文章编号:1001-9014(2024)02-0150-08

DOI:10.11972/j.issn.1001-9014.2024.02.002

VO₂薄膜材料的变温光学性质及1550 nm 激光防护性能研究

段嘉欣^{1,2}, 江 林², 郑国彬², 丁长春¹, 黄敬国², 刘 奕³,

高艳卿^{2*}, 周 炜^{2*}, 黄志明^{2*}

(1. 西华大学 理学院,四川 成都 610039;

2. 中国科学院上海技术物理研究所 红外科学与技术重点实验室,上海 200083;

3. 中国科学院宁波材料技术与工程研究所 慈溪生物医学工程研究所,浙江 宁波 315201)

摘要:具有半导体-金属态相变性质的二氧化钒材料可用于光电探测器的激光致盲防护。本文报道了基于磁控溅射法制备二氧化钒薄膜材料的结构、形貌特性,以及在不同温度下的光学性质。使用椭偏光谱法测量了20~100 ℃下可见-近红外波段二氧化钒材料的椭偏参数,利用 Gaussian、Lorentz 模型获取了薄膜在相变前的光学性质,结合Drude 模型拟合获取了材料在相变后的光学特性,获取了材料在 300~1 700 nm 之间的变温折射率和消光系数等参数。变功率下1 550 nm 红外激光透射率的实验测试研究表明,VO₂薄膜样品的相变阈值功率为 12 W/cm²,相变前后透射率由 51% 减小到 15%~17%,开关率为 69%。

关 键 词:激光防护;二氧化钒薄膜;半导体-金属态相变;红外光学性质 **中图分类号:**TN3 **文献标识码:** A

Study on the optical properties of VO₂ thin films under varied temperatures and the protection performance against 1550 nm laser

DUAN Jia-Xin^{1,2}, JIANG Lin², ZHENG Guo-Bin², DING Chang-Chun¹, HUANG Jing-Guo², LIU Yi³, GAO Yan-Qing^{2*}, ZHOU Wei^{2*}, HUANG Zhi-Ming^{2*}

(1. School of Science, Xihua University, Chengdu 610039, China;

2. Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;

3. Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China)

Abstract: Vanadium dioxide materials, which show semiconductor-metal phase transition, can be used for protection of photoelectric detectors against laser blinding weapons. The structure, morphology and optical properties of vanadium dioxide thin films prepared by radio frequency magnetron sputtering at different temperatures were reported. The visible to infrared ellipsometric parameters of vanadium dioxide film at 20-100 °C were measured by an ellipsometer. The optical properties of vanadium dioxide films before the phase transition were obtained by Gaussian and Lorentz model, and the optical properties after the phase transition were obtained by adding a Drude model. The refractive index and extinction coefficient at varied temperatures between 300 nm and 1 700 nm were obtained. The transmittance spectra of 1 550 nm infrared laser at varied power densities show that the threshold power of phase transformation for the VO₂ film is about 12 W/cm², where the transmittance decreases sharply from 51% to 15%-17%, and the switching rate is about 69%.

Received date: 2023-03-22, revised date: 2023-04-01

基金项目:国家自然科学基金面上项目(52071329);上海市自然科学基金(20ZR1466300);航空科学基金项目(202000024090006)

收稿日期:2023-03-22,修回日期:2023-04-01

Foundation items: Supported by the National Natural Science Foundation of China (52071329); the Shanghai Natural Science Foundation (20ZR1466300); the Aeronautical Science Foundation Project (20200024090006)

作者简介(Biography):段嘉欣(1997-),女,山西晋中人,硕士研究生,主要研究领域为热敏材料光学性质及红外探测器. E-mail: Undeceive_0@163. com

^{*}通讯作者(Corresponding authors): E-mail: gyq_1982@mail. sitp. ac. cn;zhouwei@mail. sitp. ac. cn;zhouwei@mail. sitp. ac. cn

Key words: laser protection; vanadium dioxide film; semiconductor-metal phase transition; infrared optical properties

引言

激光武器作为一种新型高科技武器,具备杀伤力强、攻击速度快、射击精度高等优势特点^[1-2]。尤 其是致盲激光武器,可干扰敌方武器装备中的光电 传感器,导致其损伤甚至失效。因此,人们开展了 激光致盲防护技术的研究,通过研制光学防护材料 以避免激光对光电传感器造成损伤。

