文章编号:1001-9014(2023)04-0527-11

DOI:10. 11972/j. issn. 1001-9014. 2023. 04. 015

基于聚类思想的红外弱小目标检测

饶俊民^{1,2,3}, 穆靖^{1,2,3}, 刘士建^{1,3}, 公劲夫^{1,2,3}, 李范鸣^{1,3*}

(1. 中国科学院红外探测与成像技术重点实验室,上海 200083;

2. 中国科学院大学,北京 100049;

3. 中国科学院上海技术物理研究所,上海 200083)

摘要:针对复杂背景下尺寸未知的红外弱小目标检测难题,一种基于聚类思想的红外弱小目标检测方法被提出。 首先,利用小目标形态学特征对原始红外图像进行预处理,生成新的密度特征图。其次,使用改进的密度峰聚类算 法对潜在候选目标进行粗定位。然后,针对潜在目标的局部候选集,采用加权模糊集聚类算法对局部候选集进行 目标与背景区域的精细分割,利用目标与背景之间的差异性在增强目标的同时抑制虚警。最后,对处理后的局部 候选集进行自适应阈值提取真实目标。实验结果表明,与7种对比算法相比,该算法对尺寸未知的小目标具有良好 的鲁棒性和检测性能。

关 键 词:红外弱小目标检测;聚类;密度峰聚类;模糊集;分割 **中图分类号**:TP391 **文献标识码**: A

Infrared small target detection based on clustering idea

RAO Jun-Min^{1,2,3}, MU Jing^{1,2,3}, LIU Shi-Jian^{1,3}, GONG Jin-Fu^{1,2,3}, LI Fan-Ming^{1,3*}

(1. Key Laboratory of Infrared System Detection and Imaging Technology, Chinese Academy of Sciences, Shanghai

200083, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China;

3. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China)

Abstract: In order to solve the problem of detecting infrared small targets of unknown size in complex background, an infrared small target detection algorithm based on the clustering idea is proposed. First, the original infrared image is preprocessed by using small target morphological features to generate a new density feature map. Secondly, the potential candidate targets are coarsely localized with an improved density-peak clustering algorithm. Then, the local candidate sets of potential targets are constructed. A weighted fuzzy set clustering algorithm is used to finely segment the target and background regions of the image block, and then the difference between the target and background is adopted to suppress false alarms while enhancing the target. Finally, an adaptive threshold is applied to the processed local candidate set to extract the real target. Experimental results show that the proposed algorithm has good robustness and detection performance for small targets of unknown size in comparison with the other seven methods.

Key words: infrared small and dim target detection, clustering, density peak clustering, fuzzy set, segmentation

引言

红外弱小目标检测作为红外搜索跟踪系统(Infrared Search and Track, IRST)关键技术之一,其被 广泛应用在遥感和光电搜索等远距离目标探测场

收稿日期:2022-10-20,修回日期:2023-01-09

Received date: 2022- 10- 20, revised date: 2023- 01- 09

景中^[1]。然而,由于远距离成像,目标在图像中所占 比例很小,缺乏纹理结构等细节信息不易识别^[2]。

当复杂背景中存在严重的噪声和杂波干扰时,小目

标极其容易被淹没。此外,由于红外弱小目标的尺

寸随着目标的距离而变化,在很多时候目标尺寸是

作者简介(Biography):饶俊民(1995-),男,江西抚州人,博士研究生,主要研究领域为图像处理、红外弱小目标检测等方面研究工作. E-mail: raojunmin@mail.sitp.ac.cn

基金项目:国家十四五预研课题(项目编号514010405-207)

Foundation items: Supported by National 14th Five-Year Plan Preliminary Research Project (Project No. 514010405-207)

