz]	$f_{ m max_model} [{ m GHz}]$
0. 538 3	0. 159 9	375. 9	3 617	441	443	299

Table 2 Comparison with published InGaAs(InAs)/InAlAs HEMTs with L_g from 50 nm to 75 nm 表 2 与已发表的栅长从50 nm到75 nm的InGaAs(InAs)/InAlAs HEMT性能的比较

Ref.	$L_{ m g}/{ m nm}$	Gate metal	Channel	$g_{\rm m}/({\rm mS/mm})$	$\rm f_T/GHz~(\it V_{\rm DS}/V)$	$f_{max}/GHz (V_{DS}/V)$
17	50	Pt/Ti/Pt/Au	InAs	2 000	496 (0.6)	400 (0.6)
18	50	Pt/Ti/Pt/Au	$In_{0.7}Ga_{0.3}As$	1 750	465 (0.75)	1 060 (0.75)
19	60	Pt/Ti/Pt/Au	InAs	2 100	580 (0.6)	675 (0.6)
20	60	Pt/Ti/Pt/Au	InAs	2 114	710 (0.5)	478 (0.5)
21	70	Ti/Pt/Au	$In_{0.7}Ga_{0.3}As$	1 600	310 (1.2)	540 (1.2)
22	75	Ti/Pt/Au	InAs	1 331	260 (1.0)	800 (1.0)
This work	54. 4	Ti/Pt/Au	${ m In}_{0.53}{ m Ga}_{0.47}{ m As}$	1 265	441 (0.7)	299 (0.7)

- [11] Barsky M, Biedenbender M, Mei X, et al. Advanced InP and GaAs HEMT MMIC technologies for MMW commercial products [C]. 2007 65th Annual Device Research Conference, 2007: 147-148.
- [12] Kim Dae-Hyun, del Alamo J A, Lee Jae-Hak, et al. The impact of side-recess spacing on the logic performance of 50 nm InGaAs HEMTs [C]. 2006 International Conference on Indium Phosphide and Related Materials Conference Proceedings, 2006: 177-180.
- [13] Tong Zhihang, Ding Peng, Su Yongbo, et al. Surface improvement of InAlAs/InGaAs InP-Based HEMT through treatments of UV/ozone and TMAH [J]. IEEE Journal of the Electron Devices Society, 2020, 8: 600-607.
- [14] Tong Zhihang, Ding Peng, Su Yongbo, et al. Influences of increasing gate stem height on DC and RF performances of InAlAs/InGaAs InP-based HEMTs [J]. Chinese Physics B, 2021, 30(1): 018501.
- [15] Feng Ruize, Wang Bo, Cao Shurui, et al. Impact of symmetric gaterecess length on the DC and RF characteristics of InP HEMTs [J]. Chinese Physics B, 2022, 31(01): 788-792.
- [16] Wang Yanfu, Wang Bo, Feng Ruize, et al. Heterogeneous integration of InP HEMTs on quartz wafer using BCB bonding technology [J]. Chinese Physics B, 2022, 31(1): 018502.
- [17] Hideaki Matsuzaki, Takashi Maruyama, Toshihiko Koasugi, et al.
 "Lateral scale down of InGaAs/InAs composite-channel HEMTs with

- tungsten-based tiered ohmic structure for 2–S/mm g_m and 500–GHz f_T [J]. IEEE Transactions on electron devices, 2007, **54** (3): 378–384
- [18] Kim D H, Alamo J a D, Chen P, et al. 50-nm E-mode In₀.7Ga0. 3As PHEMTs on 100-mm InP substrate with fmax> 1 THz [C]. 2010 International Electron Devices Meeting, 2010:: 30.6. 1-30.6. 4..
- [19] Kim T. -W., Kim D. -H., del Alamo J. A. 60 nm self-aligned-gate InGaAs HEMTs with record high-frequency characteristics [C]. 2010 International Electron Devices Meeting, 2010; 30.7.1-30.7.4.
- [20] Chang E Y, Kuo C I, Hsu H T, et al. InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications [J]. Applied Physics Express, 2013, 6(3): 034001.
- [21] Zhang L, Feng Z, Xing D, et al. 70 nm gate-length THz InP-based In_{0.7}Ga_{0.3}As/In_{0.52}Al_{0.48}As HEMT with fmax of 540 GHz [C]. 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 2014: 1-4.
- [22] Samnouni M., Wichmann N., Wallart X., et al. 75 nm Gate length PHEMT with f_{max}=800 GHz using asymmetric gate recess: RF and noise investigation [J]. IEEE Transactions on Electron Devices, 2021, 68(9): 4289-4295.