相变材料作为激光致盲防护光学材料的一种, 在外界光热激励作用下能发生可逆相变。而相变 防护技术正是利用相变材料的这一特性来进行激 光防护,该技术恰好能满足现代激光防护中对防护 材料兼具红外信号接收与针对激光致盲武器防护 功能的要求^[3]。 VO,是一种典型的相变材料,自贝 尔实验室 Morin 等人于1959年首次发现 VO,材料金 属-绝缘相变特性以来^[4],国内外对于VO₂的相变研 究就从未停止。在VO,的制备方面,磁控溅射法是 人们主要研究的VO2薄膜制备方法[5-12];为了降低 VO,的相变温度,研究尝试了掺杂W元素等方法,目 前可得到外延型 VO₂最低相变温度 45 ℃[13];而在激 光防护方面,2015年,Callahan等人使用频率分辨光 学开关法证明VO2的相变响应时间为飞秒量级[14]; 2018年,脉冲功率激光技术国家重点实验室的侯典 心等人使用泵浦探测技术研究了激光能量密度对 VO,相变特性的影响^[15]。然而,对于材料相变前后 不同温度条件下,VO,材料准确的光学性质参数的 研究目前仍然鲜见报道。

因此,本文利用椭圆偏振光谱法测量了不同 温度条件下白宝石衬底的 VO₂薄膜材料的光学性 质,基于 Lorentz、Gaussian 获取了薄膜在相变前的 光学性质,结合 Drude 模型拟合获取了材料在相 变后的光学特性,报道了材料在 300~1 700 nm 之 间的折射率和消光系数等特性参数,并测定了薄 膜在 1 550 nm 激光照射时产生相变的阈值功率和 开关率。

1 实验系统及原理

本实验中, VO₂ 薄膜制备利用美国 Kurt J. Lesker/LAB Line SPUTTER 5物理气相薄膜沉积系 统完成。磁控溅射靶材选用纯度为99.99%的 VO₂ 陶瓷靶, 直径为 50.8 mm, 厚度为 3 mm, 附带 3 mm

厚的紫铜背板。磁控溅射前背景真空度为4×10⁻⁵ Pa, 然后通过流量计控制通入高纯氩气,氩气流量为 0.5 Pa,保持工作压强为3.5 mbar(~0.5 Pa),溅射 功率为50W。基片选取厚度为0.25mm,尺寸为 15 mm×15 mm方形的热压氧化铝(白宝石)衬底,设 置溅射时基片温度为250℃,溅射时间长度设置为 30 min。最后,将制备的VO,薄膜进行后退火处理。 后退火在纯氮气氛围下进行,温度分别为340℃、 380 ℃、420 ℃,升温速率10 ℃/s,氮气流量50 sccm, 升高到预设温度后分别恒温保持1h之后降低至室 温取出。使用原子力显微镜(Atomic Force Microscope, AFM, MFP-3D)观测薄膜表面形貌。使用扫 描电子显微镜(Scanning Electron Microscope, SEM, FEI Sirion 200)观察试样的截面形貌。使用X射线 衍射仪(X Ray Diffractometre, XRD)分析样品的结 晶性与结构分析,所选用Cu靶 $K\alpha$ 线(Bruker D8),波 长为1.5406Å。三个后退火温度样品的变温电阻 率采用变温四探针装置测试得到,并选取具有电学 相变特性的样品用于光学性质测试。如图1(a)所 示,VO,相变薄膜样品放置在装有变温测试台架的 椭圆偏振光谱仪(J. A. Woollam RC2)上进行实验 测试。通过变温样品架改变衬底温度,可将测试温 度选为20~100℃,每温升10℃进行一次测量,测试 角度分别设置为55°、60°和65°。使用可调功率的1 550 nm 红外半导体激光器, 通过使用自行搭建的共 聚焦装置进行了VO,薄膜变功率透射率测量的实 验。如图1(b)所示,1550 nm半导体红外激光的出 射光为近似均匀的圆形光斑,入射激光经过一面凹 面聚焦镜反射会聚到焦平面的样品位置。利用该 装置可测量在不同功率密度下样品的透射率变化 情况,并获取了VO,薄膜样品的相变阈值功率。最 后,使用可见-近红外分光光度计(Perkin Elmer, Lambda 750)测试了在不同温度条件下薄膜样品的 透射率谱,用于验证1550 nm诱导 VO,薄膜样品相 变对应开关率的准确性。