^{*}通讯作者(Corresponding author): E-mail: lifanming@mail. sitp. ac. cn

未知的,无法获得准确的先验信息。因此,复杂背 景下的红外弱小目标检测任务依旧是一个具有挑 战性的研究课题。

在过去几十年间,许多相关学者针对红外弱小 目标检测问题进行了大量研究。现有的红外弱小 目标检测方法可分成多帧检测与单帧检测两大 类[3]。多帧检测算法通常利用时空相关性进行弱小 目标检测,需要结合较多先验信息,如航迹与速度, 以实现弱小目标检测。通常,这类算法需要执行多 帧关联,无法即时输出目标,计算复杂度高4。与之 相比,单帧检测算法只需要少量的先验信息,具有 良好的实时性,较低的复杂度以及工程化应用潜 力。因此,单帧检测算法受到广泛关注。在单帧检 测算法中,基于滤波的方法通过特定设计的滤波器 对红外图像进行背景抑制和目标增强。这类方法 优势在于计算成本低,易于实现,适合于实时处理, 如顶帽变换(Top-Hat)^[5]、最大中值滤波器(Maxmedian filter)^[6]、二维最小均方(Two-dimensional Least Mean Square, TDLMS)^[7]滤波器等,但在复杂背 景和目标信噪比低的情况下,这类算法存在大量的 虚警。基于低秩稀疏恢复的方法,这类方法的实质 是利用小目标的稀疏特性以及红外背景图像的非 局部自相关性(低秩特性),将小目标检测问题转换 成恢复低秩稀疏矩阵的数学优化问题,通过对稀疏 矩阵进行阈值分割实现弱小目标检测。高等人[8] 提出的红外块图像(Infrared Patch-Image, IPI)模型 拟合了很多复杂场景,有着不错的适应性。但不足 的是,由于ℓ,范数度量的稀疏性存在缺陷,一些具 有稀疏性质的杂波会造成大量虚警,影响检测性 能。为了解决这个缺陷,戴等人^[9]将IPI模型推广 到红外图像块张量(Infrared Patch-Tensor Model, IPT)模型,从张量的不同维度获取更多的空间相关 性信息用于抑制稀疏性质杂波的干扰。同时,将局 部结构先验信息作为加权项纳入IPT模型,增强算 法的鲁棒性和检测性能。但这类算法依赖于目标 背景范数的拟合程度,由于强边缘杂波和高亮点噪 声也存在稀疏特性,很容易被错误地分解成稀疏矩 阵,导致较高的虚警;此外,当背景复杂时,红外背 景图像的低秩特性假设也不成立,检测性能会大幅 度下降。

近些年,受人类视觉机制(Human Visual System, HVS)启发,一些学者将HVS引入红外弱小目标检测中,由于这类算法具有良好的检测性能和实

时性能,因此受到学者们的广泛关注。人眼的视觉 特性根据对比度而非亮度来获取视觉显著性区域。 换言之,在红外图像中,由于目标在局部邻域内与 周围背景存在一定的对比度差异从而具有显著性。 背景中虽然可能存在高亮度区域,但由于背景区域 通常面积大,亮度过渡是平缓的,其局部对比度差 异并不明显^[10]。因此,人眼可以从复杂背景和强杂 波干扰中,快速捕捉到图像中的真实目标。基于 HVS的方法,通过目标与周围背景的差异性来计算 对比度。如陈俊龙等人^[11]提出的局部对比度衡量 (Local Contrast Measure, LCM)算法,该算法使用一 个两层嵌套窗口,分别捕捉目标与背景,通过滑动 窗口遍历每个像素点计算比值型局部对比度,实现 增强目标的同时抑制背景。但该方法存在两个明 显缺陷:1. 在高亮背景干扰下,对杂波(如:高亮云 层的边缘杂波)无法有效抑制,且比值型局部对比 度信息增强有限,目标难以脱颖而出,检测结果中 存在较高的虚警; 2. 对窗口形状与尺寸十分敏感。 不同大小的目标,需要不同大小的子窗口。为了解 决这些问题,在LCM的研究基础上,后续许多学者 提出了改进算法。韩金辉等人^[12]通过比差联合的 方式提出相对局部对比度(Relative Local Contrast Measure, RLCM), 减轻了高亮背景的干扰, 有效增 强了目标,提升了检测性能。为了适应不同尺寸目 标并调整计算窗口的大小,LCM和RLCM均采用多 尺度窗口进行自适应检测。多尺度算法通常以多 尺度下的最大响应值作为最终输出,若窗口单元大 于真实目标,靠近目标的背景区域将被增强,形成 "膨胀效应",从而影响检测性能。为了解决"膨胀 效应"问题,崔等人[13]提出一种加权三层窗口局部 对比度方法(Weighted Three Layer Window Local Contrast Method, WTLLCM), 采用新的三层嵌套窗口 设计,通过不同窗口间的差异性,在单一尺度下实 现与多尺度相当的检测能力,并且克服了"膨胀效 应"。但是, HVS算法的窗口模板大小形状是固定 的,在实际场景中无法完全适应目标尺寸的变化。 窗口过大,目标区域内不可避免混杂背景像素;窗 口过小,背景区域内也可能存在部分目标像素。因 此,窗口不匹配目标时的局部对比度会受到影响, 从而造成检测性能的大幅度下降。在一些最新研 究中,为了适应未知大小的目标,一些学者将聚类 和分割思想引进红外弱小目标检测领域。受文献 [14] 启发, 黄等人[15] 引入点聚类思想提出一种密度

峰搜索和最大值灰度区域生长 (Density Peaks Searcher and Maximum-Gray Region Growing, DPS-MRG)算法,利用目标具有相对大的密度和较大的 最临近距离等特性,全局搜索提取候选目标作为种 子点,通过最大灰度区域生长来形成新的特征找到 真实目标。虽然该算法对目标大小的变化具有鲁 棒性,但忽略了相邻像素的相关性。另外,候选目 标的最大灰度区域对明亮背景很敏感,容易造成误 检。秦等人^[16]提出了基于 Facet 内核与随机游走 (Facet Kernel and Random Walker, FKRW)的检测算 法。首先,利用Facet内核对红外图像进行滤波,增 强目标类像素,再自适应阈值运算提取候选目标像 素。随后,对候选目标采用随机游走算法聚类分 割,解决了异质像素混杂从而影响对比度的问题, 进而获得更准确的局部对比度。随机游走算法是 一种监督类分割算法,需要人为标记像素点,并且 求解未标记像素到标记像素点的概率,以概率大小 判断像素类别的归属。但在复杂的高亮背景中,目 标像素的灰度值与背景差异性不大,两者无法有效 区分,造成了异质像素的混入,限制了检测率的上 限。陈^[17]等人利用模糊C均值(Fuzzy C-means, FCM)无监督聚类分割算法无需人为标记种子点的 特点,并且结合像素的空间相关性实现了对背景与 目标像素进行精细分割。遗憾的是,该算法使用 HVS算法提取候选目标,捕获真实目标的能力受到 HVS算法的局限,无法摆脱窗口尺寸不匹配带来的

检测性能下降问题。

鉴于上述分析,受聚类思想和HVS启发,本文 提出一种多层次聚类思想与对比度结合的检测方 法。首先,对原始红外图像进行形态学处理,生成 对目标更为鲁棒的密度特征显著图。然后,利用对 尺寸不敏感的点聚类算法(Density Peaks Clustering, DPC)进行全局搜索,快速粗提取候选目标的坐标。 其次,利用改进的无监督聚类算法(Improved Fuzzy C-means,IFCM)对候选目标邻域进行精细分割,划 分目标像素与背景像素,构造精确的对比度。两个 不同层次的聚类算法,优势互补,既可解决目标大 小未知对窗口尺寸形状设计的难题,又可避免混入 异质像素带来的对比度信息衰减的可能。全局与 局部结合的聚类算法使得复杂背景红外弱小目标 检测的灵敏性和鲁棒性均得到了提升。

1 本文方法

图1给出了本文算法的流程图,该算法分为四步:1)对原始红外图像进行形态学滤波(New White Top-Hat,NWTH)^[18]预处理操作,生成新的密度特征 图;2)在形态学预处理后的密度特征图上进行密度 峰聚类(Morphology-Density Peaks Clustering, M-DPC)算法快速提取候选目标的坐标;3)采用改进型 模糊C均值(Improved Fuzzy C-means,IFCM)聚类算 法对目标像素与背景像素进行精细分割,然后有效 增强目标;4)利用自适应阈值获得真实目标。

图1 本文方法流程框图

Fig. 1 Flowchart of the proposed method

1.1 NWTH 预处理

在原始红外图像中,小目标成像边缘模糊、信 杂比低、易被杂波淹没。原始红外图像作为密度特 征图对密度峰聚类(Density Peaks Clustering, DPC) 算法捕获真实目标并不友好。因此,为了增强捕获 真实目标的性能,本文根据目标的形态特征,利用 形态学滤波构建对目标更为鲁棒的密度特征图。 形态学滤波是一种非线性滤波方法,根据目标特征 设计特定的结构窗口,在每个像素点进行局部的腐 蚀与膨胀操作,可以捕捉图像中目标形状、边缘等 细节特征,从而实现突出目标,抑制杂波与噪声。 顶帽变换(Top-hat)作为一种常见的形态学滤波方 法,其优点是结构简单、运算速度快,因此被广泛使 用。但是传统Top-hat使用相同的平坦结构元素, 没有考虑到目标与背景区域的差异性。因此,Tophat在小目标检测方面表现并不好,存在大量虚警。 改进型的NWTH参考了目标与背景区域存在差异 性的先验知识,设计了新的平坦结构元素,两个不 同半径的同心圆。它能更好地利用结构元素之间 的差异信息,增强目标,抑制背景。

图 2(a)是 NWTH 的结构元素关系图, $B_i 和 B_o$ 分别是内环半径与外环半径; B_i 是实心结构, 半径 在 $B_i 和 B_o$ 之间; ΔB 是环形结构, 宽度 $\Delta B = B_o - B_i \circ$

 $f ■ B_{oi}$ 操作子的定义为:

 $(f \blacksquare B_{ai})(x,y) = (f \oplus \Delta B) \ominus B_b$, (1) 式(1)中f表示原始红外图像; B_{ai} 表示该操作与内外 结构都有关;(x,y)为像素的坐标; ⊕表示膨胀操 作;⊖表示腐蚀操作。

NWTH的定义为:

 $NWTH(x,y) = f(x,y) - f \blacksquare B_{oi}(x,y) \quad . \quad (2)$

图 2(b)是原始红外图像,图 2(c)是 NWTH 滤波 后的结果图。如图 2(c)所示,预处理之后背景中点 噪、平缓的高亮背景和边缘型杂波均被抑制。对目 标进行了增强,为下一步点聚类算法提供了更好的 密度特征图。

1.2 基于M-DPC算法目标候选点粗提取

密度峰聚类算法核心思想是基于两个假设:1. 聚类中心均大于周围邻域的局部密度;2.聚类中心 比它局部密度更大的点之间的距离相对较大。基 于假设,DPS-MRG利用密度峰值全局搜索候选目 标,该方法可以检测不同大小的目标,并消除由各 种复杂形状的杂波带来的干扰。红外小目标通常 在局部有最大的灰度值,因此该算法局部密度*ρ*,采