2 实验结果与讨论

光学显微镜观察表明,420 °C 下后退火的薄膜 材料的表面颜色由退火前的蓝黑色变成了退火后 的深棕色,而更低温度退火的样品颜色未明显改 变。图2(a-b)为不同后退火温度制备 VO₂薄膜的

图 1 测试示意图, (a) VO₂薄膜样品变温椭圆偏振测试示意图; (b) 1 550 nm 变功率照射下 VO₂薄膜透射率测试系统 Fig. 1 Test diagram, (a) schematic diagram of variable temperature ellipsometric tests for VO₂ thin film samples; (b) 1 550 nm transmission testing system for VO, thin film under variable irradiation powers

AFM 照片。图中清晰地展示了样品在2 µm²的小尺 寸内的表面形貌。如图所示,不同退火温度制备 VO,薄膜表面致密均匀,具有较高的平整度。表面 均方根粗糙度(Ra)的测量结果表明,380℃后退火 处理的薄膜表面粗糙度为0.219 nm, 而420 ℃后退 火处理薄膜的表面粗糙度为0.621 nm,略大于前 者,这可能是由于退火温度升高使得晶粒生长尺寸 增大所引起。扫描电子显微镜测试的原位溅射薄 膜样品截面图样如图2(c)所示,由图可知薄膜样品 的厚度约为50~60 nm,准确厚度在后续椭偏测试拟 合中给出。三种不同退火温度下的X射线衍射测试 结果如图2(c)所示,由图可知,不同后退火温度所 制备的VO,薄膜均呈现出了单斜金红石结构(Monoclinic rutile)VO₂(M)的结晶峰,当后退火温度低于 420 ℃(340 ℃和380 ℃)时,薄膜结晶峰相对更微 弱。根据 JCPDF 卡片比对指认,可知图谱在 2θ = 38.978°、44.014°、64.466°和78.503°分别对应 VO, 的(112)、(121)、(321)和(404)晶面,热压氧化 铝(白宝石)衬底在 2θ = 41.8° 处的峰为(2,0,5)晶 面。这表明我们通过生长条件与后退火条件的准 确控制,获得了平均晶粒尺寸为10 nm 量级的 VO, 薄膜。样品的衍射峰和结晶性参数总结在表1中。

表1 衍射峰和结晶性参数

Table 1 Diffraction peaks and crystallographic parameters

样品	物相	$(h \ k \ l)$	2θ/(°)	B/(°)	D/nm
340 °C	VO ₂	$(\overline{3}21)$	64. 736°	0.902	11.6
380 °C	VO_2	$(\overline{3}21)$	64.437°	0.910	9.7
420 °C	VO_2	$(\overline{3}21)$	$64.\ 858^\circ$	1.00	10.5

图 2(d)给出了四探针变温电阻的测试实验结果,420 ℃退火的 VO₂薄膜样品在常温下电阻率约

为 0. 204 Ω·cm,相变温度在 60~70 ℃,相变后的电 阻率为4×10⁻⁴ Ω·cm,相变后电阻率降低了约 2~3 个数量级。与之相比,低温 340 ℃和 380 ℃退火的 样品呈现出随温度升高缓慢下降的半导体特性,并 未观察到相变现象。图中给出了 420 ℃退火的 VO₂ 薄膜样品的变温电阻率特性。考虑到仅有 420 ℃后 退火的 VO₂薄膜可发生明显的半导体态-金属态相 变,后续将仅针对该样品开展光学性质及变功率透 射率测试的实验工作。

使用变角度椭圆偏振光谱仪测试了薄膜材料的光学性质参数。依次设定测试温度为20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃。由于变温椭圆偏振光谱测试的温度点较多,所测椭偏参数的数据量较大,因此在本文中一方面给出了30℃和80℃下测得的*Psi*值和*Delta*值,如图3(a-b)所示; 另一方面给出了不同温度固定测试角度为65°下的*Psi*值和*Delta*值,如图3(c-d)所示。

材料介电函数变化与材料晶体结构和能带变 化密切相关。低温下的VO₂材料呈对称性较低的单 斜金红石结构(Monoclinic rutile),π*轨道能级高于 费米能级,且π*轨道与d₄轨道分离,两者之间形成 一个0.7 eV的禁带,使得VO₂呈现出半导体特性。 对于高温相变后的四方金红石结构(rutile)VO₂材料 而言,半满的d轨道和π*轨道部分重叠,而费米能 级介于两者之间,能带部分重合,构成了一个未满 的导带,因而容易导电,使得VO₂材料呈现金属 性^[16-17]。因此,在椭偏模型的选取方面,发生相变前 的薄膜呈现半导体性质,适合使用Gaussian 模型与 Lorentz模型;而发生相变后的薄膜呈现金属性质, 在可见波段仍然适合使用Gaussian 模型与 Lorentz 模型,而在红外波段随着波长增大消光系数k增加, 适合使用Drude模型。

图 2 AFM照片及测试结果,(a) 380 ℃后退火制备 VO₂薄膜的 AFM照片;(b) 420 ℃后退火制备 VO₂薄膜的 AFM照片;(c) 不同后退火温度下X射线衍射测试结果,扫描电子显微镜薄膜样品截面图样;(d) 420 ℃后退火制备 VO₂薄膜四探针变温电阻 率测试结果

Fig. 2 AFM photos and test results, (a) AFM morphology of VO₂ film prepared by annealing at 380 °C; (b) AFM morphology of VO₂ film prepared by annealing at 420 °C; (c) X-ray diffraction test results at different annealing temperatures, scanning electron microscope cross-section of thin film sample; (d) test results of four-probe variable temperature resistivity of VO₂ film prepared by annealing at 420 °C

本文对于相变发生前的样品选择设置了Gaussian模型与多个Lorentz相结合的椭偏模型;而对于 发生相变后的样品的椭偏参数,则设置为Gaussian+ Lorentz+Drude模型。材料的光学介电函数主要用 于描述材料对光波的响应,介电函数的实部和虚部 体现了材料对光的折射和吸收作用。描述半导体 态及金属态光学性质的介电常数的色散模型数学 表达式如公式(1-3)^[18-20]所示。

Gaussian 色散模型介电函数:

$$\varepsilon_2(E) = A \mathrm{e}^{-\left(\frac{E-E_*}{\sigma}\right)^2} - A \mathrm{e}^{-\left(\frac{E+E_*}{\sigma}\right)^2}, \sigma = \frac{B}{2\sqrt{\ln 2}}.$$
 (1)

(-)

Lorentz 色散模型介电函数:

$$\varepsilon(E) = \varepsilon_{1}(E) + i\varepsilon_{2}(E)$$

$$= \sum_{j=1}^{N} \frac{A_{j}B_{j}E_{nj}(E_{nj}^{2} - E^{2})}{(E_{nj}^{2} - E^{2})^{2} + B_{j}^{2}E^{2}} + i\cdot \sum_{j=1}^{N} \frac{A_{j}B_{j}^{2}E_{nj}E}{(E_{nj}^{2} - E^{2})^{2} + B_{j}^{2}E^{2}} \quad . (2)$$

 (\mathbf{n})

Drude 色散模型介电函数:

$$\varepsilon(E) = \varepsilon_{\infty} - \frac{A_k}{E^2 - i\gamma_k E} \qquad . \tag{3}$$

拟合得到20~100 ℃不同温度下材料的n、k值, 如图4所示。在20~40 ℃的温度条件下,VO₂材料在 0.7~2 eV范围内消光系数k值在0.5~1之间,呈现 半导体相;在70~100 ℃的温度条件下,VO₂材料在 0.7~2 eV范围内消光系数k值随光子能量减小而迅 速增大,符合 Drude 色散模型,因而呈现金属相。 50~60 ℃为相变过渡区域,材料折射率与消光系数 介于半导体相和金属相之间。另外,根据30 ℃下测 得的椭偏数据可拟合得到薄膜厚度约为55 nm。根 据文献报道,随着温度升高,VO₂材料在从单斜金红 石结构到四方金红石的转变过程中,沿 e轴方向的 钒离子的间距由5.74 Å增加到5.76 Å,对应着材料 对称性的提高和晶胞体积的增大^[21]。根据 Lorentz-Lorenz 公式,材料介电常数*ε*与单位体积内分子/晶