图 2 预处理阶段图:(a)结构元素关系图,(b)原始红外图 像,(c)预处理结果图

Fig. 2 Pretreatment stage graphs: (a) relationship of the structuring elements, (b) the raw infrared image, (c) the preprocessed result image

用原始红外图像像素的灰度值:

$$\rho_i = g_i \qquad , \quad (3)$$

式(3)中,g_i表示图像中像素*i*的灰度值。最临近相 关距离δ_i是通过像素点*i*与比它密度更高的像素点*j* 之间的最小欧式距离计算得出

$$\delta_{i} = \begin{cases} \min_{j} \left(d_{ij} \right), & \rho_{j} > \rho_{i} \\ \max_{j} \left(d_{ij} \right), & \rho_{j} \leq \rho_{i} \end{cases}$$
(4)

$$d_{ij} = \sqrt{\left(x_i - x_j\right)^2 + \left(y_i - y_j\right)^2}$$
, (5)

式(5)中 d_{ij} 是两个像素之间的欧式距离。 x_i 和 y_i 是

像素点*i*的横纵坐标,*x_j*和*y_j是像素点j*的横纵坐标。 密度峰γ_i是局部最大密度与最临近距离的联合 概念。

$$\gamma_i = \rho_i \times \delta_i \qquad , \quad (6)$$

通过计算每个像素的密度峰值,按照从高到低排 序。选取前n个密度峰值最大的点作为候选目标。

$$Seeds_{n} = \{(x,y)_{\gamma_{1}}, (x,y)_{\gamma_{2}}, \dots, (x,y)_{\gamma_{n}}\}, \quad (7)$$

式(7)Seeds,为前n个候选目标坐标,在本文中n取 20。DPS-MRG的局部密度定义是基于孤立的像 素,忽略了相邻像素间的关联性。此外,该算法对 高亮背景很敏感,容易造成误检。如图3(a)所示, 目标在局部区域是显著的,但在高亮背景中,目标 的灰度值并不一定是最亮的。当目标逐渐接近灰 度值更高的背景像素或噪声像素时,由式(4)可知, 最临近距离值逐渐减小,密度峰值也随之减小。真 实目标密度峰值排序将降低,被捕捉的概率也随之 降低。从图 3(a)的 $\rho - \delta$ 空间分布图可知,捕捉真实 目标需要更多的种子点。然而,利用目标的形态特 征预处理后生成的密度特征图,不仅保证了寻找候 选目标的鲁棒性,而且对背景有着良好的抑制效 果。如图3(b)所示,大面积的高亮背景和结构性杂 波均被有效抑制。同时,目标得到了增强。加权后 的目标密度峰值脱颖而出,极大地提高了M-DPC的 真实目标捕获能力, M-DPC 定义为:

 $\gamma_i = M_i \times \delta_i$, (8) 式(8)中的 M_i 表示形态学NWTH滤波后的显著图像 素i的值。为了验证NWTH的优势,在实验部分,本 文就有无预处理操作与不同预处理方式对DPC算 法的提取真实目标效果进行了实验。虽然M-DPC 在复杂背景下具有很强的目标提取能力,但是对近 似目标的杂波存在一定的虚警。为了进一步降低 虚警,本文提出精细分割后处理操作。

1.3 基于IFCM算法分割

FCM作为一种经典的无监督聚类算法,其被广 泛应用在图像分割领域中。红外小目标通常只有 少数像素(根据SPIE 对小目标的定义,一般小于80 像素)。因此,本文针对红外小目标检测先验知识 提出IFCM算法,提取以候选目标点为中心的11× 11大小的图像块进行精细分割。

传统的 FCM^[19]分割是使每个聚类中心与每个 像素灰度值之间的差异之和最小化,定义如下:

$$J_{\text{FCM}} = \sum_{k=1}^{c} \left(\sum_{j \in \Omega} \mu_{jk}^{q} \| I_{j} - v_{k} \|^{2} \right) \qquad , \quad (9)$$

图3 密度峰聚类效果图,注:(a)原始红外图像聚类效果图, (b)预处理图像聚类效果图

Fig. 3 Graph of density peak clustering results, Note: (a) images of density peak clustering results for raw IR, (b) images of density peak clustering results for pre-processed

$$\mu_{jk} \in [0,1], \sum_{k=1}^{c} \mu_{jk} = 1$$
 , (10)

式(9)中,c表示聚类中心个数; I_i 表示像素的灰度 值; Ω 表示图像的像素集合;q是模糊值; v_k 表示相 应的聚类中心; μ_{jk} 表示所属类别的隶属度函数,应 满足式(10)的约束。

传统的FCM算法对初始值敏感,容易陷入局部 最优。因此,结合点聚类提取的目标候选坐标点, 以该点作为目标类初始值,可以减少迭代次数,更 快向聚类中心靠拢。此外,传统的FCM分割没有考 虑红外小目标的空间信息,在分割时受灰度值影响 较大。当背景中存在灰度值大的噪声像素或杂波 像素时,这类像素容易被分割为目标类,从而影响 检测性能。小目标具有异质性和紧凑性的特征,本 文结合目标分布的空间特性,将空间权重项引入新 的隶属度函数,重新定义如下:

$$J_{\text{FCM}} = \sum_{k=1}^{c} \left(\sum_{j \in \Omega} \left(w_{jk} \mu_{jk} \right)^{q} \| I_{j} - v_{k} \|^{2} \right) \quad , \quad (11)$$

$$w_{jk} = (S/\sqrt{(x_j - x_0)} + (y_j - y_0))^{1/k}$$
, (12)
式(12)中, w_{jk} 是空间权重因子; (x_0, y_0) 是中心像素
的坐标即提取的候选目标坐标值; (x_j, y_j) 是图像块
像素 j 的坐标; S 是一个常数,本文设为局部块大小
的2倍; I/k 用于调整像素属于第 k 个类别像素的权
重。在本文中,将图像块像素设为2类。其中, $k =$
1为目标像素, $k = 2$ 为背景像素。通过数学推导可
知 $S/\sqrt{(x_j - x_0)^2 + (y_j - y_0)^2}$ 不小于1,离聚类中心
点越远的像素 w_{jk} 越小,有效减少了距离较远的像素
属于目标的隶属度。因此,可以更准确地分割出红
外目标和背景。

从图2(b)选取了三个具有代表性的图像类型 块,分别用传统的FCM与本文提出的IFCM算法进行 分割。表1是三者的迭代次数,事实证明通过目标类 初始值的设置,在同等收敛条件下可以有效减少迭 代次数。如图4(a)所示,传统的FCM分割时,对灰度 值很敏感,分割为目标类的像素包含了许多临近背 景像素,两类像素混叠未能有效分割。然而,本文所 提的IFCM加权空间信息很清晰地分割目标与背景 两类像素。IFCM有效的区域分割,为未知目标尺寸 的自适应目标增强提供了强有力的帮助。

表1 FCM与IFCM的分割图的迭代次数

 Table 1
 Number of iterations of the segmentation

 graph of FCM and IFCM

类型	FCM迭代次数	IFCM迭代次数
目标	23	13
噪声	16	7
杂波	31	20

综上所述,IFCM其具体内容如算法1所示。

1.4 目标增强并提取

IFCM阶段对图像块像素进行了精细的类别划分。目标像素应集中出现在内部图像块9×9的区域,目标形状与大小由分割的结果决定。利用IFCM的有效分割,结合目标异质性和紧凑性的先验知识。本文设计一个新的增强模块,和一个特征描述子。如图4(b)所示,红色区域为真实目标区域,形状大小由分割的目标像素决定;白色区域为保护区,目标可能出现的区域。最外圈的蓝色区域是背景区域。充分利用其中差异来增强目标对比度:

图 4 IFCM 阶段图:(a)分割结果对比图,(b)增强模板图 Fig. 4 IFCM Stage Graph:(a) comparison graph of segmentation results, (b) enhanced template map

Algorithm 1IFCM					
输入:候选目标局部图像块 Ω_i ; $i = 1, \ldots, n$					
输出:局部图像块像素c类标签(目标类像素与背景类像素)					
1:初始化参数:聚类中心个数 c=2,模糊值 q=2,迭代停止阈值,最					
大迭代次数					
2:初始化隶属度矩阵,初始化目标类初始值,以候选目标为目标类					
初始值					
3:利用式(12)计算空间权重因子w _游					
4:更新隶属度矩阵 μ_{jk} ,更新聚类中心 v_k					
5:利用式(11)计算目标函数 J _{FCM}					
6:如果相邻两次目标函数值误差小于迭代收敛阈值或迭代次数超					
过最大迭代次数,则退出迭代循环。否则返回步骤3继续迭代。					

$$d(T,B) = g_T - \max(g_B) \qquad , \quad (13)$$

式(13)中*d*(*T*,*B*)是目标灰度值与背景中最大灰度 值之差。

特征描述子定义为:

$$F = \begin{cases} 1, & Area_num = 1 \\ 0, & else \end{cases}$$
, (14)

式(14)中, Area_num 表示聚类后, 划为目标类别的 区域个数; F是特征描述子。

针对目标像素进行增强,最终显著图 SM 定

4期

$$SM = F \times d(T,B) \times g_T$$
 . (15)

为了说明算法的有效性,分析如下。NWTH预处理后,很好抑制点噪声与结构性杂波。M-DPC通过新的密度特征图生成极大地增强了真实目标捕获能力。但两者都对类似目标尺寸的杂波无法抑制。本文设计的增强模块,在精细分割的帮助下,可以避免背景像素混入,从而大幅提升检测性能。此外,面对类似大小的杂波,背景中可能存在杂波灰度值的像素与目标类聚类中心接近,因而会被分割成目标类,出现如图4(a)中杂波成为两个区域目标像素的现象。然而,根据目标紧凑性和异质性的先验信息可知,只会出现一个聚类中心。因此,特征描述子可以很好地抑制这类杂波。