(a)

1:2.0 µm

图 3 *Psi* 值和 *Delta* 值, (a-b) 30 ℃ 和 80 ℃ 下的 *Psi* 值和 *Delta* 值测试结果; (c-d) 不同温度(20~100 ℃) 下测试角度为 65° 时的 *Psi* 值和 *Delta* 的值

Fig. 3 *Psi* and *Delta* values, (a-b) Test results of *Psi* and *Delta* values at 30 $^{\circ}$ C and 80 $^{\circ}$ C; (c-d) test results of *Psi* and *Delta* values under varied temperatures ranging between 20-100 $^{\circ}$ C at a fixed incident degree of 65 $^{\circ}$

胞数量*N*的关系式为: $\varepsilon - I = \frac{N \cdot \alpha}{\varepsilon_0}$,其中 α 为微观 极化率, ε_0 为真空介电函数。由于高温相变后的 VO₂薄膜晶胞尺寸变大,单位体积内晶胞数减少,因 此在发生相变后材料的介电函数实部 ε_r 总体有减 小的趋势。材料的介电函数虚部的值在相变后近 似保持恒定,这与其电导率的变化情况是一致的。

在变激光功率照射下,测量了VO₂薄膜材料透 射率变化曲线。入射激光经过一面凹面聚焦镜反 射会聚到焦平面的样品位置。通过光路的调节与 设置,使得光斑聚焦的位置与CCD相机的成像焦平 面位置相重合。此处样品置换为感光检测卡时,检 测卡上的亮斑将被成像系统的CCD相机检测到并 成像,通过测量亮斑的大小即可大致确定光斑的尺 寸。如图5(a)所示,会聚到样品表面的光斑近似为 椭圆形,我们通过测量其长半轴*a*和短半轴*b*的尺 寸,按照椭圆面积公式*S*=π·*a*·*b*来计算不同出光功 率下激光光斑的面积大小。使用激光功率计测定 光斑的总功率,可计算得到入射1550 nm 红外激光 的平均功率密度值。

如图 5(b)所示,按0.1 Å为间隔逐渐增大半导体激光器激励电流,测得有 VO₂样品和没有 VO₂样品条件下的功率值(P_{VO_2} 和 P_{null})。样品的透射率 T (%)可按如下公式进行计算:

$$T(\%) = \frac{P_{VO_2}}{P_{null}}$$
 . (4)

如图5(b)所示,通过调增半导体激光器的工作 电流值,可使得入射红外激光总功率线性增大,并 提高光斑功率密度,从而计算得到不同功率密度激 光照射下薄膜材料的透射率。如图5(c)所示,测试 结果表明,在入射激光功率不超过12 W/cm²时,样 品透射率在47%~51%之间小幅波动,而当功率值 超过12 W/cm²时,VO₂样品发生相变,使得1550 nm 光的透射率大幅下降至15%~17%。多层膜材料的

图4 不同温度下VO,薄膜材料的n、k值的变化规律

Fig. 4 Changes of *n* and *k* values of VO, thin films at different temperatures

图 5 功率及透射率, (a) 会聚到样品表面的不同功率激光光斑图样; (b) 不同工作电流下测得有/无 VO_2 样品条件下的功率 值; (c) 不同红外激光功率密度下 VO_2 的透射率值; (d) 二氧化钒薄膜高低温条件下相变前后的透射率谱 Fig. 5 Power and transmittance, (a) the pattern of light spots with different powers converged on the sample surface; (b) the measured laser powers with/without VO_2 samples at different working currents; (c) the transmittance values of VO_2 under different infrared laser power densities; (d) the transmittance spectra of VO_2 films before and after the phase transition at 30 °C and 80 °C