经过上述操作之后,在最终的候选目标局部候选集显著图 SM 中,目标通常是最显著的,可以通过阈值操作进行分割。因此,下面的自适应阈值用于提取红外目标:

$$Th = u + \lambda \times \delta \qquad , \quad (16)$$

式(16)中, *u* 是所有候选目标局部候选集增强后像 素灰度的均值; δ 是所有候选目标局部候选集增强 后像素灰度的标准差; λ 是一个超参数, 大量实验显 示, λ 一般取0.5~1.5; *Th* 是分割阈值。

2 实验分析

为了验证本文算法的检测性能,针对4个不同 复杂背景下的红外序列图像数据集进行测试。序 列的例图如图5所示,同时表2给出每个序列的详 细信息。本文实验所使用的计算机配置为 Intel (R) Core (TM) i7-8700K CPU @ 3.70 GHz,内存为 16.0-GB。各个算法的运行环境为MATLAB 2018b。

表 2 4组红外序列的详细信息 Table 2 Details of the four IR sequences

			-	
序列	帧数	图像大小	目标大小	背景情况
1	200	256*256	2×1	复杂地面背景
2	200	320*256	$2 \times 2 - 6 \times 2$	高亮云层背景
3	399	256*256	4×4	复杂地面背景
4	500	256*256	$3 \times 3 - 6 \times 7$	复杂地面背景

2.1 预处理实验

为了验证NWTH的必要性,本文采用场景最复杂的序列1做了一组对照试验。对照组包含红外弱小目标论文中常见的几种预处理方法:DoG滤波, Facet滤波,TopHat滤波和NWTH滤波;此外,加上不

图 5 4个真实红外序列图像,注:(a)-(d)序列1-4 Fig. 5 Samples of the 4 real IR sequences, Note:(a) - (d) Seq. 1-4

做任何预处理的对照组。对比不同处理下的特征 图对 DPC 提取真实目标能力的影响。如图6所示, NWTH 预处理后, DPC 对真实目标提取能力极大地 提升。随着候选目标数目 n 的增加, 真实目标捕获 概率也增大。在 n=5 时, 真实目标捕获概率达到 1。 然而, Facet 滤波和不加预处理的对照组在 n=30 时 真实目标 捕获概率也未能达到 1。DoG 滤波与 TopHat 滤波对真实目标捕获概率也能达到 1, 但是 需要更多候选目标数才能捕获真实目标。终上所 述, NWTH 对 DPC 真实目标提取能力增强效果在几 种预处理方案中最佳。

图6 候选目标包含真实目标的概率

2.2 对比实验

为了验证本文算法的有效性,本文选择了7种 算法与所提算法进行对比,其中包括滤波类算法 NWTH^[18];低秩稀疏分解类算法PSTNN^[20];改进型三 层窗口的单尺度对比度型算法VARD^[21];多尺度对 比度算法RLCM^[12]、MPCM^[22];点聚类思路的算法 DPS-MRG^[15];分割思路的算法FKRW^[16]。表3是各 个算法的参数设置,对比算法均采用原作者论文中 给出的推荐参数。DPS-MRG算法是种子点区域生 长后输出灰度最大值,显著图无意义。因此,图7展 示的是除DPS-MRG算法外的其他算法最终显著 图,红色标记是真实的红外弱小目标,黄色标记是 漏检,蓝色标记为虚警。以下是对各个算法的定性 分析。

1) NWTH算法虽然对目标敏感,但对目标大小 尺寸的杂波也进行了增强。无法有效抑制虚警,实 验序列显著图中均存在许多虚警。

2) PSTNN采用张量中核范数的部分和。虽然 减少了运算时间,但是收敛不完全。在面对具有稀 疏性的强边缘杂波,虚警严重。序列2的高亮云层 背景,稀疏分量较少,背景抑制得比较干净,但其他 序列的显著图杂波干扰很明显。因此,在复杂背景 中,PSTNN的检测性能很难保证。

3) VARD采用改进型的三层窗口,避免了多尺 度计算。但是最小的窗口尺寸也为3,在面对3×3 以内的目标时,不可避免引入背景像素,造成检测 性能下降,如序列1产生漏检。此外,该算法虽然目 标增强方面有很好的性能,但背景抑制能力很差。 它在增强目标的同时放大了杂波,这大大降低了探 测性能。

4) RLCM 多尺度的处理虽然增强了目标,但在 抑制背景方面效果差强人意,特别是背景中的高亮 杂波。此外,从各序列的显著图可以看出,该算法 有明显的"膨胀效应"。

5) MPCM 在结合方向信息及抑制结构性杂波 方面很有效,但对高亮背景敏感,无法有效抑制虚 警,见序列2的显著图。

6) DPS-MRG利用密度峰全局搜索,对目标尺 寸不敏感。但是算法采用灰度作为局部密度的设 计,使得该算法对噪声与高亮背景敏感,影响检测 性能。

7) FKRW利用随机游走分割出目标像素,构造 针对性的对比度,有效增强了目标。但是,在复杂 背景中,依靠人为标记种子点的随机游走算法分割 结果不准确,影响检测性能,如序列1和序列3的显 著图。