透射率计算公式为:

$$\alpha = \frac{4\pi k}{\lambda} \qquad , \quad (5)$$

$$T = \frac{(1 - R_{01}) \cdot (1 - R_{12}) e^{-\alpha_1 d_1}}{1 - R_{01} R_{12} e^{-2\alpha_1 d_1}} \times \frac{(1 - R_{12}) \cdot (1 - R_{20}) e^{-\alpha_2 d_2}}{1 - R_{12} R_{20} e^{-2\alpha_2 d_2}},$$
(6)

$$R_{ij} = \frac{\left|\widetilde{n_i} - n_j\right|^2}{\left|\widetilde{n_i} + n_j\right|^2} \qquad , \quad (7)$$

其中,T为透射率, R_i 为第i层介质与第j层介质交界 面处的反射率,i = 0、1、2分别表示空气、VO₂薄膜和 热压氧化铝衬底, α 、d和n分别表示不同介质的吸 收系数、厚度和折射率。

考虑衬底吸收系数小,且与 VO_2 薄膜折射率接近,可近似取 $\alpha_2 = 0, R_{12} = 0, R_{20} = 0, 可得$

$$T \approx (1 - R) \cdot e^{-\alpha d} \qquad . \tag{8}$$

将 30 ℃ 和 80 ℃ 的折射率与消光系数、材料厚 度等参数代入式(8)中,可得 VO₂薄膜的透射率在高 低温下分别为55% 和 12%。如图 5(d)所示,测试了 低温 30 ℃和高温 80 ℃下的可见-近红外透射率谱。 由图可知,实验测试高低温下的透射率测试结果 (48%/15%)与理论计算值基本符合,且与激光诱导 相变实验测得数据(相变前 51% 和相变后 15%~ 17%)大致符合。定义开关率为高低温透过率差值 除以低温下的透过率值,则开关率越高对应激光防 护能力越强^[22]。故根据变功率激光下透射率测试 结果,可得 VO₂薄膜样品对 1 550 nm 激光的开关率 约 68. 6%。为了实现更高开关率的激光防护效果, 可通过增加薄膜厚度实现,根据式(7)的变式(9)可 估算得到:当厚度为 128 nm 时,相变前透射率为 40. 1%,相变后透射率降至 2. 0%,开关率可达 95%。

3 结论

本文利用椭圆偏振光谱法测量了不同温度条件下 VO₂薄膜材料的光学性质。实验结果表明,随着温度的升高,材料在相变前1550 nm 处的折射率为3.2~3.6,消光系数为0.5~1.7,相变后1550 nm 处的折射率降低为1.7~2.0,消光系数增大至3.2~3.6。变功率激光透射率测试结果表明,55 nm 厚度氧化钒薄膜材料的相变阈值功率为12 W/cm²,透射率由低温下的51%下降到高温下的约16%,开关率为68.6%。通过计算可以预测当材料厚度为128 nm 时,透射率降至2%,开关率可达95%。相关工作将为VO₂相变防护膜层设计提供参考依据。

References

- [1] MING Di. New development of modern "Witch Mirror" high energy laser weapon[J]. Tank armored vehicle(鸣镝.现代 "照妖镜"高能激光武器新进展[J]. 坦克装甲车辆), 2018, 03(493): 28-31.
- [2] YU Si. Russia tests first prototype laser weapon[J]. Space exploration (雨丝.俄罗斯试验首批激光武器样机[J].太 空探索), 2016, 315(09):51.
- [3] ZHANG Sheng. V₂O₅/ Diamond film is a basic research on blinding protection of multi-band laser[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.(张 盛. V₂O₅/金刚石膜系多波段激光致盲防护基础研究[D]. 南京:南京航空航天大学, 2019.)
- [4] MORIN F J. Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature [J]. *Physical Review Letters*, 1959, 3(1): 34-36.
- [5] MASINA B N, LAFANE S, WU L, et al. Phase-selective vanadium dioxide (VO₂) nanostructured thin films by pulsed laser deposition [J]. Journal of Applied Physics, 2015, 118(16): 165308.
- [6] LIANG W, GAO M, LU C, et al. Enhanced metal-insulator transition performance in scalable vanadium dioxide thin films prepared using a moisture-assisted chemical solution approach [J]. ACS Applied Materials & Interfaces, 2018, 10(9): 8341-8348.
- BIAN J, WANG M, SUN H, et al. Thickness-modulated metal-insulator transition of VO₂ film grown on sapphire substrate by MBE[J]. Journal of Materials Science, 2016, 51(13): 6149-6155.
- [8] LOQUAI S, BALOUKAS B, KLEMBERG SAPIEHA J E, et al. Hipims-deposited thermochromic VO₂ films with high environmental stability [J]. Solar Energy Materials and Solar Cells, 2017, 160: 217-224.
- [9] SEYFOURI M, BINION R. Sol-gel approaches to thermochromic vanadium dioxide coating for smart glazing application [J]. Solar Energy Materials and Solar Cells, 2017, 159: 52-65.
- [10] WARWICK M E A, BINIONS R. Chemical vapour deposition of thermochromic vanadium dioxide thin films for energy efficient glazing[J]. *Journal of Solid State Chemistry*, 2014, 214: 53-66.
- [11] SHI R, SHEN N, WANG J, et al. Recent advances in fabrication strategies, phase transition modulation, and advanced applications of vanadium dioxide[J]. Applied Physics Reviews, 2019, 6(1): 011312.
- [12] VU T D, CHEN Z, ZENG X, et al. Physical vapour deposition of vanadium dioxide for thermochromic smart window applications [J]. Journal of Materials Chemistry C, 2019, 7(8): 2121-2145.
- [13] LIANG Z, ZHAO L, MENG W, et al. Tungsten-doped vanadium dioxide thin films as smart windows with selfcleaning and energy-saving functions [J]. Journal of Alloys and Compounds, 2017, 694: 124-131.
- [14] B T O'CALLAHAN, A C JONES, J HYUNG PARK, et al. Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO₂ [J]. Nature Communications, 2015, 6: 6849.
- [15] HOU dianxin, LU Yuan, FENG Yunsong, et al. Study on

Phase Transition Properties of VO₂ Based on Pump-probe Technique [J]. Chinese Journal of Luminescence (侯典心,路远,冯云松,等.采用泵浦探测技术研究VO₂薄膜相变特性.**发光学报**), 2018, **39**(2): 140.

- [16] SHANG Yaxuan, LIANG Jiran, LIU Jian, et al. Optical phase transition properties of vanadium dioxide thin film characterized by noise spectra [J]. J. Infrared Millim. Waves (尚雅轩,梁继然,刘剑,等.利用噪声谱表征二 氧化钒薄膜的光学相变特性[J]. 红外与毫米波学报), 2018, 37(5):595-598.
- [17] MOHEBBI E, PAVONI E, MENCARELLI D, et al. Insights into first-principles characterization of the monoclinic VO2(B) polymorph via DFT + U calculation: electronic, magnetic and optical properties[J]. Front. Mater., 2023, 10.
- [18] MENESES D D S, MALKI M ECHEGUT P. Structure and lattice dynamics of binary lead silicate glasses investigated by infrared spectroscopy [J]. J. Non-Cryst. Solids, 2006,

352(8): 769.

- [19] ZHOU Wei, WU Jing, OUYANG Cheng, et al. Optical properties of Mn-Co-Ni-O thin films prepared by radio frequency sputtering deposition [J]. J. App. Phys., 2014, 115: 093512.
- [20] ZHANG F, HUANG Z. Spectroscopic ellipsometric properties of annealed Mn_{1.95}Co_{0.77}Ni_{0.28}O₄ thin films [J]. Opt Lett, 2017, 42(19):3836-3839.
- [21] HUANG Zhangli. Preparation and properties of low temperature phase transformation vanadium oxide thin films
 [D]. Wuhan: Huazhong University of Science and Technology, 2013. (黄章立. 低温相变氧化钒薄膜的制备及性能研究[D].武汉:华中科技大学, 2013.)
- [22]LI Yong. Study on Vanadium Dioxide Film and Laser Protection [D]. Wuhan: Huazhong University of Science and Technology, 2020.(黎勇.二氧化钒薄膜及激光防护的 研究[D].武汉:华中科技大学, 2020.)