8) 本文算法利用形态学预处理与DPC聚类思想的结合,极大增强了真实目标提取能力与背景抑制效果。同时,IFCM有着更好的分割效果可以有效地增强目标。本文所提算法在所有序列显著图中目标突出,虚警最少。

为了进一步验证所提算法与其他七种优秀算 法相比的优越性,本文采用接受者工作特征(Receiver Operating Characteristic, ROC)曲线作为衡量 检测性能的定量指标。检测率(True Positive Rate, TPR)与虚警率(False Positive Rate, FPR)的定义可 见公式(17)和(18)。

TPR =	检测出来的真实目标个数	,	(17)
	实际真实目标个数		

$$FPR = \frac{\pounds E PR}{\delta W} + \frac{18}{100} + \frac{110}{100} + \frac{110}$$

图 8 给出了序列 1~4 的不同算法 ROC 曲线,以 证明所提方法在检测精度方面的优势。序列 1 是复 杂地面背景,杂波干扰多且目标较小(小于最小窗 口模板 3 × 3)。图 8(a)各算法 ROC 曲线表明,固定 窗口的对比度算法在这种场景下,受背景像素的干

表3 不同算法的参数设置

Table 3	Details	of	parameter	settings	for	the	different	methods
---------	---------	----	-----------	----------	-----	-----	-----------	---------

No.	Methods	Acronyms	Parameter settings
1	New White Top-Hat	NWTH	$\Delta B = 4$, $B_i = 7$
			Patch size: 40×40 , sliding step: 40,
2	Partial Sum of the Tensor Nuclear Norm	PSTNN	$\lambda = 0.6 \sqrt{\max{(n_1, n_2)^* n_3}}, \varepsilon = 10^{-7}$
3	Variance Difference	VARD	$D = 3$, Local window size: 15×15
4	Multiscale Relative Local Contrast Measure	RLCM	Cell size: $9 \times 9, K_1 \in \{2, 5, 9\}, K_2 \in \{4, 9, 16\}$
5	Multiscale Patch-based Contrast Measure	MPCM	Cell size: $3 \times 3, 5 \times 5, 7 \times 7, 9 \times 9$
6	Density Peaks Searching and Maximum–Gray Region Growing	DPS-MRG	$n_p = 20$
7	Facet Kernel and Random Walker	FKRW	K = 4, p = 6, β = 200, window size: 11 × 11
8	Based on Clustering Idea	Ours	n = 10, S = 22, k = 2

图 7 不同方法的显著图 Fig. 7 Saliency maps of different methods

扰,检测性能急剧下降。MPCM的ROC曲线在1e-4 级别的虚警中几乎失效,VARD则完全失效,其余对 比度类算法检测性能也不佳。NWTH和PSTNN不 受背景像素影响干扰,检测性能较好,但与本文所 提算法仍然存在较大差距。序列2是高亮背景,干 扰主要为高亮背景影响与云层边缘杂波。如图8 (b)所示,基于对比度的算法,受高亮背景影响,对 比度增强效果有限, ROC曲线表现不佳。虽然 NWTH与PSTNN在面对场景均匀的序列2有着良好 的表现,但是本文所提算法ROC曲线依然有着最佳 表现。序列3和4均是复杂地面背景,杂波类型丰 富且目标尺寸较大(大于最小窗口模板3×3)。对 比度类算法的检测性能相比序列1和2,ROC曲线有 着明显的提升,而NWTH在杂波干扰下存在大量虚 警,检测性能下降。序列4存在稀疏性场景杂波干 扰,PSTNN的检测性能急剧下降。最终结果表明, 在大多数情况下,本文所提算法的检测性能比其他 方法更优,场景与目标尺寸的鲁棒性更强。

最后,我们进行了耗时测试。表4给出了不同 对比方法处理实验序列每帧(256×256)的平均运 行时间;本文所提方法比多尺度处理算法 RLCM耗 时更少;与同类算法 DPS-MRG 相比,本文所使用的

图 8 不同方法的ROC曲线,注:(a)-(d)序列1-4 Fig. 8 ROC curves of different methods, Note: (a) - (d) Seq.1-4

对比度后处理比最大区域生长处理方案耗时更少。 尽管所提方法比其他大多数方法花费更多的时间,

表4 不同对比算法处理单帧(256×256)平均时耗

Table 4 Average running time for a frame (256×256) in different methods

Methods	NWTH	PSTNN	VARD	RLCM	MPCM	DPS-MRG	FKRW	Ours
Times(s)	0.0086	0. 127 8	0.0058	1.6750	0.0376	0.4480	0.0693	0.3076

但良好的性能仍然使其具有实际应用价值。因此, 本文所提的方法可以较好地平衡算法的性能与 效率。

3 总结

本文提出了基于聚类思想的对比度小目标检测算法,所提算法由两种聚类算法组合而成。点聚 类算法粗提取候选目标,该算法对目标尺寸不敏 感,适应各种尺寸的目标,极大地增强了对检测未 知尺寸目标的鲁棒性。改进的M-DPC从全局的角 度搜索目标,背景抑制能力良好,不会被结构性杂 波如建筑背景、马路边缘等复杂背景干扰,极大提 高了真实目标提取能力。利用目标紧凑性与异质 性的特征先验知识,无监督聚类IFCM算法结合相 邻像素的空间相关性进行精细分割,可以有效增强 目标。实验结果表明,与7种对比算法相比,本文算 法不仅适应各种目标尺寸,而且具有更高的检测精 度与更低的虚警率。但是,目前M-DPC的计算复杂 度较高,未来的研究工作将优化实时性,为工程化 落地继续改进。

References

- Liu C, Xie F, Dong X, et al. Small target detection from infrared remote sensing images using local adaptive thresholding [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 1941–1952.
- [2] Zhu Q, Zhu S, Liu G, et al. Infrared Small Target Detection Using Local Feature-Based Density Peaks Searching
 [J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
- [3] Pan S, Zhang S, Zhao M, et al. Maritime infrared weak target detection based on weighted scene prior [J]. Journal of Infrared and Millimeter Waves, 2019, 38(5):9.(潘胜达, 张素,赵明,等.基于加权场景先验的海上红外弱小目 标检测[J].红外与毫米波学报), 2019, 38(5):9.
- [4] Qiu Z, Ma Y, Fan F, et al. A pixel-level local contrast measure for infrared small target detection [J]. Defence Technology, 2022, 18(9): 1589-1601.
- [5] Tom V T, Peli T, Leung M, et al. Morphology-based algorithm for point target detection in infrared backgrounds [C]// Signal and Data Processing of Small Targets 1993. SPIE, 1993, 1954: 2–11.
- [6] Deshpande S D, Meng H E, Ronda V, et al. Max-Mean and Max-Median Filters for Detection of Small-Targets [C]// 1999.

- [7] Hadhoud M M, Thomas D W. The two-dimensional adaptive LMS (TDLMS) algorithm[J]. *IEEE transactions on cir*cuits and systems, 1988, 35(5): 485-494.
- [8] Gao C, Meng D, Yang Y, et al. Infrared patch-image model for small target detection in a single image [J]. IEEE transactions on image processing, 2013, 22 (12): 4996– 5009.
- [9] Dai Y, Wu Y. Reweighted infrared patch-tensor model with both nonlocal and local priors for single-frame small target detection [J]. *IEEE journal of selected topics in applied earth observations and remote sensing*, 2017, 10(8): 3752-3767.
- [10] Han Jinhui, Wei Yantao, Peng Zhenming, et al. A review of infrared weak target detection methods[J]. Infrared and Laser Engineering, 2022, 51(4):20210393.(韩金辉,魏艳涛,彭真明,等.红外弱小目标检测方法综述[J].红外与激光工程), 2022, 51(4):20210393.
- [11] Chen C, Li H, Wei Y, et al. A Local Contrast Method for Small Infrared Target Detection [J]. IEEE Transactions on Geoscience and Remote Sensing, 2013.
- [12] Han J, Liang K, Zhou B, et al. Infrared Small Target Detection Utilizing the Multiscale Relative Local Contrast Measure[J]. IEEE Geoscience and Remote Sensing Letters, 2018:1-5.
- [13] Cui H, Li L, Liu X, et al. Infrared small target detection based on weighted three-layer window local contrast [J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5.
- [14] Rodriguez A, Laio A. Clustering by fast search and find of density peaks [J]. science, 2014, 344 (6191) : 1492– 1496.
- [15] Huang S, Peng Z, Wang Z, et al. Infrared small target detection by density peaks searching and maximum-gray region growing[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(12): 1919–1923.
- [16] Qin Y, Bruzzone L, Gao C, et al. Infrared Small Target Detection Based on Facet Kernel and Random Walker[J]. IEEE transactions on geoscience and remote sensing: a publication of the IEEE Geoscience and Remote Sensing Society, 2019, 57(9):7104-7118.
- [17] Chen L, Lin L. Improved Fuzzy C-Means for Infrared Small Target Detection [J]. *IEEE geoscience and remote* sensing letters, 2022(19-).
- [18] Bai X, Zhou F. Analysis of new top-hat transformation and the application for infrared dim small target detection [J]. Pattern Recognition, 2010, 43(6): 2145-2156.
- [19] Yang F, Liu Z, Bai X, et al. An improved intuitionistic fuzzy c-means for ship segmentation in infrared images
 [J]. IEEE Transactions on Fuzzy Systems, 2020, 30(2): 332-344.
- [20] Zhang L, Peng Z. Infrared Small Target Detection Based on Partial Sum of the Tensor Nuclear Norm [J]. Remote Sensing, 2019, 11(4):382.

- [21] Nasiri M, Chehresa S. Infrared small target enhancement based on variance difference [J]. Infrared Physics & Technology, 2017, 82: 107-119.
- [22] Wei Y, You X, Li H. Multiscale patch-based contrast measure for small infrared target detection [J]. Pattern Recognition, 2016, 58: 216-226.